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Abstract: A mild and efficient strategy for the synthesis of tricyclic 1,2,4-oxadiazolines-fused tetrahydro-
isoquinolines derivatives via [3 + 2] cycloaddition reaction is reported. The reactions provided the
functionalized tricyclic 1,2,4-oxadiazolines in high yields (up to 96%). This protocol is simple and
easy to handle. Moreover, a gram-scale experiment further highlights the synthetic utility. The
chemical structure of the product was determined by X-ray single-crystal structure analysis. A
possible mechanism for this transformation is proposed to explain the reaction process.
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1. Introduction

The 1,2,4-oxadiazole ring is an important structural motif, but also considered a
privileged building block in a variety of medicinal molecules and biologically active com-
pounds [1–4]. Notably, various functionalized 1,2,4-oxadiazole derivatives possess a wide
range of pharmacological and biological activities, such as anticancer, antimicrobial, an-
tiviral, anti-Alzheimer’s disease, and antibacterial activities. [5–8]. Some representative
bioactive compounds containing a 1,2,4-oxadiazole scaffolds are shown in Figure 1.
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Figure 1. Some biologically active compounds featuring a 1,2,4-oxadiazole motif. 
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Figure 1. Some biologically active compounds featuring a 1,2,4-oxadiazole motif.

Due to their importance, a variety of strategies have been developed for the synthesis
of 1,2,4-oxadiazolines [9–14]. These methods include a general route for the synthesis 1,2,4-
oxadiazolines from nitrile oxides with an imine via 1,3-dipolar cycloaddition reaction [9,15].
For example, Lin and co-workers describes a wide range of tricycle 1,2,4-oxadiazole[4,5-
a]indolone derivatives. These compounds are produced in good yields by the reaction
of indolin-2,3-dione in lactime form with phenyl nitrile oxide in the presence of different
bases [9]. The 1,3-dipolar cycloaddition reactions have proved to be one of the most ef-
fective and well-established methods for the single-step construction of five-membered
heterocycles [16,17]. However, the imines compounds, especially for alkyl imines, are
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rather labile substrates for their preparation [15]. Another approach to the construction
of 1,2,4-oxadiazole skeletons is produced by the condensation of amidoximes with a car-
bonyl compound [18–21]. These condensation reactions existed under often harsh reaction
conditions. Therefore, the development of a mild and efficient synthetic method for the
construction of diverse functionalized 1,2,4-oxadiazole skeletons continues to be important
and highly desirable in the organic synthetic community.

Tetrahydroisoquinoline units play a pivotal role in natural alkaloid and have found
widespread application in antitumor agents [22–24]. The 3,4-dihydroisoquinolines are
not only used as synthetic building blocks and encompass a great number of biological
activities, but, as stabilized cyclic imines compounds, have also been broadly used as
versatile synthons in organic synthesis [25,26]. This synthon could react with a variety
of nucleophilic reagent to form functionalized potential biological active tetrahydroiso-
quinoline derivatives [27–31]. Therefore, based on the utility of the isoquinoline units
and the 1,2,4-oxadiazolines framework, we hypothesized that a dipolar [3 + 2] cycliza-
tion could deliver tricyclic 1,2,4-oxadiazolines-fused tetrahydro-isoquinolines derivatives
from nitrile oxide with stabilized cyclic imines. It is worth noting that the tricyclic 1,2,4-
oxadiazolines fused tetrahydroisoquinolines derivatives were synthesized by Cho’s group
through organocatalytic oxidative cyclization of amidoximes in 32% yield under 40 ◦C
temperature for 12 h (Scheme 1a) [32]. Moreover, the amidoxime substrates required an
additional synthetic step for their preparation. Thus, efforts to modernize the synthetic
methods are necessary. Aiming to develop potent drugs with a range of biological activities,
we incorporated the tetrahydroisoquinoline moiety into pharmaceutically privileged struc-
tural motifs, for example 1,2,4-oxadiazole skeletons. Herein, we describe that the oxime
chlorides reacted with cyclic imines under mild reaction conditions via [3 + 2] cycload-
dition reaction, providin convenient and efficient access to potentially bioactive tricyclic
1,2,4-oxadiazolines-fused tetrahydroisoquinolines derivatives (Scheme 1b). Moreover, most
of the substituted 3,4-dihydroisoquinolines are readily accessible.
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Scheme 1. Synthetic methods for 1,2,4-oxadiazolo[5,4-a]tetrahydro-isoquinolines.

2. Results

To optimizethe reaction conditions, we initially attempted to react 3,4-dihydroisoquinoline
2a with in-situ-generated nitrile oxide via dehydrochlorination of the phenylhydroximoyl
chloride 1a. The phenylhydroximoyl chloride 1a has extensive utility in 1,3-dipolar cy-
cloadditions for the synthesis of a wide variety of important heterocycle compounds, which
could generate nitrile oxides in situ in the presence of base [33–39]. Gratifyingly, the tricyclic
1,2,4-oxadiazolines-fused tetrahydro-isoquinoline 3a was formed in 72% isolated yield in
the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) in CH2Cl2 at room temperature for
12 h (entry 1, in Table 1) via [3 + 2] 1,3-dipolar cycloaddition reaction. Then, the various
types of bases were screened to further improve the product yield (entries 2–6). The Cs2CO3
base showed best results in this [3 + 2] cycloaddition reaction (95% yield, entry 5). The
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other base, including TEA, DBU, and an inorganic base including Na2CO3, NaOH, gave the
desired product 3a in 75%, 81%, 82% and 92% yields, respectively. Subsequently, a series of
different solvents were tested (entries 7–15). The changing of solvents was ineffective and
did not further increase the reaction yield. For instance, the reaction could offer product 3a
in good yield in CHCl3, DCE, CH3CN, or EtOAc (entries 7–8, and 10–11). Moderate yields
of the product were obtained when the reaction was performed in toluene, acetone, Et2O,
THF or dioxane (entries 9, 12–15). Moreover, the yield was obviously affected when the
reaction time was further reduced (entry 16).

Table 1. Optimization of reaction conditions a.
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Entry Base Solvent Yield (%) b

1 DABCO CH2Cl2 72
2 TEA CH2Cl2 75
3 DBU CH2Cl2 81
4 Na2CO3 CH2Cl2 82
5 Cs2CO3 CH2Cl2 95
6 NaOH CH2Cl2 92
7 Cs2CO3 CHCl3 91
8 Cs2CO3 DCE 86
9 Cs2CO3 toluene 62
10 Cs2CO3 CH3CN 82
11 Cs2CO3 EtOAc 78
12 Cs2CO3 acetone 69
13 Cs2CO3 THF 65
14 Cs2CO3 Et2O 59
15 Cs2CO3 dioxane 71
16 c Cs2CO3 CH2Cl2 75

a Unless noted otherwise, reactions were performed with oxime chloride 1a (0.22 mmol, 1.1 equiv) and
3,4-dihydroisoquinoline imine 2a (0.2 mmol, 1 equiv), base (0.22 mmol, 1.1 equiv) in solvent (1.0 mL) at r.t
for 12 h. b Yield of the isolated product. c The reaction was performed for 6 h.

3. Discussion

With the established optimal reaction conditions, the scope of this [3 + 2] cycloaddition
reaction between oxime chlorides and cyclic imines was tested under optimal conditions.
The results are summarized in Figure 2. Initially, 3,4-dihydroisoquinoline 2a was fixed as a
substrats to investigate a variety of substituted oxime chlorides 1 for the current reaction.
The [3 + 2] cycloaddition reaction could process smoothly and was well tolerated by the
various tested oxime chlorides 1 with different electron properties and substitution pat-
terns. The expected cycloadducts were isolated in excellent yields (90–96%), regardless
of the positions or electron-donating or electron-withdrawing functional groups of the
substituents on the phenyl ring of the R moiety (3a–3k) (see Figure S3 in Supplementary
Materials). The results showed that the steric hindrance or electronic nature of R group
hardly effected the transformation. On the other hand, when the R groups were hetero-
cycle, the cycloaddition reaction could proceed smoothly, without obvious interference,
to provide corresponding cycloadduct 3l–3n in 90%, 91% and 90% yields, respectively.
Notably, the chemical structure of 3j (CCDC 2160406) [40] was unequivocally confirmed by
X-ray crystallographic analysis (see Supplementary Materials). Subsequently, a variety of
3,4-dihydroisoquinoline, with different substituents at the C5−C8 positions of the phenyl
ring, were examined under our standard, offering the corresponding products 3o–3s in
excellent yields (88−95%). There was no obvious effect on the expected products when
using 3,4-dihydroisoquinoline derivative as the substrate.
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Figure 2. Substrate scopes for the formation of O-acylhydroxamate 3. Reaction conditions: oxime
chlorides 1 (0.22 mmol), cyclic imines 2 (0.2 mmol), Cs2CO3 (0.22 mmol), CH2Cl2 (1 mL), at room
temperature for 12 h. Yield of the isolated product.

It is worth noting that the heterocyclic imine was compatible in this reaction, providing
the desired product 3t in 93% yield, which demonstrates that the reaction is not limited
to aromatic heterocyclic imine. α-substituent on the imine 2u, with steric hindrance,
also reacted well with 1a in this [3 + 2] 1.3-DCs reaction, offering the desired tricyclic
1,2,4-oxadiazolines-fused tetrahydro-isoquinolines 3u containing a quaternary stereocenter
in excellent yield (96%).

The synthetic utility of the protocol was further highlighted by conducting a gram-
scale experiment for tricyclic 1,2,4-oxadiazolines under the standard conditions. The [3 + 2]
cycloaddition reaction was performed using 6 mmol of phenylhydroximoyl chloride 1a
and 5 mmol 3,4-dihydroisoquinoline 2a, affording the corresponding product 3a in 92%
yield without an obvious loss of efficiency (Scheme 2).
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Scheme 2. Scaled-up version of synthesis of tricyclic 1,2,4-oxadiazolines 3a.

On the other hand, the stable nitrile oxide 1a’ could be isolated from the corresponding
oxime chloride [41–43]. The reaction can smoothly take place when the stable nitrile oxide
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1a’ reacts with cyclic imines 2 under the standard condition, furnishing the expected
product 3v and 3w in 93% and 95% yields, respectively (Scheme 3).
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Based on the experimental results and previous reports [9,15], a possible mechanism
for this transformation is proposed to explain the reaction process, as depicted in Scheme 4.
Initially, the highly active nitrile oxide A was formed in situ in the presence of base via
dehydrochlorination from oxime halides 1. Then, this active intermediate A could react
with the cyclic imines 2 to obtain the desired product 3 via [3 + 2] cycloaddition reaction.
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4. Materials and Methods

NMR data were obtained for 1H at 400 MHz MHz, and for 13C at 100 MHz. Chemical
shifts were reported in ppm from tetramethylsilane with the solvent resonance as the
internal standard in CDCl3 solution. ESI HRMS was recorded on a Waters SYNAPT G2.
Column chromatography (Waters Corporation, Milford, MA, USA) was performed on silica
gel (200–300 mesh) eluting with ethyl acetate/petroleum ether. TLC was performed on
glass-backed silica plates. UV light, I2, and solution of potassium permanganate were used
to visualize products. Petroleum ether and ethyl acetate were distilled. THF was freshly
distilled from sodium/benzophenone. Unless otherwise noted, experiments involving
moisture- and/or air-sensitive components were performed under a positive pressure of
argon in oven-dried glassware equipped with a rubber septum inlet. Dried solvents and
liquid reagents were transferred by oven-dried syringes.

The hydroximoyl chloride 1 [44–46] and isolable 2,4,6-trimethylbenzonitrile oxide
1a’ [41–43] were prepared according to the literature procedures. Cs2CO3 (0.22 mmol) was
added to a solution of oxime chlorides 1 (0.22 mmol), cyclic imines 2 [47–49] (0.2 mmol)
in CH2Cl2 (1 mL). The solution was stirred at rt for 12 h. After completion, product 3 was
obtained by flash chromatography on silica gel (petroleum ether/ethyl acetate = 15:1 to
10:1).

5. Conclusions

In conclusion, we developed a mild and efficient method of preparing a broad range
of functionalized tricyclic compounds combining the tetrahydroisoquinoline motif with
1,2,4-oxadiazolines scaffolds in high yields (up to 95% yield) from oxime chlorides with
cyclic imines. Additionally, the gram-scale of synthesis of tricyclic 1,2,4-oxadiazoline could
further highlight our method’s utility. The described methodology is available, including
the starting materials, mild reaction conditions, reaction tolerance for broad functional
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groups, and convenient operation. The further application of this method is presently
under bioactive investigation in our laboratory.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27103064/s1. Figure S1: General procedure for synthesis
of tricyclic 1,2,4-oxadiazolines 3, Figure S2: Crystal data and structural refinement for 3j, Figure S3:
Copies of NMR spectra.
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