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Abstract: In this short review, we highlight the advancements in the field of palladium-catalyzed
carbon dioxide utilization for the synthesis of high value added organic molecules. The review
is structured on the basis of the kind of substrate undergoing the Pd-catalyzed carboxylation pro-
cess. Accordingly, after the introductory section, the main sections of the review will illustrate
Pd-catalyzed carboxylation of olefinic substrates, acetylenic substrates, and other substrates (aryl
halides and triflates).
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1. Introduction

The efficient incorporation of carbon dioxide into an organic substrate (carboxylation)
under catalytic conditions to give high value added molecules is one of the most important
and fascinating areas of current organic synthesis. In fact, carbon dioxide is a nonflammable,
inexpensive and largely available C-1 feedstock. Moreover, the efficient conversion of CO2
into organic compounds is a very attractive synthetic approach. In fact, it allows converting
an important waste (it is well known that carbon dioxide is produced in enormous amounts
from the combustion of fossil fuels for the production of energy) into a variety of useful
compounds, which can find application as fuels or in the pharmaceutical or material fields.
Accordingly, many efforts have been devoted by the scientific community to develop novel
efficient and sustainable carboxylation methods, in particular under catalytic conditions,
during the last years [1–34].

This short review is intended to present paradigmatic examples of carboxylation
processes based on palladium catalysis, with particular emphasis to the more recently
reported methods (coverage: from 1980ies to date). Only processes in which carbon dioxide
is fully incorporated into the organic substrates will be considered, while the reactions in
which CO2 is incorporated as a carbonyl function only, resulting in indirect carbonylation
rather than carboxylation, are beyond the scope of this review.

2. Palladium-Catalyzed Incorporation of Carbon Dioxide into Olefinic Substrates

Suitably functionalized olefins are excellent substrates for the Pd-catalyzed incorpo-
ration of carbon dioxide to give high value added heterocyclic compounds. For example,
vinyl epoxides undergo a Pd(0)-promoted ring-opening process with formation of a π-
allylpalladium alkoxide intermediate I, which can attack CO2 to give a π-allylpalladium car-
bonate II that then undergoes intramolecular nucleophilic attack to give vinyl-substituted
5-membered cyclic carbonates 1, as shown in Scheme 1. This kind of process was indepen-
dently disclosed by the groups of Fujinami [35] and Trost [36,37] in the 1980s; an example
of synthetic application is shown in Scheme 2 (in this and in all the following schemes of
the review, unreactive ligands on palladium are not shown for clarity) [38].
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Scheme 1. Pd(0)-catalyzed carboxylation of 2-vinyloxirane to 4-vinyl-1,3-dioxolan-2-one 1. 

 

Scheme 2. Synthesis of trans-(2-oxo-5-vinyl-1,3-dioxolan-4-yl)methyl 4-methylbenzenesulfonate. 

In a similar manner, 5-vinyloxazolidinones 2 can be synthesized from vinylaziri-

dines. For example, using a catalytic system consisting of Pd2(dba)3/PPh3/TBAT (TBAT = 

tetrabutylammonium difluorotriphenylsilicate), in toluene as the solvent and under par-

ticularly mild reaction conditions (0 °C and atmospheric pressure of CO2), a variety of 5-

vinyloxazolidinones was prepared (Scheme 3). The process showed high regioselectivity 

and was also diastereospecific [39]. 

 

Scheme 3. Synthesis of 5-vinlyloxazolidinones 2 from vinylaziridines. 

Cycloalkylidenecyclopropanes, bearing the highly reactive cyclopropane ring, have 

been reported to undergo ring-opening carboxylation under relatively mild conditions to 

yield five-membered lactones, as shown in Scheme 4 for the formation of 3 and 3’ [40]. 

Reactions were carried out in toluene at 120 °C under 40 atm of CO2, in the presence of 

Pd2(dba)3/PCy3 as the catalytic system and dimethyl sulfoxide (DMSO) as additive. The 

reaction showed a certain degree of diastereoselectivity, favoring the formation of the di-
astereoisomer with the carbonyl group in the axial position 3 in most cases. The proposed 

mechanism involves the initial oxidative insertion of Pd(0) into the cyclopropane ring 

with formation of a four-membered Pd(II) palladacycle intermediate I, as shown in 

Scheme 4, which may undergo a ring opening process to give a zwitterionic -allypalla-

dium complex II. The latter inserts CO2 by carbanion attack to give a carboxylate zwitter-

ionic intermediate III (only the intermediate leading to the major diastereoisomer is 

shown in the scheme), from which the final product 3 is formed by intramolecular attack 

of the carboxylate group to the -allyl moiety, with regeneration of the Pd(0) catalyst 

(Scheme 4). 
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Scheme 2. Synthesis of trans-(2-oxo-5-vinyl-1,3-dioxolan-4-yl)methyl 4-methylbenzenesulfonate.

In a similar manner, 5-vinyloxazolidinones 2 can be synthesized from vinylaziridines.
For example, using a catalytic system consisting of Pd2(dba)3/PPh3/TBAT (TBAT = tetra-
butylammonium difluorotriphenylsilicate), in toluene as the solvent and under partic-
ularly mild reaction conditions (0 ◦C and atmospheric pressure of CO2), a variety of
5-vinyloxazolidinones was prepared (Scheme 3). The process showed high regioselectivity
and was also diastereospecific [39].
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Scheme 3. Synthesis of 5-vinlyloxazolidinones 2 from vinylaziridines.

Cycloalkylidenecyclopropanes, bearing the highly reactive cyclopropane ring, have
been reported to undergo ring-opening carboxylation under relatively mild conditions to
yield five-membered lactones, as shown in Scheme 4 for the formation of 3 and 3′ [40].
Reactions were carried out in toluene at 120 ◦C under 40 atm of CO2, in the presence
of Pd2(dba)3/PCy3 as the catalytic system and dimethyl sulfoxide (DMSO) as additive.
The reaction showed a certain degree of diastereoselectivity, favoring the formation of the
diastereoisomer with the carbonyl group in the axial position 3 in most cases. The proposed
mechanism involves the initial oxidative insertion of Pd(0) into the cyclopropane ring with
formation of a four-membered Pd(II) palladacycle intermediate I, as shown in Scheme 4,
which may undergo a ring opening process to give a zwitterionic π-allypalladium complex
II. The latter inserts CO2 by carbanion attack to give a carboxylate zwitterionic intermediate
III (only the intermediate leading to the major diastereoisomer is shown in the scheme),
from which the final product 3 is formed by intramolecular attack of the carboxylate group
to the π-allyl moiety, with regeneration of the Pd(0) catalyst (Scheme 4).
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Scheme 4. Synthesis of five-membered lactones 3 and 3′ from cycloalkylidenecyclopropanes.

Functionalized allylic substrates can also undergo carbon dioxide fixation under Pd(0)
catalysis. As an example, 2-(acetoxymethyl)-3-(trimethylsilyl)propenes were converted into
2(5H)-furanones when allowed to react with CO2 (1 atm) in 1,2-dimethoxyethane (DME) or
THF at 60–75 ◦C in the presence of Pd(PPh3)4, although in modest to moderate isolated
yields (35–62%), as exemplified in Scheme 5 for the formation of 4 [41]. Mechanistically, the
reaction follows a pathway similar to that seen in Scheme 1, as the key intermediate is a zwit-
terionic π-allylpalladium complex I [formed by oxidative addition of the substrate to Pd(0)],
which reacts with CO2 to give a zwitterionic carboxylate complex II. The latter undergoes
cyclization (by intramolecular nucleophilic attack of the carboxylate to the π-allylpalladium
system), with regeneration of Pd(0) and formation of a 4-methylenedihydrofuran-2(3H)-
one intermediate III, which eventually isomerizes to the final 2(5H)-furanone product 4
(Scheme 5).
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Scheme 5. Synthesis of 4-methylfuran-2(5H)-one 4 from 2-((trimethylsilyl)methyl)allyl acetate.

Vinyl-substituted 5-membered cyclic carbonates 5 were synthesized from allylic car-
bonates by a sequential CO2 elimination–fixation process, as shown in Scheme 6, with for-
mal CO2 recycling, again through the formation of a zwitterionic π-allylpalladium complex
I [42]. Reactions were performed in the presence of Pd2(dba)3 as catalyst in the presence of
dppf [1,1′-bis(diphenylphosphino)ferrocene] or dppe [1,2-bis(diphenylphosphino)ethane]
as ligand, in dioxane at 50 ◦C under inert atmosphere. The process was shown to be
enantiospecific when starting from nonracemic allylic carbonates to yield nonracemic
cyclic carbonates.
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Scheme 6. Synthesis of 4-vinyl-1,3-dioxolan-2-ones 5 from (E)-4-hydroxybut-2-en-1-yl methyl carbonates.

In a subsequent work, the same research group reported the synthesis of dienylic 5-
membered cyclic carbonates 6 from 6-methoxycarbonyloxy-2,4-hexadien-1-ols under similar
conditions [Pd2(dba)3 as catalyst in the presence of dppe or dppv (1,2-bis(diphenylphosphino)
ethylene) as ligand, in dioxane at 50 ◦C], as shown in Scheme 7 [43].
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Scheme 7. Synthesis of dienylic 5-membered cyclic carbonates 6 from 6-methoxycarbonyloxy-2,4-
hexadien-1-ols.

Allylamines have been reported to react with alkyl bromides and carbon dioxide
(1 atm) in DMSO at room temperature, in the presence of Pd(PPh3)4 as catalyst and 1,5,7-
triazabicyclo[4.4.0]dec-5-ene (TBD) as base and under visible light irradiation (10 W blue
LED lamp), to give 2-oxazolidinones 7 in good yields (Scheme 8) [44]. Experimental data
were in agreement with a radical mechanism, which starts with the photoexcitation of
Pd(0) followed by single electron transfer (SET) with the alkyl bromide to give a Pd(I)
species I and an alkyl radical II. The latter reacts with the double bond of the carbamate
intermediate III formed by the attack of the amino group of the allylamine substrate to CO2
in the presence of TBD, thus leading to a radical anion species IV. This species undergoes
another SET process with Pd(I) with regeneration of the Pd(0) catalyst and formation of a
zwitterionic intermediate V, whose cyclization by intramolecular nucleophilic attack finally
affords the oxazolidinone product 7 (Scheme 8).
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In a very similar manner, 1,4-dihydro-2H-3,1-benzoxazin-2-ones 8 were recently syn-
thesized from 2-(1-arylvinyl)anilines, alkyl bromides, and carbon dioxide in the pres-
ence of the same catalyst [Pd(PPh3)4] and base (TBD) and under visible light irradiation
(2 × 3 W blue LED lamps), at room temperature and under atmospheric pressure of CO2
(Scheme 9) [45].
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Functionalized allenes are also useful substrate for Pd-catalyzed CO2 incorporation. As
early as 1992, Tsuda and coworkers reported the dimerizative carboxylation of methoxyallene
into (E)-6-methoxy-3-(methoxymethylene)-5-methylenetetrahydro-2H-pyran-2-one 9 (41% iso-
lated yield), catalyzed by Pd2(dba)3 in the presence of Bu2PCH2CH2Py (Py = pyridyl) in MeCN
as the solvent at 120 ◦C and under 50 kg/cm2 pressure of carbon dioxide (Scheme 10) [46]. The
methoxy substituent was essential to the success of the reaction. A palladacycle intermediate
was proposed to be the key intermediate in product formation.
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Scheme 10. Synthesis of (E)-6-methoxy-3-(methoxymethylene)-5-methylenetetrahydro-2H-pyran-2-
one 9 from methoxyallene.

More recently, aryloxyallenes have been reported to undergo a multicomponent reac-
tion with amines, carbon dioxide, and aryl iodides, catalyzed by Pd(PPh3)4 in the presence
of TBD, to give 1-aryloxy-2-arylallyl carbamates 10, according to Scheme 11 [47]. From
a mechanistic point of view, the process is believed to begin with the oxidative addition
of the aryl iodide to Pd(0) to give an ArPd(II) complex, which then inserts the allenyl
moiety of the substrate thus leading to a π-allylpalladium complex I. The final product is
finally obtained by regioselective nucleophilic attack to the π-allylpalladium moiety by
the carbamate formed by the reaction between the amine and CO2 in the presence of TBD
(Scheme 11).
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When the aryloxy and Ar–I functional groups were present in the same substrate
in relative ortho positions, 3-methylene-2,3-dihydrobenzofuran-2-yl carbamates 11 were
obtained by a similar sequence of mechanistic steps, the carbamate nucleophilic attack to
the π-allyl system occurring in this case intramolecularly (Scheme 12) [48]. Interestingly,
(1-tosyl-1H-indol-3-yl)methyl carbamates were selectively formed when starting from
2-iodo-N-(propa-1,2-dien-1-yl)-N-tosylanilines, by an inversion of regiochemistry in the
intramolecular nucleophilic attack, probably owing to the steric hindrance exerted by the
tosyl group on nitrogen.
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Scheme 12. Synthesis of 3-methylene-2,3-dihydrobenzofuran-2-yl carbamates 11 from 1-iodo-2-
(propa-1,2-dien-1-yloxy)benzenes and amines.

In a related work, N-Boc-2-iodo-N-(propa-1,2-dien-1-yl)anilines (Boc = tert-butyloxycarbonyl)
were allowed to react with ZnEt2 and CO2 (1 atm) and room temperature in the pres-
ence of PdCl2 as the palladium source and P(C6H4-p-CF3)3 as ligand to give a ((1-Boc-3-
methyleneindoline-2-carbonyl)oxy)(ethyl)zinc intermediate I. This was transformed into
methyl 1-Boc-3-methyleneindoline-2-carboxylates 12 by acidic quenching and subsequent
reaction with TMSCHN2 (TMS = trimethylsilyl) (Scheme 13) [49].
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Scheme 13. Synthesis of methyl 1-Boc-3-methyleneindoline-2-carboxylates 12 by from N-Boc-2-iodo-
N-(propa-1,2-dien-1-yl)anilines.

Ikayara and coworkers reported the reaction of α-allenyl amines with dense CO2
(11.5 MPa) to give 5-vinyl-2-oxazolidinones 13 under the catalysis of Pd(0), obtained in situ
from palladium acetate, as shown in Scheme 14 [50]. The proposed mechanism starts with
the formation of a carbamate intermediate I (from the reaction between the substrate and
CO2) followed by oxidative addition of the –OH group to Pd(0). Insertion of the internal
allenyl double bond into the ensuing Pd–H bond then takes place, with formation of a
π-allylpalladium complex II. Cyclization with reductive elimination of Pd(0) finally yields
the oxazolidinone product 13 (Scheme 14).
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In 1999, Inoue and coworkers reported the Pd(0)-catalyzed formation of vinyl-substituted
cyclic carbonates from 2,3-dienols or 3,4-dienols, aryl or vinyl halides, and CO2, as exemplified
in Scheme 15 for the synthesis of 4-vinyl-1,3-dioxolan-2-ones 14 from 2,3-dienols and aryl
halides [51]. The process, carried out in DMA (N,N-dimethylacetamide) at 50–100 ◦C under
40 atm of CO2, in the presence of Pd(PPh3)4 as catalyst and K2CO3 as base, took place through
oxidative addition of the halide to Pd(0), followed by insertion of the allenyl moiety of the
deprotonated substrate to give a π-allylpalladium complex I. The final product 14 was then
formed by attack of the anionic oxygen to CO2 followed by intramolecular nucleophilic attack
of the ensuing carbonate moiety to the π-allylpalladium system, with regeneration of Pd(0)
(Scheme 15).
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In a similar way, 5-vinyl-2-oxazolidinones 15 were synthesized from 2,3-allenyl amines,
aryl iodides and CO2 (1 atm) in the presence of Pd(PPh3)4 and K2CO3 as the base, in
DMSO at 70 ◦C (Scheme 16) [52]. The reaction starts with the oxidative addition of
the aryl iodide to Pd(0) to give an Ar–Pd–I complex, which inserts the allenyl moiety
of the π-allylpalladium carbamate intermediate I formed by the reaction between the
allenyl amine and CO2. Intramolecular nucleophilic attack of the carbamate to the π-
allylpalladium moiety eventually leads to the vinyloxazolidinone product 15 with re-
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generation of Pd(0) (Scheme 16). Interestingly, the use of the ligand Gorlos-Phos•HBF4
(Gorlos-Phos = dicyclohexyl(2,6-diisopropoxyphenyl)phosphane) allowed a stereoselec-
tive synthesis of (Z)-5-alkenyloxazolidin-2-ones when starting from 4-monosubstituted
2,3-allenyl amines [53].
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Conjugate dienes are also reactive toward carbon dioxide under palladium catal-
ysis. Following the pioneering studies performed by the groups of Inoue [54,55] and
Musco [56,57], in 1983 Behr and coworkers reported the reaction of 1,3-butadiene with
CO2 carried out in the presence of Pd(acac)2 as the palladium source (0.18%) and iPr3P as
ligand, in acetonitrile at 90 ◦C, to give 3-ethylidene-6-vinyltetrahydro-2H-pyran-2-one (or
2-ethylidene-6-hepten-5-olide, EVL) 16 in 38% isolated yield and a TON (Turnover Number)
of ca. 310 mol of product per mol of palladium used (Scheme 17) [58,59]. Interestingly,
this 6-membered lactone could be isomerized into the corresponding 5-membered one
[3-ethyl-5-propylidenefuran-2(5H)-one, 17% GLC yield] under the same reaction conditions,
but with a higher catalyst loading (1.19%) [59]. EVL is a useful precursor for the prepara-
tion of different high value added products [60–64], including polymers [62–64], such as
high molecular weight polymers with a carbon dioxide content of 33 mol%, obtained by
the δ-lactone free-radical polymerization [64]. Mechanistically, the telomerization process
leading to EVL was believed to occur through the formation of a bis-π-allylpalladium
complex I [from the reaction between butadiene and Pd(0)], followed by CO2 insertion and
cyclization with reductive elimination of Pd(0) (Scheme 17).
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The process was later studied by Dinjus and Leitner [65], among others [66–69], who
were able for the first time to isolate and characterize by NMR the mixture of isomeric lac-
tones [6-(prop-1-en-2-yl)-3-(propan-2-ylidene)tetrahydro-2H-pyran-2-one and 6-methyl-3-
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(propan-2-ylidene)-6-vinyltetrahydro-2H-pyran-2-one] obtained from isoprene [65]. These
studies evidenced the importance of the use of a hindered phosphine ligand as well as of a
nitrile solvent for the success of the reaction.

More recently, various catalytic systems have been developed to perform the telom-
erization of butadiene with CO2 to give lactones, including Pd(OAc)2 in the presence of
ferrocenylphosphine ligands, such as 1,1′-bis(diisopropylphosphino)ferrocene (disoppf) [70],
Pd(acac)2/PCy3 [62,71], Pd(acac)2/PPh3 [64], Pd2(dba)3/4-(2-(diphenylphosphino)phenyl)
morpholine [72], Pd(acac)2/TBAAc (TBAAc = tetrabutylammonium acetate) [63,73], Pd(dba)2/
TOMPP [TOMPP = tris-(o-methoxyphenyl)phosphine] [74], and Pd(OAc)2/TPMPP/H2Q/
DIPEA [TPMPP = tris-(p-methoxyphenyl)phosphine, H2Q = p-hydroquinone, DIPEA = N,N-
diisopropylethylamine] [75]. In particular, using the last catalytic system, EVL was obtained
in 96% selectivity and with an unprecedented TON of ca. 4500, by performing the reaction in
MeCN at 70 ◦C for 5 h [75].

3. Palladium-Catalyzed Incorporation of Carbon Dioxide into Acetylenic Substrates

Acetylenic substrates have been reported to undergo several important carboxylation
processes catalyzed by palladium, with formation of high value added compounds.

In 1986, Utimoto and coworkers reported the Pd(II)-catalyzed reaction of lithium 2-
alkynyl carbonates (obtained from the reaction between lithium 2-alkyn-1-olates with CO2)
with allylic chlorides to give 4-(but-3-en-1-ylidene)-1,3-dioxolan-2-ones 17 (Scheme 18) [76].
The synthetic transformation was carried out in a one-pot, two-step fashion, by allowing
ynolate to react with CO2 first (in THF at −78 ◦C) and then adding the allyl chloride
together with the catalyst PdCl2(MeCN)2 at the same temperature followed by stirring at
0 ◦C for 4 h, as shown in Scheme 18.
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Scheme 18. Synthesis of 4-(but-3-en-1-ylidene)-1,3-dioxolan-2-ones 17 from lithium 2-alkyn-1-olates.

Later on, Inoue and coworkers reported the Pd(0)-catalyzed reaction between sodium
2-alkyn-1-olates bearing a terminal triple bond, aryl halides, and CO2 to give cyclic carbon-
ates 18 [(E)-4-(arylmethylene)-1,3-dioxolan-2-ones], as shown in Scheme 19 [77]. Reactions
were carried out under 10 atm of CO2, in THF at 100 ◦C and in the presence of 2 mol% of
Pd(PPh3)4. In this process, the initial oxidative addition of the aryl halide to Pd(0) leads
to an Ar–Pd–X complex, which electrophilically activates the triple bond toward the anti
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5-exo-dig intramolecular nucleophilic attack by the carbonate anion I formed by the reaction
between the ynolate and CO2 (Scheme 19).
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Scheme 19. Synthesis of (E)-4-(arylmethylene)-1,3-dioxolan-2-ones 18 from sodium 2-alkyn-1-olates
and aryl halides.

2-Ynolates can also be formed in situ starting by deprotonation of propargyl alcohols
in the presence of a suitable base. For example, recently a variety of propargyl alcohols with
the triple bond substituted with an aryl group were converted into 5-(diarylmethylene)-
1,3-dioxolan-2-ones 19 by their Pd(0)-catalyzed reaction with aryl halides and CO2 (1 atm),
carried out in the presence of Pd2(dba)3 as catalyst and tBuOLi as the base (Scheme 20) [78].
Interestingly, with substrates bearing a terminal triple bond, a sequential Sonogashira
coupling–carboxylation process took place, as exemplified in Scheme 20 for the case of
the reaction of 2-methylbut-3-yn-2-ol with PhI (3 equiv) and CO2. The reaction, carried
out in the presence of 5 mol% of PdCl2(PPh3)2 as the catalyst precursor, CuI (10 mol%) as
cocatalyst, and tBuOLi as base (3 equiv), led to formation of 5-(diphenylmethylene)-4,4-
dimethyl-1,3-dioxolan-2-one 20 in 55% yield (Scheme 20).
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Scheme 20. Synthesis of 5-(diarylmethylene)-1,3-dioxolan-2-ones 19 and 20 from propargyl alcohols
and aryl halides.

Polymeric materials can be obtained starting from bis(propargylic alcohol)s and aryl
dihalides. Thus, linear and hyperbranched five-membered cyclic carbonate-based polymers
21 with high weight-average molecular weights (up to 42,500, 96% yield) were recently pro-
duced by allowing to react bis(propargylic alcohol) monomers and aryl dihalide monomers
with CO2 (1 atm) in DMF in the presence of Pd(OAc)2 as catalyst precursor and tBuOLi as
the base (Scheme 21) [79].
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Scheme 21. Formation of five-membered cyclic carbonate-based polymers 21 from bis(propargylic
alcohol)s and aryl dihalides.

With propargylic substrates bearing a potential leaving group, Pd-catalyzed CO2
sequential elimination–fixation may occur through the formation of π-propargylpalladium
species, in a similar way as seen in Section 2 for allylic carbonates (Schemes 6 and 7) [80].
Thus, in 2001, Yoshida and Hihara reported the synthesis of aryloxyvinyl-substituted 5-
membered cyclic carbonates 22 by the reaction of 4-hydroxy-2-yn-1-yl methyl carbonates
with phenols, carried out in the presence of Pd2(dba)3 and dppe in dioxane at 25–50 ◦C
(Scheme 22) [81]. Higher product yields were obtained by performing the reaction under
1 atm of CO2 [81–83]. The reaction was also shown to be enantioselective (ees up to 93%) in
the presence of the nonracemic ligand (S)-BINAP [82] and enantiospecific (with chirality
transfer) when starting from nonracemic substrates [83]. The process begins with the
reaction between the substrate and Pd(0) to give carbon dioxide and π-propargylpalladium
methoxide complex I. The latter then undergoes nucleophilic attack by phenol leading
to a π-allylpalladium intermediate II, from which the final product is formed by attack
to CO2 followed by intramolecular nucleophilic attack of the ensuing carbonate to the
π-allylpalladium moiety (Scheme 22).
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More recently, some propargylic epoxides with internal triple bond (trans-1-ethynyl-
7-oxabicyclo[4.1.0]heptanes, in particular) were also used as substrates under similar
conditions, with the addition of 3A molecular sieves (MS) (presumably to avoid substrate
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ring opening by water) and under 1 atm of CO2 (Scheme 23) [84]. The reaction, leading to
2-substituted (1-aryloxyvinyl)hexahydrobenzo[d][1,3]dioxol-2-ones 23 in modest to good
yields, took place through the same kind of mechanistic route seen above for propargylic
carbonates (Scheme 22), the key π-propargylpalladium zwitterionic complex I being this
time formed by Pd(0)-promoted epoxide ring opening through an anti SN2’-type attack
(Scheme 23).
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trans-1-ethynyl-7-oxabicyclo[4.1.0]heptanes and phenols.

Propargyl amines are excellent substrates for the Pd-catalyzed CO2 incorporation to
give high value added oxazolidinone derivatives. In 1997, our research group reported the
first example of catalytic sequential incorporation of both carbon oxides (carbon dioxide
and carbon monoxide) into an organic substrate, α,α’-disubstutited propargylamines in
particular [85]. The process was catalyzed by Pd(II) and took place in the presence of PdI2
(1 mol%), KI, MeOH (also used as solvent) at 50 ◦C for 25–65 h, under 50 atm of a 8:1:1
mixture of CO2-CO-air, to give mixtures of 5-(methoxycarbonylmethylene)oxazolidin-2-
ones 24 (with Z configuration of the double bond) and 24′ (with E configuration around the
exocyclic double bond) in 80–90% total yields (Z/E ratio from 2:1 to 3:1) (Scheme 24) [85,86].
Overall, the reaction corresponded to an oxidative carbonylation [87–99] of the carbamate
species initially formed by nitrogen attack to CO2, with oxygen (from air) as the external
oxidant and with formation of water as benign coproduct. More specifically, the anionic
carbamate I (formed from the reaction between the propargylamine substrate and CO2) led
to the main product, (Z)-5-(methoxycarbonylmethylene)oxazolidin-2-one 24, through the
formation of a palladium carbamate complex II, followed by intramolecular syn 5-exo-dig
insertion of the triple bond to give III, CO insertion to IV, and nucleophilic displacement
by MeOH (Scheme 24, path a) [85,86]. On the other hand, intermediate I could also undergo
anti 5-exo-dig nucleophilic attack of the anionic carbamate moiety to the triple bond coor-
dinated to Pd(II), leading to an E-vinylpalladium complex V. Carbon monoxide insertion
then took place, with formation of an E-acylpalladium intermediate VI, from which the
final (E)-5-(methoxycarbonylmethylene)oxazolidin-2-one 24′ was formed by nucleophilic
displacement by MeOH (Scheme 24, path b). In either case, Pd(0) was formed together
with the organic products. The overall process became catalytic thanks to a very efficient
reoxidation of Pd(0) to Pd(II), involving the initial oxidation of 2 mol of HI (also formed
during the reaction) by oxygen (from air) to produce iodine, followed by the oxidative
addition of I2 to Pd(0) to give back PdI2 (Scheme 24) [100,101].
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Scheme 24. Synthesis of 5-(methoxycarbonylmethylene)oxazolidin-2-ones 24 and 24′ from propar-
gyl amines.

This sequential carboxylation–oxidative alkoxycarbonylation of propargyl amines to
5-(methoxycarbonylmethylene)oxazolidin-2-ones still today represents the only example
reported in the literature of Pd(II)-catalyzed incorporation of both CO2 and CO into an
organic substrate.

The Pd-catalyzed incorporation of CO2 alone (without CO) into propargylic amines has
also been reported. Thus, in 2002, Shi and Shen published the Pd(II)-catalyzed carboxylation
of these substrates under 40 Kg/cm2 of CO2 to give methyleneoxazolidinones 25, using
Pd(OAc)2 as catalyst precursor, in toluene as the solvent at 50 ◦C for 48 h (Scheme 25) [102].
Products were possibly formed through mechanistic pathways similar to those seen before
in Scheme 24, as shown in Scheme 25.
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Scheme 25. Synthesis of 5-methyleneoxazolidin-2-ones 25 from propargyl amines.

More recently, it was reported the use of an indenediide palladium complex as efficient
catalyst for promoting this kind of transformation with a variety of differently substituted
substrates (including propargyl amines bearing an internal triple bond), under mild condi-
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tions (0.5–1 bar of CO2, 40–80 ◦C in DMSO as the solvent), although with a higher catalyst
loading (1–5 mol%) (Scheme 26) [103]. The Z configuration around the exocyclic double
bond, observed for the 5-alkylideneoxazolidin-2-ones 26 obtained from propargyl amines
with internal triple bond, was compatible with the anti 5-exo-dig cyclization pathway, as
shown in Scheme 26. Detailed DFT investigations allowed identifying the cyclization step
as the rate-determining step of the process.
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Scheme 26. Synthesis of 5-alkylideneoxazolidin-2-ones 26 from propargyl amines.

Carboxylation of propargyl amines in the presence of aryl halides under the catalysis
of Pd(0), with formation of 5-arylideneoxazolidin-2-ones 27, is also possible, as shown
in Scheme 27 [104]. The process starts with the oxidative addition of the aryl iodide to
Pd(0) [formed in situ from PdCl2(dppf)] to give an Ar–Pd–I complex. On the other hand,
a carbamate intermediate I is also formed by the reaction of the propargyl amine with
CO2 in the presence of t-BuONa as base. Coordination of the triple bond of I to the Pd(II)
center of the ArPdI species then takes place, followed by 5-exo-dig cyclization and reductive
elimination to give the final product 27 with regeneration of Pd(0).

Molecules 2021, 26, x 14 of 23 
 

 

propargyl amines with internal triple bond, was compatible with the anti 5-exo-dig cycliza-

tion pathway, as shown in Scheme 26. Detailed DFT investigations allowed identifying 

the cyclization step as the rate-determining step of the process. 

 

Scheme 26. Synthesis of 5-alkylideneoxazolidin-2-ones 26 from propargyl amines. 

Carboxylation of propargyl amines in the presence of aryl halides under the catalysis 

of Pd(0), with formation of 5-arylideneoxazolidin-2-ones 27, is also possible, as shown in 

Scheme 27 [104]. The process starts with the oxidative addition of the aryl iodide to Pd(0) 

[formed in situ from PdCl2(dppf)] to give an Ar‒Pd‒I complex. On the other hand, a car-

bamate intermediate I is also formed by the reaction of the propargyl amine with CO2 in 

the presence of t-BuONa as base. Coordination of the triple bond of I to the Pd(II) center 

of the ArPdI species then takes place, followed by 5-exo-dig cyclization and reductive elim-
ination to give the final product 27 with regeneration of Pd(0). 

 

Scheme 27. Synthesis of 5-arylideneoxazolidin-2-ones 27 from propargyl amines and aryl iodides. 

In a similar manner, more recently 5-arylideneoxazolidine-2,4-diones 28 were syn-

thesized starting from propargylic amides, aryl halides, and CO2, in the presence of 

Scheme 27. Synthesis of 5-arylideneoxazolidin-2-ones 27 from propargyl amines and aryl iodides.



Molecules 2022, 27, 262 15 of 23

In a similar manner, more recently 5-arylideneoxazolidine-2,4-diones 28 were syn-
thesized starting from propargylic amides, aryl halides, and CO2, in the presence of
PdCl2(PPh3)2 as the catalytic precursor, CuI as cocatalyst, and potassium carbonate as
base (Scheme 28) [105]. The role of CuI was believed to be related to the possible stabiliza-
tion of the carbamate intermediate I (by chelation of the amide carbonyl and the carboxylate
group, leading to complex II), which avoids protonolysis, leading to oxazolidinones not
incorporating the aryl moiety.
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4. Palladium-Catalyzed Incorporation of Carbon Dioxide into Other Substrates

Under suitable conditions, aryl halides and triflates can undergo palladium-catalyzed
carboxylation with formation of important compounds.

In 2017, the groups of Maes and Beller reported the Pd(0)-catalyzed reaction of 2-
bromoanilines with CO2 and isocyanides to give quinazoline-1,4(1H,3H)-diones 29 [106].
Reactions were performed in the presence of Pd(OAc)2 as the catalyst precursor, in the
presence of BuPdAd2 (Ad = adamantly) as ligand and Cs2CO3 as base, in dioxane as the
solvent at 80 ◦C and under 10 bar of CO2 (Scheme 29). In the simplified version of the
mechanism, oxidative addition of the Ar–Br bond to Pd(0) takes place, followed by insertion
of the isocyanide. The reaction of the amino group with CO2 in the presence of the base
then leads to a palladium carbamate intermediate I, which undergoes reductive elimination
to yield Pd(0) and a 4-imino-1,4-dihydro-2H-benzo[d][1,3]oxazin-2-one intermediate II,
from which the final product is obtained by base-promoted rearrangement (Scheme 29).
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In the same year (2017), independently, the group of Wang and Ji published exactly the
same transformation from 2-iodoanilines under atmospheric pressure of carbon dioxide,
using PdCl2 in the presence of PPh3 as the catalyst precursor and DBU as the base, in MeCN
at 80 ◦C (Scheme 30) [107]. Additionally, in 2018 Zhang and coworkers reported the use of
both 2-bromo- and 2-iodoanilines using catalytic amounts of Pd(OAc)2 in the presence of
PPh3 as ligand and CsF as base, under 2 MPa of CO2, in DMSO at 90 ◦C (Scheme 31) [108].
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Interestingly, very recently this kind of reactivity has been exploited for the synthesis of
new heterocyclic polymers 30 with self-assembly and sensing properties, starting from bis(2-
iodoaniline) and diisocyanide monomers, using PdCl2 and PPh3 as the catalyst precursor,
under 1 atm of CO2, in DMA at 80 ◦C for 18 h (Scheme 32) [109].
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Scheme 32. Synthesis of heterocyclic polymers 30 from bis(2-iodoaniline)s and diisocyanides.

Palladium-catalyzed incorporation of CO and CO2 into 2-iodoanilines to give isatoic
anhydrides 31 has also been reported [110]. Reactions were carried out in THF at 60 ◦C
under 1 MPa of CO2 and 0.5 MPa of CO, in the presence of Pd(PPh3)4 as catalyst and AcOCs
as base (Scheme 33). Mechanistically, the process is similar to that seen in Scheme 29, with
CO in place of the isocyanide (and without the final rearrangement step) (Scheme 33).
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Scheme 33. Synthesis isatoic anhydrides 31 from 2-iodoanilines.

In 2009, Correa and Martín reported the first example of palladium-catalyzed car-
boxylation of aryl bromides to benzoic acids 32 [111]. Reactions were carried out with
Pd(OAc)2 as the catalyst precursor in the presence of tBuXPhos as ligand (tBuXPhos =
di-tert-butyl(2′,4′,6′-triisopropyl-[1,1′-biphenyl]-2-yl)phosphine) and 2 equiv of Et2Zn as
reductant, in DMA/hexanes at 40 ◦C and under 10 atm of CO2 (Scheme 34). The proposed
mechanism involves the oxidative addition of the aryl bromide to the in situ formed Pd(0),
followed by carbon dioxide insertion and transmetallation with Et2Zn to give a zinc car-
boxylate I and an Et–Pd–Br species. Reductive elimination from the latter then regenerates
Pd(0), while the benzoic acid product is obtained from zinc carboxylate following acidic
work-up (Scheme 34).
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More recently, the first visible-light driven carboxylation of aryl halides (chlorides or
bromides) to give methyl benzoates 33, catalyzed by Pd(0) in conjunction with Ir(ppy)2(dtbpy)
(PF6) as a photoredox catalyst (dtbpy = 4,4′-di-tert-butyl-2,2′-bipyridine), has been reported [112].
The optimized conditions involved the use of Pd(OAc)2 as the Pd(0) precursor, t-BuXPhos
(with aryl chlorides) or PhXPhos (with aryl bromides; PhXPhos = 2-diphenylphosphino-2′,4′,6′-
triisopropylbiphenyl) as ligand, in the presence of Cs2CO3 as base and DIPEA (DIPEA =
N,N-diisopropylethylamine) as electron-donor species, in DMA as the solvent at r.t. and under
1 atm of CO2. The initially formed carboxylates were converted into the methyl esters by
acidic quenching and subsequent reaction with TMSCHN2 (Scheme 35). This method avoids
the use of metallic reductants (such as Et2Zn, seen before, Scheme 34) and is also compatible
with aryl chlorides, unreactive under the conditions of Scheme 34. It is worth noting that the
carboxylation of aryl halides with carbon dioxide can also be catalyzed by first-row transi-



Molecules 2022, 27, 262 18 of 23

tion metals, including copper [113], nickel [114], and cobalt [115] catalysts. However, only
palladium catalysis seems to be compatible with visible light-promoted conditions so far. A
possible mechanism starts with the oxidative addition of the aryl halide to Pd(0), followed by
reversible CO2 insertion. A single-electron reduction by an Ir(II) complex then takes place, with
formation of a Pd(I) carboxylate species I and an Ir(III) species. The Pd(I) carboxylate finally
undergoes a second single-electron reduction to give the aryl carboxylate with regeneration of
Pd(0). The Ir(III) species is reconverted into Ir(II) by photoexcitation followed by the reaction
of the excited Ir(III)* species with DIPEA (Scheme 35).
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Scheme 35. Synthesis of methyl benzoates 33 from aryl halides.

In a similar way, recently aryl triflates have been converted into benzoic acids 32 by
Pd(0)-catalyzed, visible light-promoted carboxylation, carried out in the presence of Pd(OAc)2
as the catalyst precursor, DavePhos as ligand [DavePhos = 2-dicyclohexylphosphino-2′-(N,N-
dimethylamino)biphenyl] and Ir(ppy)2(dtbpy)PF6 as photoredox cocatalyst (ppy = polypyr-
role) [116]. Reactions were carried out under conditions similar to those seen above for aryl
halides, namely, at r.t. and atmospheric pressure of CO2, in DMA as the solvent and in the
presence of Cs2CO3 as base and DIPEA as electron donor (Scheme 36).
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Scheme 36. Synthesis of benzoic acids 32 from aryl triflates.

5. Conclusions

The versatility of palladium-based catalysts has been successfully exploited also in the
efficient conversion of carbon dioxide into high value added organic molecules of applica-
tive and pharmacological interest. Many different important Pd-catalyzed carboxylation
processes have been developed and discussed in this review, mainly based on Pd(0) catal-
ysis, although important Pd(II)-catalyzed reactions have also been reported. Particularly
important results have been achieved in the Pd(0)-promoted CO2 incorporation into small
rings (such as suitably functionalized epoxides and aziridines) as well as into suitably
functionalized alkenes, allenes, or alkynes, to give highly important heterocyclic deriva-
tives, such as cyclic carbonates, oxazolidinones, etc. Under Pd(II) catalysis, particularly
important results have been achieved with propargyl amines as substrates, with formation



Molecules 2022, 27, 262 19 of 23

of oxazolidinones, which could also incorporate an exocyclic estereal function working in
the presence of CO together with CO2 under appropriate conditions.

On this grounds, it is expected that in the future palladium will play a major role in
CO2 utilization and incorporation into suitable substrates, possibly in the presence of other
promoting species (either metal-based or organo-based) as cocatalyst(s), which will allow
us to achieve more demanding processes for the direct and selective synthesis of complex
molecular architectures.
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