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Abstract: The rising tide of antibacterial drug resistance has given rise to the virtual elimination
of numerous erstwhile antibiotics, intensifying the urgent demand for novel agents. A number of
drugs have been found to possess potent antimicrobial action during the past several years and
have the potential to supplement or even replace the antibiotics. Many of these ‘non-antibiotics’, as
they are referred to, belong to the widely used class of neuroleptics, the phenothiazines. Another
chemically and pharmacologically related class is the thioxanthenes, differing in that the aromatic
N of the central phenothiazine ring has been replaced by a C atom. Such “carbon-analogues” were
primarily synthesized with the hope that these would be devoid of some of the toxic effects of
phenothiazines. Intensive studies on syntheses, as well as chemical and pharmacological properties
of thioxanthenes, were initiated in the late 1950s. Although a rather close parallelism with respect
to structure activity relationships could be observed between phenothiazines and thioxanthenes;
several thioxanthenes were synthesized in pharmaceutical industries and applied for human use as
neuroleptics. Antibacterial activities of thioxanthenes came to be recognized in the early 1980s in
Europe. During the following years, many of these drugs were found not only to be antibacterial
agents but also to possess anti-mycobacterial, antiviral (including anti-HIV and anti-SARS-CoV-2)
and anti-parasitic properties. Thus, this group of drugs, which has an inhibitory effect on the growth
of a wide variety of microorganisms, needs to be explored for syntheses of novel antimicrobial
agents. The purpose of this review is to summarize the neuroleptic and antimicrobial properties of
this exciting group of bioactive molecules with a goal of identifying potential structures worthy of
future exploration.

Keywords: thioxanthenes; antipsychotic drugs; non-antibiotics

1. Introduction

For the sake of clarity, we will first present the neuroleptic properties of the thioxan-
thenes, followed by their antimicrobial effects.

The first goal of antipsychotic medication is to minimize or eliminate the symptoms
within a short period of time. Originally, antipsychotic drugs were designed and tested
empirically on psychiatric patients to determine their effectiveness. The first antipsychotic
drug that was primarily used as an anesthetic agent in surgery was chlorpromazine [1].
In the beginning, chlorpromazine was administered to psychiatric patients to determine
its calming effects. However, it was soon realized that the drug also reduced psychosis.
Antipsychotic drugs have been classified as either low or high potency based on their ability
to bind to dopamine receptors and not on their effectiveness on patients. Antipsychotic
drugs tend to block the action of D2 neuroreceptors in the dopamine pathway in the brain,
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resulting in reduction of the release of dopamine in the relevant synapses [2]. Thus, an
antipsychotic drug should be able to also block the D2 receptors in the mesolimbic pathway
of the brain [3,4].

Currently there are two main types of antipsychotics in use, typical and atypical. The
main difference between typical and atypical antipsychotic drugs is the ability of the latter
to address the negative symptoms of schizophrenia. These atypical neuroleptics, known
as newer drugs, date back to the introduction of clozaril [5]. These atypical drugs usually
do not cause unpleasant side effects. Atypical drugs may improve cognitive symptoms
and can be effective in patients resistant to typical antipsychotic drugs. Such drugs can
be active on other receptors, in addition to the dopamine receptor, and many have no
extra-pyramidal side effects. Atypical antipsychotics possess an almost identical effect on
D2 receptors but are usually more selective, targeting the intended pathway to a larger
degree than other drugs.

Typical antipsychotics are sometimes referred to as major tranquilizers, since many of
them, in large doses, can sedate and tranquilize [6].

Typical antipsychotics can be classified into three major groups (phenothiazines,
butyrophenones and thioxanthenes). Of these, phenothiazines are the most widely used.
Table 1 lists the chemical classification of the neuroleptics, illustrated by a selection of the
most commonly prescribed drugs from each class along with their structures.

Table 1. Chemical classification of antipsychotic drugs.

Class of Antipsychotics Drugs and Their Chemical Structures

1. Phenothiazines
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Table 1. Cont.

Class of Antipsychotics Drugs and Their Chemical Structures

Haloperidol:
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Much like the phenothiazines, substitution in position 2 provides the intensity of
neuroleptic action in thioxanthenes. It is known that the presence of a double bond in
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the side chain between the carbons 9 and 1 greatly increases the neuroleptic capacity of
thioxanthenes. The structure may be asymmetric due to the presence of the double bond
ring system and substitution in one of the benzene rings [9].

2. Therapeutic Usage of Thioxanthenes

Much like the other neuroleptics, thioxanthenes are prescribed for patients suffering
from schizophrenia. In addition to this, some of the drugs in this group possess specific
characteristics that justify their application in clinical medicine.

Table 2 includes a comparative summary of these three classes of neuroleptics, listing
some of the common risks of antipsychotic medications [10–19].

Table 2. Comparative summary of antipsychotic side effects.

Adverse
Effects

Drugs

(1) Phenothiazines (2) Butyro-
Phenones (3) Thioxanthenes

Chlorpromazine Thioridazine Trifluoperazine Haloperidol Chlorprothixene Flupenthixol Clopenthixol

Extra Pyramidal
Side Effects:
The muscle
related side

effects observed
with

antipsychotic
medications are
termed as ‘Extra
-Pyramidal Side
Effects’ or EPS

[10]

Low Low High Very high

In a comparative
study it was

observed that
Parkinsonian

symptoms were
more often
found with

chlorpromazine
than

chlorprothixene
[11]

Develops in high
dosages, can be

controlled by
anti-

parkinsonian
drugs [12,13]

High

Anti-cholinergic
Effects:

This includes
symptoms like

urinary
difficulties,

constipation, dry
mouth, blurred
visions and may
lead to cognitive

impairments.

High High Low Very low Moderate Low

Both
clopenthixol and

flupenthixol
were found to

have lower effect
in comparison to
chlorprothixene

[14]

Sedation:
This is common

with
antipsychotic

medications and
is dose

dependent.

High High Low

Produces much
lesser sleepiness

and calming
effect than

chlorpromazine
[15]

High Low Low

Hypotension:
Antipsychotics

commonly cause
orthostatic

hypotension,
depending on
the degree of

α1
adrenoreceptor

antagonism.

High High Low Very low High Moderate

Treatment with
clopenthixol is

often associated
with orthostatic
hypotension [19]

Other Effects:

Photosensitivity:
Chlorpromazine is known to induce

photosensitivity and skin pigmentation [16].
An intensive study with phenothiazines and
thioxanthenes on schizophrenic patients [17]

reported that patients receiving chlorpromazine showed
statistically significant changes in the lens and cornea while

patients treated with
thioxanthenes did not.

Hyperprolactinemia:
Thioxanthenes cause high prolactin levels due to the

blockade of prolactin inhibitory factors (PIF), that
inhibits release of prolactin from the pituitary gland [18].

The first thioxanthene, chlorprothixene, was found to have an excellent effect in
schizophrenic patients [20]. Chlorprothixene had been used in the treatment of neuroses,
not only due to its sedative and calming effects but also due to its low level of toxicity and
side effects. Treatment with rather low doses results in favorable results in neuroses with
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anxiety, tension, insomnia, psychosomatic disorders, and depression. Chlorprothixene had
also been found useful for treating alcoholics and alcohol psychoses [21].

Flupenthixol is the highly potent thioxanthene analogue of the phenothiazine
fluphenazine [22]. Flupenthixol possesses a distinct anxiolytic property. At low and,
sometimes, rather higher doses, this drug is effective against hallucinations and delusions.
Flupenthixol manifests stimulating or activating properties in low doses; sometimes even
apathetic patients show greater alertness. Schizophrenic patients treated with chlorpro-
mazine, levomepromazine, or other thioxanthenes are sometimes given flupenthixol in low
doses as aftercare. It can control psychotic symptoms without affecting the alertness or
working ability of the patients [9,23]. The action of flupenthixol is much similar to that of
trifluoperazine, but the former induces much less extra-pyramidal effects [24]. Flupenthixol
is often prescribed for mood stabilization when psychiatric patients suffer from depressive
neurosis. During the early 1970′s, intensive clinical studies repeatedly proved the excellent
efficacy of flupenthixol over other neuroleptics in depressive patients [25,26]. Adminis-
tration of this drug in low dosages does not usually produce side effects, however, sleep
disturbances may occur in some patients who are treated after 5 pm [9].

Clopenthixol has a narrower field of application compared to chlorprothixene, al-
though often it produces quick action on patients suffering from delusions, aggressiveness,
destructiveness, impulsiveness, and even hallucination, and has also been proven to be
definitely better than chlorpromazine for treating paranoid schizophrenics [27]. It produces
highly satisfactory results in paranoids and catatonics [28]. Treatment with clopenthixol
may start with a low dose followed by a gradual increase. However, therapy has to be
continued on a regular basis with one tablet in the evening.

3. Pharmacological Properties of Thioxanthenes

Much like the phenothiazines, thioxanthenes exhibit varied pharmacological actions,
peripheral as well as central. However, therapeutic uses of these compounds depend
on their psychopharmacological activity. The neuroleptic potency of a synthesized thiox-
anthene depends on the structure of the side chain in position 9. The compounds with
β-hydroxyethylpiperazinopropyl or β-hydroxyethylpiperidinopropyl side chains are more
potent neuroleptically than those with a dimethylaminopropyl side chain [29]. The an-
tagonistic effect against methylphenidate-induced stereotypes in mice was employed to
determine the exact duration of neuroleptic action of a compound. It was found that
the peak effect was between 2 and 6 h, and by 24 h, effects of all the compounds were
gone [9,30].

Neuroleptics are known to block the dopamine-induced formation of cyclic adeno-
sine monophosphate (cAMP). In an elaborate study, Iversen et al. (1974) [31] observed
that Z-flupenthixol was the most potent neuroleptic among all the test phenothiazines,
thioxanthenes, and tyrophenones. Interestingly, they noted that E-flupenthixol was com-
pletely inactive.

It is known that neuroleptics have to be administered to psychiatric patients on
a long term basis. In 1974, Moller et al. [32] observed that the antagonistic effect of
neuroleptics undergoes tolerance development in animal models after prolonged therapy.
They reported that when rats were pre-treated with flupenthixol for 12 days, followed
by 3 days withdrawal, the antagonistic potency against apomorphine stereotypes was
decreased. This reduction in potency subsequently gradually disappeared.

Neuroleptics are known for their α-adrenolytic function. Between phenothiazines and
thioxanthenes, the adrenolytic activity was found to be more prominent in the Z-isomers of
chlorprothixene, flupenthixol, and clopenthixol, while chlorpromazine and fluphenazine
(which has no E/Z center) revealed much less activity [33].
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Nasrallah & Tandon (2013) [9] observed that there was a moderate reduction in
adrenaline pressor response after administration of either chlorprothixene or flupenthixol
to anaesthetized cats. Furthermore, in vagotomized cats, the carotid occlusion reflex was
reduced. After administration of chlorprothixene in these animals, respiration remained
unaffected, although initially there was a transient rise in respiratory minute volume,
due to increased tidal volume. Intravenous infusion of chlorprothixene or flupenthixol in
conscious dogs resulted in the fall of blood pressure, without any change in pulse pressure.
Treatment of dogs exhibiting tachycardia with flupenthixol resulted in a normalization of
heart rate for 15 min [9,14].

4. Bacterial Inhibitory Action of Thioxanthenes

Human bodies harbor a plethora of diverse communities of commensal, symbiotic,
and pathogenic microorganisms, along with their genetic compositions, collectively known
as the ‘microbiome’ [34]. The gastro-intestinal tract is the main location of the human
microbiota. Recent ground-breaking studies in modern science are focusing on the role
gut microbiota play in the pathogenesis of several medical conditions, particularly those
related to the central nervous system. This new concept has been termed the ‘microbiota-
gut-brain axis’ [35]. Bidirectional communication lines, effected by the neural, endocrine.
and immune systems, tightly link the huge array of bacterial populations in the gastro-
intestinal tract with the brain. Mediators of this axis include short chain fatty acids (e.g.,
butyrate), neurotransmitters (e.g., serotonin and γ-aminobutyric acid (GABA)), hormones
(e.g., cortisol), and immune system modulators (e.g., quinolinic acid) [36]. Recently, the
gut microbiome has been termed aptly as the ’psychobiome´ [37]. Several reports indi-
cate the connection of gut bacteria with the development of neurodegenerative diseases,
(like Alzheimer’s, Parkinson’s and Schizophrenia), with their associated cognitive de-
cline [38–41]. Epidemiological researchers have also noticed an increase in depression
in people taking antibiotics. Numerous in vitro and in vivo studies showcase the varying
effects of widely used psychotropics on microorganisms. An expanding body of experi-
mental evidence supports the notion that microbes can metabolize drugs and vice versa,
that drugs can alter the microbial composition. In 1954, Geiger & Finkelstein [42] ob-
served that neurological patients receiving chlorpromazine could be cured of tuberculosis
much faster. Similar observations started to be reported from various other scientists:
there are medicinal compounds used for therapy of non-infectious pathology which si-
multaneously possess antimicrobial action. All such compounds are collectively known
as ‘non-antibiotics’ [43]. Although many of the non-antibiotics are tricyclic antidepres-
sants [44], there are compounds that possess two benzene rings which are joined to each
other by different structural moieties [45–51]. Structurally similar thioxanthenes were
also reported to possess broad-spectrum antibacterial function. In 1987, Mortensen and
Kristiansen [52] reported that different forms of clopenthixol possess moderate to power-
ful action against both Gram positive and Gram negative bacteria (Table 3). Of the two
stereo-isomeric compounds, E-clopenthixol showed much greater antibacterial action than
Z-clopenthixol. The MIC of E-clopenthixol, among most of the Gram-positive bacteria,
was between 6.2 to 25 µg/mL. Despite that, in general, the Gram-negative bacteria were
less sensitive: many could be inhibited at the 3.1 to 6.2 µg/mL level. Both Corynebacterium
and Listeria were highly sensitive to E-clopenthixol. Z-clopenthixol was also active against
Gram positive organisms and other test bacteria, but its MIC was definitely higher than
those of E-clopenthixol.
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Table 3. Antibacterial effect of two stereo-isomeric forms of clopenthixol and its metabolites.

Bacteria No. Strains
Tested

Range of MIC (µg/mL) Observed

Z-Clopenthixol E-Clopenthixol N-Dealkyl-
Clopenthixol

Clopenthixol
Sulfoxide

Staphylococci/Micrococci 4 12.5–25 12.5 3.1–6.2 >100

Streptococci 13 6.2–50 3.1–25 1.6–12.5 >100

Corynebacteria 3 12.5 3.1–12.5 1.6–3.1 >100

Listeria/Erisipelothrix 2 12.5–25 6.2–12.5 6.2 >100

Clostridium/Propionibacterium 2 50 12.5 3.1–12.5 >100

Enterobacteriaceae 19 25–>100 6.2–>100 6.2–>100 50–100

Aeromonas/Pseudomonas 7 50–>100 25–>100 12.5–>100 >100

Other Gram-negative
bacteria 11 12.5–>100 1.6–>100 3.1–>100 100–>100

Adapted from: Mortensen and Kristiansen 1987 [52].

Two main metabolites that are formed in humans after administration of clopenthixol
are N-dealkyl-clopenthixol and clopenthixol sulfoxide. The former is a stereo-isomeric mix-
ture of N-dealkyl-Z-clopenthixol and N-dealkyl-E-clopenthixol. This particular compound
possessed a more powerful antibacterial function than administered E-clopenthixol, with
an MIC often as low as 1.6 to 3.1 µg/mL. The other compound, clopenthixol sulfoxide,
which is a mixture of Z- and E-clopenthixol sulfoxide, was practically inactive against most
of the test organisms.

In an intensive study, Jeyaseeli et al. (2006) [53] reported highly potent antimicrobial
action of another thioxanthene compound, flupenthixol. The results (Table 4) showed
that the Gram-positive bacteria were highly sensitive to this thioxanthene as well, the
MIC varying between the 5 and 50 µg/mL level. In a total of ten different genera of
Enterobacteriaceae, many strains could be inhibited at 25 µg/mL while a few strains were
resistant to flupenthixol. Strains of Shigella were mostly sensitive, while salmonellae were
less sensitive. It may be pointed out here that the MIC of flupenthixol against S. enterica
serovar Typhimurium NCTC 74 was 50 µg/mL. This particular strain was taken for animal
experiments. All the test strains belonging to the genus Klebsiella were totally resistant
to the drug, and most Pseudomonas aeruginosa strains were equally resistant. A large
number of strains of Vibrio cholerae and V. parahaemolyticus were unable to grow in the low
concentrations of the test drug.

Table 4. In vitro antibacterial activity of flupenthixol.

Bacteria No. of Strains
Tested

No. of Strains Inhibited by Flupenthixol (µg/mL)

5 10 25 50 100 200 >200

Bacillus spp 6 1 5

Staphylococcus aureus 84 9 30 31 12 2

Streptococcus spp 4 1 2 1

Escherichia coli 47 1 5 4 5 3 29

Salmonella spp. 15 1 5 1 8

Arizona spp. 1 1

Providencia spp. 1 1

Proteus spp 4 1 3

Shigella spp 26 2 11 1 1 11

Pseudomonas spp. 12 1 2 9

Pasteurella septica 1 1
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Table 4. Cont.

Bacteria No. of Strains
Tested

No. of Strains Inhibited by Flupenthixol (µg/mL)

5 10 25 50 100 200 >200

Bordetella
bronchiseptica 1 1

Hafnia spp. 1 1

Klebsiella spp. 5 5

Vibrio cholerae 111 5 9 23 26 5 4 39

Vibrio
parahaemolyticus 33 1 1 9 1 5 16

Total 352 17 56 80 51 13 15 120

Adapted from: Jeyaseeli L et al. 2006 [53].

Potent antimicrobial action of the phenothiazine derivative thioridazine, in combi-
nation with the antibiotic dicloxacillin, was reported by Poulsen et al. in vitro against
Methicillin Resistant Staphylococcus aureus (MRSA) in 2013, 2018, and in vivo in 2014 [54–56].
Thioridazine showed antimicrobial action by itself, but in combination with dicloxacillin,
the potency of thioridazine was increased, and the dose needed of both drugs was reduced
remarkably [54,55]. This combinatorial beneficial effect seemed to be independent whether
the thioridazine used was racemic or either of the two stereo isomers. Thioridazine admin-
istered alone, both in vitro and in vivo, did not affect bacterial growth at the dose chosen.
Dicloxacillin administered alone kept growth in a steady state, but when the two drugs
were combined, they inhibited growth and even killed the otherwise resistant bacteria [55].
The potential beneficial combinatorial treatment was shown in vivo using the nematode
Caenorhabditis elegans (C. elegans) as a host model [56].

5. Bacteriostatic Action of Thioxanthenes

Jeyaseeli et al. (2006) [53] had conducted detailed antibacterial studies of flupenthixol.
The drug was added to logarithmically growing S. aureus NCTC 6571, the amount being
twice the value of its MIC. The number of viable bacteria fell from 108 to 102 in 6 h,
following which there was no further reduction (Figure 1) in the number of viable cells up
to 18 h. Parallel studies using V. cholerae 1347 revealed a very similar pattern of activity
(Figure 2). This proved that flupenthixol exerts a bacteriostatic effect on both Gram-positive
and Gram-negative organisms.
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6. In Vivo Observation with Flupenthixol

In an elaborate study, Jeyaseeli et al. (2006) [53] used Swiss-strain white mice. Sixty an-
imals were injected intraperitoneally with 0.1 mL of sterile saline, followed three hours later
by a challenge of a 50 median lethal dose (MLD) of Salmonella enterica serovar Typhimurium
NCTC 74 (Table 5). Another group of 30 mice each received 15 µg flupenthixol. Half of
them, 20, were injected with the same amount of S. enterica intraperitoneally. Similarly, a
further 30 mice were given 30 µg of flupenthixol in an identical manner, and again 20 of
them were challenged with viable bacteria. In the control group that received saline, 48 out
of 60 animals died within 100 h of the lethal challenge. However, a statistically significant
protection was observed in the other groups of animals that received both the drug and
the challenge, and this was confirmed by determining the bacterial load in various tissues
(Table 6).

Table 5. Determination of the in vivo protective capacity of flupenthixol in mice receiving a challenge
dose of Salmonella typhimurium NCTC 74 in 0.5 mL nutrient broth.

Group Drug Injected Per Mouse Mice Died

Control (N = 60) 0.1 mL sterile saline 48

Group I (N = 20) 15 µg flupenthixol 3 *

Group II (N = 20) 30 µg flupenthixol 10 **
Note: None of the animals died when 15 µg of the drug alone was injected and one animal died when 30 µg of the
drug was injected to two separate groups of mice (10 mice in each). * p < 0.001 according to χ2 test. ** p < 0.05
according to χ2 test. Adapted from: Jeyaseeli L et al. 2006 [53].

Table 6. Reduction in colony-forming units (CFUs) of Salmonella typhimurium NCTC 74 at 18 h
following treatment with flupenthixol in heart blood and organ homogenates of mice.

Group No. Mice Tested Drug (µg/Mouse)
CFU/mL Count a

Heart Blood Liver Spleen

I 5 Flupenthixol 15 µg 1.2–44 × 103 6.5–73 × 103 3.2–75 × 103

Control 5 Saline 5.3–74 × 108 8.5–50 × 108 1.8–80 × 108

a Viable counts between two groups significant; p < 0.01 in 18 h samples (Student’s t-test). Adapted from: Jeyaseeli
L et al. 2006 [53]
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Jeyaseeli et al. (2012) [57] explored whether flupenthixol could efficiently augment the
action of an antibiotic when tested in combination. Twelve bacterial strains belonging to
various genera were selected for this study. These were all sensitive to the antibiotics: peni-
cillin, ampicillin, chloramphenicol, tetracycline, streptomycin, gentamicin, erythromycin,
and ciprofloxacin. Flupenthixol exhibited synergism with four out of the eight test antibi-
otics. Combining flupenthixol with penicillin and a disc diffusion assay system illustrated
pronounced statistically significant synergism (p < 0.01). This was further confirmed with
the help of the checkerboard method, and the fractional inhibitory concentration (FIC) index
was found to be 0.375. Flupenthixol with penicillin were then tested in in vivo experiments
in mice challenged with Salmonella enterica serovar Typhimurium NCTC 74. Statistical
analysis of the mouse protection test suggested that this combination was highly synergistic
(p < 0.001 by chi-squared analysis).

Similar augmentation of antimicrobial action was observed when flupenthixol was
combined with other antibiotics, namely streptomycin, gentamicin and ciprofloxacin. The
results of this study may thus provide alternatives for the treatment of problematic infec-
tions associated with Salmonella spp.

7. Effect of Thioxanthenes on Slow Growing Mycobacteria

Chlorpromazine came to be known from the intensive studies carried out by Laborit
and his co-workers (1952) [58] on the usefulness of phenothiazines for artificial hibernation
of surgical patients. The independent clinical trials by Sigwald and Bouttier (1953) [59] and
Delay and Deniker (1952) [60] established chlorpromazine to be the best choice for psy-
chiatric patients. However, in 1954, Geiger and Finkelstein [42] observed that psychiatric
patients receiving chlorpromazine had a much faster recovery from tuberculosis. These ob-
servations paved the way to explore anti-tubercular properties in the other phenothiazines
that had become available as antipsychotics or as anti-histamines. The detailed investi-
gations by Popper and Lorian (1959) [61], Bourdon (1961) [62], Crowle et al. (1992) [63],
Kristiansen and Vergmann (1986) [64], Molnar et al. (1977) [65], Ordway et al. (2003) [66],
and Amaral et al. (1996) [67] repeatedly proved the efficacy of chlorpromazine against
M. tuberculosis. In the past few decades, although a large number of studies were carried
out on the anti-tubercular potentiality of chlorpromazine, several other phenothiazines
were also found to be proficient in inhibiting the growth of M. tuberculosis in vitro and also
in vivo. Such drugs included promethazine and levomepromazine [65], trifluoperazine [68],
methdilazine [44], and thioridazine [66,67,69–71].

In 1986, Kristiansen and Vergmann [64] were trying to determine anti-tubercular action
in several thioxanthenes along with chlorpromazine and levomepromazine. Most of the
test organisms were slow growing mycobacteria isolated at the Tuberculosis Department
of the Danish National Serum Institute, Copenhagen, from patients with tuberculosis-like
pathology. Additionally, they included M. tuberculosis strain No. 5 that was isolated from
a patient prior to chemotherapy. The level of resistance to the drugs was determined
by the agar dilution technique in oleic acid albumin agar, instead of Lowenstein-Jensen
medium since the test drugs were sensitive to heat. Readings were noted after incubation
at 35 ◦C for three weeks. The highest drug concentration (µg/mL), which permitted
growth similar to that in the control, without drug, was recorded for every agent (Table 7).
In this comparative study, clopenthixol (composed of E- plus Z-clopenthixol) exhibited
potent anti-tubercular activity (Kristiansen and Vergmann, 1986) [64]. The authors further
observed that chlorpromazine and levomepromazine possessed much less anti-tubercular
activity compared to clopenthixol. Six other thioxanthenes tested were Z- or E-stereo-
isomeric analogues of flupenthixol, clopenthixol, and chlorprothixene. Results revealed
that E-flupenthixol was almost twice as potent as E-clopenthixol (Table 8). The rather
small differences in the susceptibility of the test bacteria did not reveal any pattern of
susceptibility to the Z or E forms of the same thioxanthene.
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Table 7. The susceptibility of 10 slow-growing mycobacteria to 6 different Z- and E-thioxanthene
derivatives.

Strains

Highest Drug Concentration Permitting Growth Quantitatively Similar to the
Vehicle-Treated Control

E-Flupenthixol Z-Flupenthixol E-Clopenthixol Z-Clopenthixol E-Chlorprothixene Z-Chlorprothixene

M. tuberculosis St. 5 6.25 6.25 12.5 6.25 6.25 12.5

M. bovis I 264 6.25 6.25 6.25 6.25 6.25 6.25

B.C.G T 1443 6.25 6.25 12.5 6.25 6.25 6.25

M. marinum T 2401 6.25 6.25 6.25 6.25 6.25 6.25

M. scrofulaceum
T14447 12.5 12.5 12.5 12.5 12.5 12.5

M. szulgai 908 6.25 6.25 12.5 12.5 12.5 12.5

M. xenopi E 1613 6.25 12.5 12.5 12.5 12.5 12.5

M. avium T 10350 25 25 25 25 25 25

M. intracellulare ATCC
23432 6.25 6.25 12.5 12.5 12.5 12.5

M. intracellulare E
48067 12.5 12.5 12.5 12.5 12.5 25

Adapted from: Kristiansen and Vergmann 1986 [64].

Table 8. The susceptibility of 10 slow-growing mycobacteria to 6 different Z- and E-thioxanthene
derivatives.

Inhibitory Agents

Number of Strains with Growth Similar to Vehicle Treated Controls

Drug Concentration (µg/mL)

<6.25 6.25 12.5 25 50 100

E-flupenthixol 10 9 3 1 0 0

Z-flupenthixol 10 9 4 1 0 0

E-clopenthixol 10 10 8 1 0 0

Z-clopenthixol 10 10 6 1 0 0

E-chlorprothixen 10 9 6 1 0 0

Z-chlorprothixen 10 9 7 2 0 0

Adapted from: Kristiansen and Vergmann 1986 [64].

These results confirmed an earlier observation by Rajsner et al. (1975) [72] who
reported on the anti-mycobacterial function of the thioxanthenes 6- and 7-fluoro derivatives
of chlorprothixene.

Thus, this study showed that anti-tubercular action was demonstrated by both stereo-
isomeric forms of the test compounds almost at identical levels. This is in contrast to the
findings with respect to their action on Gram positive and Gram negative organisms where
E-clopenthixol was more potent than Z-form [73]. Moreover, Kristiansen and Vergmann
(1986) [64] found that the more resistant mycobacteria M avium and M intracellulare were
rather sensitive to stereo isomers of thioxanthenes, but the only M tuberculosis strain
(‘No. 5′) taken in their test was more sensitive to the test agents than M avium and M
intracellulare. Although both stereo-isomers of thioxanthenes were almost equally active on
mycobacteria, the Z-analogues may be excluded from further drug development because
psychopharmacological studies have shown that they exert a neuroleptic effect [74], while
E-analogues do not. With the help of further structural modifications, these drugs could be
developed further for novel anti-tubercular drugs.

8. Effect of Thioxanthenes on Viruses and Eukaryotic Cells

In 1991, Kristiansen and her colleagues [75] observed that stereo-isomeric derivatives
of thioxanthenes (the neuroleptic compound Z-chlorprothixene and the non-neuroleptic
compounds E-chlorprothixene and E-flupenthixol) exhibit antiviral effects on Herpes
simplex virus (HSV) and toxic effects on eukaryotic cells. The viral inhibition assay showed
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that E-chlorprothixene and E-flupenthixol both inhibited intracellular HSV expression in a
dose dependent manner.

To determine cell growth inhibition, 24-well multidishes were seeded with 50,000
fibroblasts per well in 1 mL of growth medium, with or without test compounds [75].The
tested compounds produced a concentration-dependent influence on the growth of the
fibroblasts in cell cultures. Growth stimulation of 25–50% was noted at lower concentrations,
while varying degrees of inhibition could be observed at higher concentrations. At 12.5
mg/L these compounds caused cell death. The study also included a toxicity test of the
compounds. This was done by adding serially increasing amounts of them to flasks with a
monolayer of fibroblasts. Attempts were then made to observe the cytotoxic effect daily and
rate it semi-quantitatively under a light microscope (Table 9). E-chlorprothixene revealed
no cytotoxic effect up to 4.4 µmol/L concentration while at 8.9 µmol/L there was 25–50%
cytotoxic effect; however, at higher concentrations, 75–100% cells showed the toxic effect.

Table 9. Cytotoxic effect of thioxanthenes.

Concentration
(mg/mL)

Chlorprothixene HCI
(mol.wt. 352)

E-Flupentixol
(mol.wt. 508)

µmol/L
CTE

µmol/L CTE
Z- E-

0.3 1.1 * * 0.8 *

0.7 2.2 * * 1.5 *

1.56 4.4 0 0 3.1 0

3.13 8.9 0 ++ 6.2 +

6.25 17.6 0 ++++ 12.3 ++++

12.5 35.5 0 ++++ 24.6 ++++

25.0 71.0 0 ++++ 49.2 ++++

CTE: cytotoxic effect: * = not tested; 0-no effects; + = <25% toxic effect; ++ = 25–50% toxic effect; +++ = 50–75 %
toxic effect; ++++ = 75–100% toxic effect. Adapted from; Kristiansen et al. 1991 [75].

The inhibition of HSV expression by E-chlorprothixene and E-flupenthixol indicated
that this effect was not linked to the neuroleptic effect, as the latter was observed only in
the Z-derivatives of these compounds.

Thus, this study showed that at higher concentrations the cytotoxic effect could
outmatch the antiviral action, while at lower concentrations both the activities could be
observed. The critical concentration was 3 mg/L or 6–8.5 µmol/L, the amounts being much
higher than plasma concentration tolerated by humans. In this way, combined antiviral and
cytostimulatory actions could be observed in the same compounds. In a viral adherence
assay, pre-incubation with the compounds could not protect the cells against the HSV
infection. It has been suggested by Kristiansen et al. (1991) [75] that permeability changes
in the cell membrane of eukaryotic cells may have interfered with a change in the immune
response due to infections. The interference could be due to various factors like inhibiting
the viral entry into the cells, inhibiting viral multiplication inside the cell, or by stripping
the virus from infected eukaryotic cell. Thus, this study clearly indicated that these drugs
possibly share a biological activity fundamental to both eukaryotic and prokaryotic cells.
Studies on such unique compounds, that modify eukaryotic cell growth and also have
antiviral properties, opens up the possibility to search for structurally similar compounds
with even better dual functions for a better therapy for different viral infections in man.

9. In Vitro Modulation of Human Neutrophil by E-Clopenthixol

Phenothiazines are known to depress several functions of neutrophils like chemo-
taxis [76], oxidative metabolism [77,78] and phagocytosis [79]. These functions are known
to depend on Ca++ fluxes [80,81]. Rechnitzer et al. (1985) [82] carried out a detailed study
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to determine chemotaxis of human peripheral blood polymorphonuclear leukocytes by the
thioxanthenes Z- and E-clopenthixol.

To determine the chemotaxis of these compounds, Rechnitzer et al. (1985) [82] sepa-
rated polymorphonuclear neutrophils from blood samples of normal human beings. There
was no reduction in the number of viable neutrophils after 2 h of incubation up to 105 µM
of the clopenthixols (Table 10). However, incubation with other thioxanthenes at 105 µM
resulted in 22% to 33% cell death (data not shown here). At the same concentrations, when
the cells were incubated for 2 h in the salt solution, there was 100% cell death in presence
of these thioxanthenes.

Table 10. Effect of Z- and E-clopenthixol on human neutrophil viability, determined by trypan blue
dye exclusion after 1⁄2, 1, and 2 h incubation at 37 ◦C in GBSS containing 0.5% human serum albumin.
Results are mean percentage of viable cells from 2–3 experiments.

Z-Clopenthixol Concentration
in µm (µg/mL)

Percentage of Viable Cells E-Clopenthixol Concentration
in µm (µg/mL)

Percentage of Viable Cells
1⁄2 h 1 h 2 h 1⁄2 h 1 h 2 h

105 (50) 86 77 67 105 (50) 89 88 78

53 (25) 94 91 90 53 (25) 99 99 98

26 (12.5) 98 97 99 26 (12.5) 96 97 97

Adapted from: Rechnitzer et al. 1985 [82]. n = 2–3.

Z- and E-clopenthixol at concentrations of 13 µM to 53 µM significantly enhanced
neutrophil chemotaxis (directed migration) from 56% to 119%; however, chemokinesis
(random migration) was not stimulated by these compounds.

Neutrophil chemotaxis towards casein was almost totally inhibited by 105 µM Z- and
E-clopenthixol. Thus both Z- and E-clopenthixol exhibited a biphasic effect on human
neutrophil chemotaxis (data not shown here). These stereo-isomers increased chemotaxis
by two-fold at the level of peak-response. Such an enhancement was observed in a very
wide range of concentrations. Clopenthixol-induced enhancement could possibly be due
to cell-receptor activation by binding of the drug to the receptor on the cell surface and
activation of Ca++ mobilization. Another possibility could be that these compounds in-
teract hydrophobically with Ca++ dependent proteins. Such an interaction could result
in physical alteration of the membrane fluidity as shown in chlorpromazine [81] and by
the observation of a Fibonacci-series correlation between water-soluble-phenothiazine and
water-insoluble phospholipids adducts [83]. Moreover, this effect is probably dependent
on the levels of cholesterol, calcium, and, to a less extent, drug concentration [84]. The
inhibition of chemotaxis and polymorphonuclear neutrophils by these drugs could be due
to their action on the stabilization of membrane. The increase of chemotaxis of human neu-
trophils by E-clopenthixol is of substantial importance. since it possesses both antimicrobial
and anti-plasmodial activities but is devoid of antipsychotic [85] and anti-hypersecretory
properties [86].

10. Inhibition of HIV Replication by Thioxanthenes

Several studies during the 1990s showed that microorganisms that have higher po-
tential for infecting nervous tissues are usually very sensitive to neurotropic drugs [87].
Viruses like polio, influenza, measles, and herpes, with greater chances of infecting brain
and nervous tissues, can be affected by stereo-isomeric forms of thioxanthenes [75]. In
2000, Kristiansen and Hansen [88] reported on the antiretroviral activity of stereo-isomeric
analogues of thioxanthenes. Expression of HIV antigens, p17 and p24, was determined
with the assay method as described by Sarin et al. (1988) [89]. Six different stereo-isomers
of thioxanthenes were tested along with amitriptyline and nortriptyline as anti-HIV drugs.

Kristiansen and Hansen (2000) [88] found out that, among all the thioxanthenes tested,
only Z-flupenthixol and E-flupenthixol revealed anti-HIV activity at 2 mg/L and 10 mg/L
respectively (Table 11). However, no such activity was demonstrated by a mixture of the
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above two compounds. The action primarily resided in Z-flupenthixol. Addition of a
fluorine atom at position 6 in Z-flupenthixol, forming piflutixol, results in a loss of anti-HIV
activity. Similarly, synthesis of zuclopenthixol from Z-flupenthixol also resulted in loss
of the activity. Substitution of the CF3-group in position 2 of the same compound with
an isoelectric chlorine atom resulted in formation of the same zuclopenthixol, which had
no activity. The tricyclic antidepressants amitriptyline and nortriptyline produced rather
weak anti-HIV activity at distinctly high concentrations. Other known antidepressant
compounds produced weak to moderate anti-HIV activity at their respective non-toxic
concentrations. Most of these drugs were found to be toxic at higher concentrations.

Table 11. Effect of neuroleptic drugs on HIV-1 replication.

Compound a Concentration b

(mg/L)

% Inhibition of HIV Expression c

Syncytia P17 P24 RT

Z-flupenthixol

0.08 0 0 0 0

0.4 0 0 0 0

2.0 34 49 43 57

E-flupenthixol

0.1 0 0 0 0

1.0 0 0 0 0

10.0 43 66 67 67
a ‘Flupenthixol’; ‘zuclopenthixol’, ‘chlorprothixene’, ‘Z-piflutixol’, ‘E-piflutixol’, and ‘citalopram’ showed no
activity at the concentrations tested. b Minimum concentration of selected neuroleptic drug that significantly
affects a parameter of HIV infectivity. c Inhibition of syncytial formation, p17 p24 and RT (reverse transcriptase)
expression were carried out as described in Kristiansen and Hansen 2000 [88].

This study was carried out to locate and find out agents that can be given simultane-
ously along with standard anti-HIV drugs to infected patients suffering from dementia.
Therefore, this study clearly indicated the remarkable possibilities of combining at least
two potent anti-HIV thioxanthenes with known therapeutic drugs to treat HIV patients
who had developed AIDS related dementia. Similar potential effects has been shown of
some of the phenothiazines on SARS-CoV-2.

11. Antiparasitic Action of Thioxanthenes

During the latter part of nineteenth century, infection by malarial parasites became
quite prevalent in various parts of the world, and hence search for antimalarial drugs
went on in every continent. This resulted in the discovery of quinine, an extract from the
bark of cinchona plant, way back in the 17th century in Europe [90]. The pharmaceutical
compound chloroquine was developed by Bayer Laboratories in 1947. This led to rapid
eradication of malaria from different parts of the world. However, soon after, this wonder
drug became useless, because the parasite became resistant to chloroquine [91,92]. It needs
to be pointed out here that as early as 1891 Guttman and Ehrlich [93], while trying to
determine the therapeutic usefulness of methylene blue, very successfully demonstrated
antimalarial action of this dye in vivo. With this background in mind, Kristiansen and
Jepsen (1985) [94] initiated a study to search for antimalarial drugs from the neuroleptic
drugs phenothiazines and thioxanthenes.

Kristiansen and Jepsen (1985) [94] obtained chlorpromazine, Z- and E-clopenthixol,
in pure drug powder form. The test parasite was the known chloroquine-sensitive strain
Plasmodium falciparum FCDL1. The IC50 value was calculated on the basis of 50% inhibition
of P. falciparum multiplication (Desjardins’ 3H-hypoxanthine uptake assay) [95] in presence
of a drug. This revealed that among the two thioxanthenes, Z-clopenthixol was more
powerful than E-clopenthixol (Table 12) throughout the study. When tested against other
bacterial strains, E-clopenthixol was more potent than Z-clopenthixol [96].
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Table 12. Percentage inhibition of 3H-hypoxanthine uptake in Plasmodium falciparum at various
concentrations of Z-clopenthixol and E-clopenthixol.

Compound
Percent Inhibition of Plasmodium falciparum In Vitro

Drug Concentration (µg/mL)

0 0.039 0.078 0.156 0.312 0.625 1.25 2.5

Z-clopenthixol 0 0 0 17 30 76 99 100

E-clopenthixol 0 0 0 9 12 36 83 95
Adapted from: Kristiansen and Jepsen 1985 [94].

12. Efflux Pump Inhibition by Thioxanthenes

Efflux pumps are known to induce multidrug resistance in pathogenic bacteria, thereby
resulting in complications in chemotherapy of microbial infections. The pumps help
bacteria to evade effects of certain antibiotics. The reasons for multidrug resistances in the
virulent organism Pseudomonas aeruginosa are due to presence of several three-component
efflux systems that enable the bacterium to eject the antibiotics without any difficulty. The
most extensively studied efflux system is MexAB-OprM, which, along with MexXY-OprM,
is involved in intrinsic resistance to several antibiotics in P. aeruginosa [97]. Similar efflux
pumps are also present in Gram positive bacteria, and they confer resistances to macrolides,
tetracyclines, and fluoroquinolones [98]. In an extensive study, Kuroda et al. (2001) [99]
elaborately described that S. aureus has a genome size of 2–8 Mb and possesses about
253 open reading frames encoding putative transport pumps (including the Nor A protein
which is capable of translocating hydrophilic fluoroquinolones). Therefore, inhibition of
function of these pumps would restore the action of antibiotics. Only a few chemical
compounds, for example reserpine and verapamil, have been identified as inhibitors of
efflux pumps like the Nor A pump [100].

The dopamine receptor antagonists phenothiazines and thioxanthenes are known
to possess potent antimicrobial action [71]. Although these agents require rather large
amounts compared to antibiotics to produce antimicrobial action in vitro, their tissue levels
are usually several fold higher, and inhibitory concentrations can be achieved at the site of
infection [101].

While the Z- stereoisomer of thioxanthenes is a highly potent neuroleptic, both forms
possess antimicrobial action. However, the antibacterial effect is often greater in the E
form [82]. Combination of a thioxanthene and an antibiotic sometimes has a synergistic
result, as observed by Kristiansen et al. (1988) [102] and Jeyaseeli et al. (2012) [57]. Ford
et al. (1989) [103] provided enough evidence that thioxanthenes can inhibit the action of
eukaryotic efflux pumps including p-glycoprotein, making them useful for the treatment of
drug resistant tumors. Although the exact mechanism by which the thioxanthenes promote
antimicrobial activity of antibiotics is not yet understood fully, it has been suggested that
such a phenomenon could be due to the inhibition of efflux pumps [104].

According to Kuroda et al. (2001) [99], S. aureus possesses a large number of chro-
mosomally encoded multidrug resistant (MDR) efflux pumps, many of which have still
not been characterized. Kaatz et al. (2003) [105] observed that inhibition of these pumps
could be achieved by certain thioxanthenes and phenothiazines, resulting in reversal of
resistance to several antibiotics. The thioxanthenes that they elaborately studied were the
two geometric stereo-isomeric forms of flupenthixol. They used several strains of S. aureus
possessing unique efflux-related MDR phenotypes. Both compounds possessed some in-
trinsic antimicrobial activity. However, in combination with certain efflux pump substrates
(antibiotics) in S. aureus strains, these compounds produced additive or synergistic effects.
They further observed that, in a particular strain of S. aureus that could over express the
Nor A MDR efflux pump and in two other strains possessing non-Nor A- mediated MDR
phenotypes, the IC50 value for the ethidium bromide (EtBr) efflux pump was much lower,
being 4 to 15% of their original respective MICs. E-flupenthixol, being more active than
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Z-flupenthixol as an antimicrobial agent, was able to reduce proton motive force (PMF) by
reducing the transmembrane potential.

Kaatz et al. (2003) [105] believed that the inhibitory action of MDR efflux pumps
in S. aureus was multifunctional, including distribution of membrane energetics and a
likelihood of a direct interaction with the transporters themselves.

Dey et al. (1999) [101] provided sufficient data to prove that a single amino acid change
in human p-glycoprotein could affect the inhibitory activity of both Z- and E-flupenthixol,
suggesting that these stereo-isomers could interact directly with these pumps. Kaatz et al.
(2003) [105] suggested that the mechanisms by which thioxanthenes inhibit the efflux
system by PMF-dependent pumps is multifactorial. Since these compounds produced an
effect on the MICs of antibiotics in S. aureus and also on the efflux system of different
substrates, there may be an interaction with the pump itself combined with reduction
in transmembrane potential. According to Kaatz et al. (2003) [105], these thioxanthenes,
particularly E-flupenthixol, may turn out to be a logical solution to produce a rather
non-toxic broad spectrum bacterial efflux pump inhibitor.

13. Conclusions

A panoramic view of the properties of thioxanthenes reveals that they are multifunc-
tional in nature. Release of dopamine in the mesolimbic pathway is known to be linked to
the expression of psychosis. Tricyclic thioxanthene drugs are known to accumulate in the
brain and block D2 receptors in the dopamine pathway in such a manner that the effect of
the released dopamine is reduced.

Thioxanthenes, however, are given to patients, not only as antipsychotic agents, but
also as antidepressants and anxiolytics. There are also numerous strong indications that
they can influence the microbiota-gut-brain axis. In this group of drugs, the Z- and E-
clopenthixol, along with flupenthixol, showed moderate to powerful antibacterial action
in vitro and in vivo. One of the thioxanthenes, flupenthixol, has shown synergistic activity
with several antibiotics in reducing the dose of antibiotics needed to treat to patients
suffering from specific bacterial infections. Some other neuroleptics like Z- and E-stereo-
isomeric analogues of flupenthixol, clopenthixol, and chlorprothixene have proved to be
significantly anti-mycobacterial in nature.

This unique class of compounds has further been shown to possess antiparasitic and
antiviral, including anti-HIV and anti-SARS-CoV-2, activities as well. Moreover, some of the
compounds were observed to have combined antiviral and cytostimulatory actions. Several
observations regarding this combined action suggest that permeability changes in the cell
membrane of eukaryotic cells might interfere with a change in the immune response, with
respect to infections. This interference would be conveyed in various ways, for example, by
inhibiting the virus from entering the cell, by inhibiting intracellular multiplication of the
virus by creating differences in the nutrition of the eukaryotic cell systems, or by stripping
the virus from the infected cells. Thus, there is a possibility that the thioxanthenes may
be affecting a physical or biological activity which is common to both prokaryotic and
eukaryotic cell systems. Additionally, a particular drug, E-clopenthixol, can participate
in modulation of human neutrophils in vitro. Efflux related multidrug resistance has been
experimentally proven to be a significant means by which pathogenic bacteria can evade
the antibacterial activity of some selected agents. Several bacteria including Staphylococcus
aureus have been shown to possess numerous chromosomally-linked efflux pump genes.
Intensive studies have significantly revealed that thioxanthenes are able to inhibit the
action of these pumps, resulting in the restoration of antimicrobial activity of the antibiotics.
Two stereoisomers of flupenthixol, when combined with multidrug resistant efflux pump
substrates, produced synergistic antibacterial properties against Gram positive bacteria.

Novel drugs are often developed with their organotrophic effects in mind. The
possibility that they may have a powerful effect on microorganisms living in and on
patients is often overlooked. In a similar way, antibiotics are developed focusing on killing
microorganisms, but they may also affect the host directly. Thus, the generally accepted
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clinical interaction model is only a special case of reality. A general applicable clinical
model has to take into account all of the interactions, and reactions, between the drug, the
organism, and all microorganisms present [106]. As described above, thioxanthenes have
‘non-antibiotic’ effects on endogenous microorganisms and, in addition, possess synergistic
effects with classical antibiotics. Instead of a complication, drugs like thioxanthenes,
showing double-edged sword effects, should be seen as a golden opportunity.

We are standing on the edge of a cliff facing what some have described as a poten-
tial antibiotic resistance pandemic. Whether we are swept off or step away depends on
whether we harness new ways to deliver existing compounds, harnessing, for example,
lipid nanocapsules [107], whether we use synthetic (stereo)chemistry to sharpen their
effects by using aminated thioxanthenes [108], select new compounds from libraries cre-
ated using novel synthetic pathways [108,109], or whether we can mathematically predict
non-antibiotic candidates [110].

Novel, powerful systems which mimic the in vivo interaction between a microorganism
and the host (represented by immortal cells, stem cells or even primary cells in mono or
co-cultures) are being developed [111–115]. These systems will allow the rapid and efficient
testing of the full effects of non-antibiotics in close to in vivo environments.

Thus, this unique class of compounds, the thioxanthenes, have been repeatedly found
to possess a wide variety of activities. They are not only antibacterial, antiviral and
antiparasitic in nature, but they are also able to modulate human neutrophils and take part
in the inhibition of multidrug-resistant bacterial efflux pumps. Therefore, the antimicrobial
properties of thioxanthenes can provide inexpensive therapy that may be of immense value
for the less fortunate communities in the world. In this way, an entirely new avenue for the
treatment of bacterial infections may open up, if and when the pharmaceutical industries
are able to recognize the multifarious activities of thioxanthenes. This double-edged sword
could result in the syntheses and practical application of novel formulations for human
use. Since new antibiotics have not been discovered for decades, and since the spread of
bacterial drug resistance has reached an uncontrollable stage, this is an opportunity which
should not be ignored.

Research has demonstrated that some of the common side effects of some antipsy-
chotic drugs, such as prolonged QT interval, are observed with only one of the two
enantiomers [116,117]. This underlines the importance of having good procedures for
the synthesis of the optically pure enantiomers, something that has been found to be un-
satisfactory for the drug thioridazine. Antonsen S. has used an auxiliary-based strategy
for the total synthesis of both enantiomers in high optical purity [118]. Ongoing studies
have shown that the antimicrobial effects of these two enantiomers are similar [118], but
further investigations are needed to determine whether the side effects are caused by one
or both enantiomers. In situations where the side effects are caused by only one enantiomer,
pure-enantiomeric non-antibiotic drugs will open up the possibility for better treatments of
resistant bacterial infections.
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