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Abstract: Using the large and chemically diverse GMTKN55 dataset, we have tested the performance
of pure and hybrid KS-DFT and HF-DFT functionals constructed from three variants of the SCAN
meta-GGA exchange-correlation functional: original SCAN, rSCAN, and r2SCAN. Without any dis-
persion correction involved, HF-SCANn outperforms the two other HF-DFT functionals. In contrast,
among the self-consistent variants, SCANn and r2SCANn offer essentially the same performance at
lower percentages of HF-exchange, while at higher percentages, SCANn marginally outperforms
r2SCANn and rSCANn. However, with D4 dispersion correction included, all three HF-DFT-D4
variants perform similarly, and among the self-consistent counterparts, r2SCANn-D4 outperforms
the other two variants across the board. In view of the much milder grid dependence of r2SCAN vs.
SCAN, r2SCAN is to be preferred across the board, also in HF-DFT and hybrid KS-DFT contexts.

Keywords: HF-DFT; self-consistent; SCAN; rSCAN; r2SCAN; D4; regularization

1. Introduction

In 2001, the “Jacob’s Ladder” was proposed [1] as an organizing principle for the
DFT “functional zoo”. Rung one is the LDA [2] (local density approximation, exact for
a uniform electron gas). Rung two (GGA or generalized gradient approximation) adds
the reduced density gradient (see [3–6] and references therein). The great improvement
in performance of GGA over LDA marked a turning point in the acceptance of DFT as a
molecular modeling technique. If one eschews empirical parameters and wishes to design
a functional purely from known constraints onto the exact exchange-correlation functional,
however, it has been shown [7,8] that GGA intrinsically cannot satisfy all of them: the very
popular PBE [9] nonempirical GGA, for instance, only satisfies 11 out of 17 constraints [7,8].

Now, to satisfy additional constraints, one needs to climb up the Jacob’s Ladder to
rung three, mGGAs (meta-GGAs, where either the Laplacian or the kinetic energy density
are included). In 2015, Sun et al. [10] first succeeded in satisfying all 17 constraints with the
nonempirical SCAN (strongly constrained and appropriately normed) mGGA functional.
Over the years, several studies have proven SCAN’s broad transferability [11] as well as
improved DFT description for different systems, such as metal oxides [12], energetics and
structures of different ice and silicon phases [11], high-temperature superconductors [13],
liquid, water, and ice [14], and so on.

Despite this notable success, one major shortcoming of SCAN is its numerical in-
stability, which mandates the use of dense integration grids and reduces computational
efficiency [15,16]. As a remedy, Bartók and Yates [17] proposed a regularized form, rSCAN,
which retains the accuracy of the original mGGA form while improving its numerical
stability. However, extensive testing [18,19] has suggested that rSCAN broke some of the
constraints the original SCAN was fulfilling and consequently lost the remarkable transfer-
ability of the original form; for instance, performance for atomization energies significantly
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deteriorated. In an attempt to combine the transferability of the original SCAN with the
greater numerical stability of rSCAN, Sun et al. [20] have proposed the so-called second
version of the regularized SCAN (r2SCAN). In a recent full-length preprint [21] expanding
upon their original rapid communication [20], Sun and coworkers have proposed a “pro-
gression of functionals” (rSCAN, r++SCAN, r2SCAN, and r4SCAN), where the regularized
form finally restores all constraints fulfilled by the original SCAN.

In recent years, Sim, Burke, and coworkers [22] have established the theory of density-
corrected density functional theory (DC-DFT), which attempts to separate the errors in
DFT calculations into two components: imperfections in the functional itself and errors
arising from the self-consistent density evaluated with an imperfect functional. Although
the major share can be attributed to the first source, density-driven errors can also be
significant, or even crucial, for a variety of systems, e.g., reaction barrier heights, stretched
bonds, halogen, and chalcogen binding [22–27]. One simple solution is using converged
Hartree−Fock densities (HF-DFT) instead of the self-consistent ones for the final evaluation
of the exchange-correlation (XC) functional. For more details, the reader is referred to a
recent review article by Wasserman et al. [25] and a recent paper in questions-and-answers
format by Song et al. [28].

In a recent study [29], we have shown, by means of the large and chemically diverse
GMTKN55 benchmark suite (general main-group thermochemistry, kinetics, and nonco-
valent interactions, 55 problem types [30]), that significantly improved performance can
be achieved for pure GGA and meta-GGA (mGGA) HF-DFT functionals, as well as for
their hybrids (rung four on Jacob’s Ladder), compared to the self-consistent application of
the same functionals. In particular, we found [29] a sizable improvement for HF-SCAN
over self-consistent SCAN. This prompted the question if that still would be the case for
the regularized SCAN variants rSCAN and r2SCAN. This question is addressed in the
present study.

Our objective is to investigate which SCAN variant offers the best performance in pure
as well as hybrid meta-GGA forms of self-consistent and HF-DFT functionals. Both the dis-
persion uncorrected and D4 [31,32] dispersion corrected functionals are taken into account.

2. Computational Methods

All the electronic structure calculations involving rSCAN and r2SCAN mGGA XC-
functionals have been performed using the ORCA [33] 5.0.1 package running on the Faculty
of Chemistry HPC facility. The DEFGRID3 integration grid has been used throughout.
Results for pure and hybrid HF-DFT and self-consistent SCAN are extracted from our
previous work [29], where we used ORCA 4.2.1 with GRID 6. The def2-QZVPP [34]
basis set was employed throughout, except for five anionic subsets: MB16-43, HEAVY28,
HEAVYSB11, ALK8, CHB6, and ALKBDE10, where we employed def2-QZVPPD [35]
instead. This basis set combination, which is very close to the basis set limit for mGGA and
hybrid KS-DFT functionals, is a de facto standard for this type of benchmark calculation.
See, for example, [30,36].

Grimme group’s GMTKN55 [30] database has been used for this entire study. Total
55 subsets can be further divided into five top-level subcategories: small molecule ther-
mochemistry, barrier heights, intermolecular interactions, conformers (or intra-molecular
interactions), and reaction energies for large systems. See Table 1 in [30] for the detailed
description and references for all 55 subsets. The WTMAD2 (so-called second version of
the weighted mean absolute deviation), as defined in [30], has been used as the primary
metric throughout the present study:

WTMAD2 =
1

∑55
i=1 Ni

.
55

∑
i=1

Ni.
56.84 kcal/mol

|∆E|i
· MADi (1)
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where |∆E|i is the mean absolute value of all the reference energies from i = 1 to 55, Ni is
the number of systems in each subset, and MADi is the mean absolute difference between
calculated and reference energies for each of the 55 subsets.

Now, for the functionals, we have used the same terminology we proposed in [29]
for different GGAs and mGGAs—HF-SCANn, HF-rSCANn, and HF-r2SCANn for the
HF-DFT series and SCANn, rSCANn, and r2SCANn for the corresponding self-consistent
counterparts, where n is the percentage of HF exchange (HFx) used for the hybrid form,
and it ranges from 0–50%.

The D4 [31,32] dispersion correction is used throughout to check the effect of using
empirical dispersion correction and whether it alters the performance ranking of different
SCAN variants. We refitted s8, a1, and a2 for each functional by minimizing WTMAD2
over the full GMTKN55 (two other parameters, s6 and the prefactor for the three-body
Axilrod−Teller−Muto [37,38] correction, cATM, were kept fixed at unity throughout). All
the original and the refitted D4 parameters are listed in Table S1 in Supplementary Ma-
terials. We note in passing that in a recent study, Ehlert et al. [39] have reported a set of
D4 parameters only for the self-consistent rSCAN and r2SCAN pure mGGA functionals.
However, the set used by Ehlert et al. for optimizing the D4 parameters is different from
what we have used in this study. So, we reoptimized the D4 parameters for both the rSCAN
and r2SCAN to compare apples to apples.

Powell’s derivative-free constrained optimizer, BOBYQA [40] (bound optimization
by quadratic approximation), and a collection of scripts developed in-house were used to
optimize all the parameters.

Burke and coworkers [28] pointed out that results with SCAN and HF-SCAN for the
G21IP subset did not yet seem to be converged in terms of grid size, even for GRID6 and
GRID7. We explored grid sensitivity for that subset, as well as for its companion G21EA
and, on account of its very large weight in WTMAD2 formula, for the RG18 subset. The
results can be found in Figures S1–S3 of the Supplementary Materials. In our previous
work [41] on the DSD-SCAN double hybrids, we explored grid convergence in both the
radial and angular grids and found the former to be much more crucial than the latter;
in that work, we established convergence with an unpruned 590-point Lebedev angular
grid [42] and a 150 Euler–Maclaurin radial grid [43,44]. The GRID6 in ORCA4 corresponds
to a pruned 590-point angular grid—which is hence adequate—but a much coarser radial
grid. The number of points in the latter can be increased by manually setting the “IntAcc”
keyword: according to Equation (14) in [45], every unit of IntAcc adds 15 radial points.
After some initial experimentation, we settled on IntAcc = 8 rather than the default of
5.34 and additionally used IntAcc = 10 to confirm convergence. For G21IP, the remaining
difference between GRID6 and GRID6, IntAcc = 8 is at most 2.0 kcal/mol (0.09 eV), and
the mean absolute deviation (MAD) is 0.7 kcal/mol (0.03 eV). Considering also the very
small weight factor 0.221 of the G21IP set in the WTMAD2 formula, we deem the GRID6
results adequately converged for our purposes. Nevertheless, for practical applications of
the HF-SCAN and SCAN variants, we still recommend increasing IntAcc to 8. For rSCAN
and r2SCAN, in contrast, we saw no indication that grids finer than DEFGRID3 would
be necessary.

3. Results and Discussion
3.1. Without Dispersion Correction

Among the three variants of the self-consistent series, rSCANn and r2SCANn offer
similar performance at a smaller percentage of HF-exchange (HFx), and at a higher per-
centage of HFx, SCANn marginally outperforms r2SCANn. Identical to the self-consistent
SCANn [29], the overall WTMAD2 minimum is near 30% HFx for both the rSCANn and
r2SCANn. Among the three HF-DFT series, HF-SCANn wins the race, followed by HF-
r2SCANn. As long as the pure mGGA is concerned, the WTMAD2 gaps between different
SCAN variants are most significant, and they decrease with the increase of n value. For
HF-SCANn and HF-r2SCANn, the WTMAD2 minimum is near 10% HFx, which shifts
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to ~25% for HF-rSCANn. The WTMAD2 values of pure mGGA and hybrid forms with
10% HFx are very close to each other for these three HF-DFT series in hand (see Figure 1).
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Figure 1. WTMAD2 (kcal/mol) trend with respect to the percentage of HF-like exchange (n) for
self-consistent and HF-DFT forms of SCAN, rSCAN, and r2SCAN. The solid lines represent the
HF-DFTs, and the dashed lines are for the corresponding self-consistent series.

Among the five top-level subsets, for the conformers, HF-SCANn and SCANn emerge
as the best in class among the HF-DFT and self-consistent series, respectively. Irrespective
of the choice of SCAN variant, the self-consistent forms always perform better than their
HF-DFT counterparts. Hybrid functionals are similar or worse performers compared to the
pure mGGA forms. SCAN and r2SCAN are the two best functionals one can choose for
conformers (see Figure 2). For the intermolecular interactions, the choice of SCAN variant
significantly affects the performance of HF-DFT, particularly at the small percentage of HFx.
Here too, the HF-SCANn and SCANn are better performers than their two regularized
HF-DFT and self-consistent forms. Next, for small molecule thermochemistry, barrier
heights, and reaction energies of large molecules, the choice of SCAN variant has very
little to no effect on the performance of HF-DFT and self-consistent series (see Figure S4 in
Supplementary Materials).

Interestingly enough, the SCANn series only surpasses the performance of HF-SCANn
beyond 22% HFx, while for rSCANn and r2SCANn, this crossover happens near 5%.
Significantly better performance of the self-consistent rSCANn and r2SCANn series than
their HF-DFT counterparts for the intermolecular interactions and conformers is the reason
behind this “early crossover” (See Table S2 in Supplementary Materials for the breakdown
of total WTMAD2 into five major subcategories for all the functionals).

We are now shifting our focus to individual subsets of GMTKN55 that are most affected
by using different SCAN variants (see Figure S5 in Supplementary Materials). For HAL59,
the HF-SCANn series offers significantly better performance than HF-rSCANn and HF-
r2SCANn. The use of HF-orbitals only benefits the regular SCAN variant, up to 30% HFx.
For the interaction energies of pnictogen-containing dimers (PNICO23) and WATER27, the
choice of SCAN variant only matters for the pure mGGA and hybrid functionals with a
small percentage of HFx. The same is true for the large organic molecule isomerization
(ISOL24), where the original SCAN variants are better than rSCAN and r2SCAN, both for
the self-consistent and HF-DFT series.
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The self-consistent forms consistently surpass the HF-DFT functionals for amino acid
conformers (AMINO20x4), and the use of rSCAN or r2SCAN instead of the original SCAN
results in more harm than good for the HF-DFT series. For 1,4-butanediol, HF-SCANn is
the best pick among the three HF-DFT series. However, among the self-consistent series,
both rSCANn and r2SCANn outperform SCANn at a lower percentage of HFx.

The S66 [46,47] noncovalent interaction subset is, in fact, a mixture of different types
of interactions and can be further divided into four subgroups: systems 1 through 23 are
hydrogen bonds, 24–33 are π-stacking, systems 34–46 are London dispersion complexes,
and the remainder as mixed-influence. For London dispersion, mixed, and π-stacking, the
HF-SCANn and SCANn are the best performers among the HF-DFT and self-consistent
DFT series, respectively. For the H-bonds, the HF-SCANn series performs significantly
better than two other HF-DFT series at a lower percentage of HFx. On the other hand,
self-consistent rSCANn and r2SCANn are better performers than SCANn throughout (see
Table S3 in Supplementary Materials)

Ref. [28] points out that the open-shell species in such subsets as BH76 (barrier heights)
and RSH43 (radical separation energies) are affected by spin contamination. What if we
use restricted open-shell Hartree–Fock (ROHF) and ditto Kohn–Sham (ROKS) densities for
HF-DFT and the self-consistent series, respectively? This causes only 0.11 and 0.12 kcal/mol
improvements of WTMAD2 for HF-r2SCAN and r2SCAN, respectively, and even less for the
other two variants of HF-DFT and self-consistent functionals. However, this gain increases
to about 0.2 and 0.4 kcal/mol for hybrid HF-DFT and self-consistent functionals, respectively
(see Table S2 in Supplementary Materials). If we look at individual subsets, for all three
pure mGGA HF-DFT functionals, performance improves for RSE43 and deteriorates for
SIE4x4. Next, for all three hybrid HF-DFT functionals, the most significant gain is for
W4-11, and switching from the original to any of the two regularized SCAN variants is
beneficial for the BH76 subset. For all three self-consistent pure mGGA functionals, we see
the most significant improvement for BH76, which becomes more pronounced for hybrid
functionals. (See Table S4 in Supplementary Materials for individual subsets).

3.2. Impact of Introducing D4 Dispersion Correction

Considering D4 dispersion correction on top of the HF-SCANn, HF-rSCANn, HF-
r2SCANn, and their respective self-constant counterparts improve WTMAD2 throughout.
The HF-DFT series draw the most benefit. All three dispersion-corrected self-consistent
series have an overall minimum near 38% HFx. Among them, r2SCANn-D4 is the best pick
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for all values of n. However, the WTMAD2 gap between r2SCANn-D4 and SCANn-D4
is relatively tiny, near 50% HFx. Unlike for the dispersion-uncorrected cases, the choice
of SCAN variant has practically no effect on the performance of the three HF-DFT-D4
series (see Figure 3). The same as HF-SCANn-D4 [29], both the HF-rSCANn-D4 and
HF-r2SCANn-D4 have the overall WTMAD2 minimum near 10% HFx.
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Interestingly, r2SCANn-D4 marginally outperforms the HF-r2SCANn-D4 series be-
yond 35% HFx, and the other two self-consistent series approach their HF-DFT counterparts
only near 50%.

Among the five top-level subsets, for small molecule thermochemistry and barrier
heights, the performance trends for different SCAN variants are similar to what we ob-
served for dispersion uncorrected cases. For the large molecule reactions, the choice of
SCAN variant seems to matter, mainly for the hybrid HF-DFT and self-consistent func-
tionals. For conformers, HF-r2SCANn-D4 and r2SCANn-D4 are the two best picks among
the HF-DFT and self-consistent series, respectively. In the case of the intermolecular
interactions, the HF-SCANn-D4 series is surpassed by both the HF-r2SCANn-D4 and HF-
rSCANn-D4. Among the self-consistent series, r2SCANn-D4 is still the best performer (see
Figure 4). Both for the conformers and intermolecular interactions, HF-DFT-D4 always
offers better or equal performance when compared to their self-consistent counterparts.
(See Table S1 in Supplementary Materials for the breakdown of total WTMAD2 into five
major subsets).

Now, we look into the most affected subsets of GMTKN55 in detail (see Figure S6 in
Supplementary Materials). In general, the performance difference we obtained for various
subsets using different variants of dispersion-uncorrected HF-DFT is now gone as soon as
we include D4 dispersion correction.

Among the self-consistent series, r2SCANn-D4 and rSCANn-D4 marginally outper-
form the rSCANn-D4 for HAL59. For the rare gas clusters (RG18), both HF-rSCANn-D4
and HF-r2SCANn-D4 perform similarly and are better choices than the HF-SCANn-D4
series. Among the three self-consistent series, hybrid r2SCAN and rSCAN functionals win
the race for this particular subset. For 1,4-butanediol, r2SCAN is the preferred choice among
the three SCAN variants, both for the pure and hybrid self-consistent mGGA functionals
with a small percentage of HFx.
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Once again, we divide the mixed bag S66 noncovalent interactions into four subcat-
egories: hydrogen bonds, π-stacking, London dispersion, and the mixed-influence (see
Table 1). The rSCAN variant is the best in class among HF-DFT and the self-consistent
series for the London dispersion and the mixed-influence. All the self-consistent SCAN
variants perform similarly for π-stacking, whereas HF-r2SCANn-D4 is always inferior to
HF-rSCANn-D4 and HF-SCANn-D4. For the hydrogen bonds, r2SCANn-D4 is the best
performer among the self-consistent series, and HF-r2SCANn-D4 is the best among the
HF-DFT series. Without considering dispersion correction, all three SCAN variants, either
self-consistent or density-corrected, largely underbind π-stacking, London dispersion, and
mixed subsets, which become slightly better by introducing D4 correction. Except for the
dispersion-uncorrected HF-DFT cases, every other functional overbinds hydrogen bonds.

Table 1. MAD and MSD (mean absolute and mean signed deviations, kcal/mol) of HF-DFT-D4 and
KS-DFT-D4 functionals for the S66 subset and for four subcategories of S66.

Functionals

MAD (kcal/mol) MSD (kcal/mol)

H-Bonds π-Stack London Mixed-
Influence

Full
S66 H-Bonds π-Stack London Mixed

Influence Full S66

HF-SCAN-D4 0.21 0.57 0.47 0.23 0.32 0.09 0.57 −0.45 0.02 0.03

HF-SCAN10-D4 0.31 0.44 0.44 0.24 0.33 0.24 0.44 −0.42 0.07 0.09

HF-SCAN0-D4 0.45 0.26 0.41 0.25 0.35 0.42 0.26 −0.41 0.11 0.14

HF-SCAN38-D4 0.59 0.15 0.37 0.28 0.39 0.58 0.15 −0.37 0.16 0.2

HF-SCAN50-D4 0.79 0.13 0.28 0.32 0.45 0.79 0.13 −0.26 0.26 0.32

SCAN-D4 0.73 0.1 0.34 0.23 0.41 0.73 −0.03 −0.34 0.01 0.19

SCAN10-D4 0.79 0.08 0.23 0.2 0.39 0.79 −0.01 −0.22 0.1 0.26

SCAN0-D4 0.84 0.08 0.16 0.23 0.41 0.84 −0.02 −0.14 0.18 0.32

SCAN38-D4 0.89 0.1 0.14 0.27 0.43 0.89 −0.05 −0.11 0.22 0.35

SCAN50-D4 0.98 0.1 0.11 0.32 0.48 0.98 −0.03 −0.06 0.29 0.42

HF-rSCAN-D4 0.11 0.52 0.26 0.16 0.21 0.03 0.52 −0.24 0.01 0.05

HF-rSCAN10-D4 0.18 0.38 0.28 0.15 0.22 0.15 0.38 −0.27 0.03 0.07
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Table 1. Cont.

Functionals

MAD (kcal/mol) MSD (kcal/mol)

H-Bonds π-Stack London Mixed-
Influence

Full
S66 H-Bonds π-Stack London Mixed

Influence Full S66

HF-rSCAN0-D4 0.43 0.33 0.22 0.22 0.31 0.43 0.33 −0.21 0.15 0.20

HF-rSCAN38-D4 0.59 0.16 0.24 0.24 0.35 0.59 0.16 −0.24 0.17 0.23

HF-rSCAN50-D4 0.80 0.11 0.19 0.30 0.42 0.80 0.10 −0.18 0.26 0.34

rSCAN-D4 0.57 0.19 0.13 0.15 0.30 0.56 −0.17 −0.13 −0.04 0.13

rSCAN10-D4 0.63 0.14 0.08 0.13 0.30 0.63 −0.10 −0.07 0.04 0.20

rSCAN0-D4 0.74 0.10 0.06 0.16 0.33 0.74 −0.04 −0.01 0.14 0.29

rSCAN38-D4 0.84 0.11 0.07 0.22 0.39 0.84 −0.04 0.00 0.21 0.35

rSCAN50-D4 0.97 0.13 0.07 0.29 0.46 0.97 −0.04 0.00 0.28 0.42

HF-r2SCAN-D4 0.14 0.77 0.40 0.25 0.32 −0.09 0.77 −0.35 0.06 0.03

HF-r2SCAN10-D4 0.16 0.75 0.33 0.28 0.32 0.13 0.75 −0.27 0.16 0.15

HF-r2SCAN0-D4 0.37 0.58 0.28 0.30 0.36 0.36 0.58 −0.23 0.22 0.24

HF-r2SCAN38-D4 0.52 0.34 0.30 0.30 0.38 0.52 0.34 −0.28 0.22 0.24

HF-r2SCAN50-D4 0.72 0.21 0.26 0.33 0.43 0.72 0.21 −0.25 0.27 0.32

r2SCAN-D4 0.47 0.09 0.33 0.20 0.30 0.44 −0.04 −0.33 −0.05 0.07

r2SCAN10-D4 0.51 0.09 0.27 0.19 0.30 0.50 −0.03 −0.27 0.01 0.12

r2SCAN0-D4 0.62 0.08 0.20 0.24 0.34 0.62 0.00 −0.19 0.17 0.23

r2SCAN38-D4 0.73 0.08 0.16 0.24 0.37 0.73 0.00 −0.14 0.18 0.28

r2SCAN50-D4 0.88 0.08 0.12 0.29 0.43 0.88 0.02 -0.09 0.27 0.37

4. Conclusions

From a comprehensive study of self-consistent and density-corrected pure and hybrid
SCAN, rSCAN, and r2SCAN mGGA functionals, we can conclude the following:

• Both for self-consistent and for HF-DFT series, the WTMAD2 global minimum is the
same for all three SCAN variants. The only exception is HF-rSCANn, where the overall
minimum is near 25% HF exchange instead of near 10% for the other two. Among
all the functionals tested, the pure mGGA form is a low-cost alternative for all three
SCAN variants.

• The choice of SCAN variant can significantly influence the performance of the dispersion-
uncorrected HF-DFT series. However, upon introducing D4 dispersion, the WTMAD2
gaps between different SCAN variants almost vanish. At lower percentages of HF
exchange, self-consistent SCANn and r2SCANn hybrids perform similarly. However,
with D4 correction, r2SCANn-D4 outperforms rSCANn-D4 and SCANn-D4.

• For the small-molecule thermochemistry and barrier height subsets, different SCAN
variants perform comparably in the pure and hybrid self-consistent and HF-DFT series.

• Irrespective of the choice of SCAN variant, the use of ROHF and ROKS densities are
clearly beneficial for hybrid HF-DFT and self-consistent functionals.

• Among all the functionals tested, HF-r2SCAN10-D4 offers the lowest WTMAD2 (4.85
kcal/mol), just below HF-SCAN10-D4 (WTMAD2 = 4.96 kcal/mol) and without the
latter’s grid convergence issues. The same remark applies concerning HF-DFT, with
HF-r2SCAN-D4 (WTMAD2 = 5.01 kcal/mol) slightly outperforming HF-SCAN-D4
(WTMAD2 = 5.05 kcal/mol).

• Overall, and taking into account the reduced grid sensitivity resulting from its regular-
ization, we find that r2SCAN’s superiority over SCAN is also retained for hybrids and
for HF-DFT.
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Supplementary Materials: The following are available online, Table S1: original and optimized D4
parameters, total WTMAD2 (kcal/mol), as well as its decomposition into the five major subsets for
HF-DFT and self-consistent functionals; Table S2: total WTMAD2 (kcal/mol) and its decomposi-
tion into the five major subsets for dispersion uncorrected HF-DFT and self-consistent functionals;
Table S3: MAD and MSD (mean absolute and mean signed deviations, kcal/mol) of dispersion-
uncorrected HF-DFT and KS-DFT functionals for the S66 subset, and the four subcategories of S66;
Table S4: effect of using ROHF and ROKS densities instead of UHF and UKS ones for HF-DFT and
self-consistent pure mGGA and hybrid functionals. Green means improvement and red means dete-
rioration of performance; Figure S1: energy difference (in kcal/mol) for all 36 ionization potentials
of G21IP subset with different grid choices. We have used the energies evaluated using GRID6 and
IntAcc = 10 as our reference; Figure S2: energy difference (in kcal/mol) for all 25 electron affinities of
G21EA subset with different grid choices. We have used the energies evaluated using GRID6 and
IntAcc = 10 as our reference; Figure S3: energy difference for 18 interaction energies of RG18 subset
with different grid choices. We have used the energies evaluated using GRID6 and IntAcc = 10 as our
reference; Figure S4: the trend of WTMAD2 contribution (∆WTMAD2) (Y-axis) with respect to the
percentage of HF exchange (X-axis) for three top-level subsets of GMTKN55 (namely, small molecule
thermochemistry; barrier heights and reaction energies for large systems) in case of both dispersion
uncorrected (left) and corrected (right) series; Figure S5: dependence of WTMAD2 (kcal/mol) contri-
bution (Y-axis) on the percentage of HF exchange (X-axis) for the dispersion uncorrected HF-DFT
and the self-consistent series for the individual subsets SIE4x4, WATER27, BH76, RG18, W4-11,
BHPERI, S66, PX13, HAL59, PNICO23, ADIM6, IDISP, alkane conformers (ACONF), 1,4-butanediol
conformers (BUT14DIOL), oligopeptide conformers (PCONF21), sugar conformers (SCONF), amino
acid conformers (AMINO20X4), TAUT15, G21EA, DC13, and large-molecule isomerization (ISOL24)
subsets; Figure S6: dependence of WTMAD2 (kcal/mol) contribution (Y-axis) on the percentage of
HF exchange (X-axis) for self-consistent and HF-DFT-D4 series for the individual subsets SIE4x4,
WATER27, BH76, RG18, W4-11, BHPERI, S66, PX13, HAL59, PNICO23, ADIM6, IDISP, alkane con-
formers (ACONF), 1,4-butanediol conformers (BUT14DIOL), oligopeptide conformers (PCONF21),
sugar conformers (SCONF), amino acid conformers (AMINO20X4), TAUT15, G21EA, DC13, and
large-molecule isomerization (ISOL24) subsets.
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