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Abstract: Increasingly precise control of polymer architectures generated by “Living” Anionic
Ring-Opening Polymerization (Living AROP) is leading to a broad range of commercial advanced
material applications, particularly in the area of siloxane macromers. While academic reports on
such materials remain sparse, a significant portion of the global population interacts with them on a
daily basis—in applications including medical devices, microelectronics, food packaging, synthetic
leather, release coatings, and pigment dispersions. The primary driver of this increased utilization of
siloxane macromers is their ability to incorporate the properties of silicones into organic structures
in a balanced manner. Compared to organic polymers, the differentiating properties of silicones—
low Tg, hydrophobicity, low surface energy, and high free molal space—logically lend themselves
to applications in which low modulus, release, permeability to oxygen and moisture, and tactile
interaction are desired. However, their mechanical, structural and processing properties have until
recently precluded practical applications. This review presents applications of “Living” AROP
derived polymers from the perspective of historical technology development. Applications in which
products are produced on a commercial scale—defined as not only offered for sale, but sold on
a recurrent basis—are emphasized. Hybrid polymers with intriguing nanoscale morphology and
potential applications in photoresist, microcontact printing, biomimetic soft materials, and liquid
crystals are also discussed. Previously unreported work by the authors is provided in the context of
this review.

Keywords: hybrid polymers; ring-opening polymerization; contact lenses; breathable films; mem-
branes; high elongation elastomers; biomimetic polymers; photoresists

1. Introduction

Functional siloxane polymers constitute a large class of reactive materials. Siloxanes
with vinyl, silanol, and hydride substitution are the most widely utilized, serving as the
basis for the majority of elastomeric silicone products. Functional siloxanes combined with
organic monomers form “hybrid” polymers which, despite their demonstrated utility, have
comparatively limited commercial applications. Most siloxane polymers are prepared by
ring-opening polymerization with high degrees of polydispersion, thereby curtailing their
ability to act as precise structural elements. On the other hand, the economics of both
the basic building blocks and the polymerization process itself favor equilibrium-derived
siloxane polymers. Figure 1 depicts the range of synthetic methods utilized to prepare
siloxane polymers.

Due to the intrinsic process as well as the structural control that it provides, Liv-
ing AROP-derived polymers provide the potential for a broad range of hybrid organic–
inorganic materials. Briefly, AROP-derived materials provide a mechanism for translat-
ing macromolecular synthetic methods normally associated with organic polymers (and
excluded from inorganic polymers) into hybrid polymer structures. Among these AROP-
derived siloxane polymers, perhaps the most technologically significant are monofunctional
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and heterobifunctional silicone macromers. Siloxane macromers are defined as silicon-
containing species with a single functional polymerizable group which, although used as
monomers, possess sufficiently high molecular weight and enough internal monomer units
to be considered polymeric. In another sense, they are siloxane building blocks derived
from Living AROP. Siloxane macromers enable the use of technologies other than those
associated with siloxane polymerization—e.g., techniques associated with the wider range
of synthetic organic polymerization technologies—to incorporate siloxane-associated prop-
erties: e.g., techniques associated with the wider range of synthetic organic polymerization
technologies. Notably, only controlled “living” AROP provides a path to siloxane polymers
with sufficiently controlled structures and functionality to behave as macromers in poly-
merization with organic monomers. Siloxane macromers thus enable the introduction of
selected siloxane properties into higher order structures via macromolecular engineering.
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Although the advent of living anionic ring-opening polymerization can be traced back
approximately 50 years, commercial applications of this technology have only reached the
marketplace within the last 20 and, by our estimate, production has exceeded 100 tons per
annum only in the last 5. The availability and range of polymers with tailored molecular
weight, polymer backbone structure and basic architecture, and both functional and non-
functional alternatives have grown enormously, stimulated by symbiotic application and
development efforts. This review relies heavily on patent literature; the global collection of
patents, of which there are over 10,000,000 in the US alone, is one of the most comprehensive
collections of technical information in the world but is often neglected in scholarly reviews.
Nevertheless, the impact of patent technology on how materials are prepared and utilized
may equal or exceed that of academic literature.

1.1. Fundamentals/Building Blocks/Architectures

The “living” anionic ring-opening polymerization of cyclosiloxanes is in fact more
properly described as kinetically controlled ring-opening polymerization. The features that
define the “living” aspects of the polymerization are: a quantitative initiation (as shown in
Scheme 1), and the fact that the rate of polymerization propagation is significantly greater
than that of the polymer chain randomization processes, particularly the reversion of the
degree of polymerization driven by equilibration or “back-biting” processes (as shown in
Scheme 2) [1].
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Both initiation and back-biting are driven by the catalytic opening of a siloxane bond.
The evolution of Living AROP has depended on the recognition of classes of cyclic siloxane
monomers that possess ring strain, as well as on “weak” catalysts which are able to
rapidly cleave the Si-O-Si bonds of the strained monomers but are relatively slow and
ineffective at cleaving Si-O-Si bonds in unstrained systems. The difference in reaction
kinetics provides an opportunity to deactivate the catalyst before significant equilibration
effects are observed, resulting in the scalable preparation of polymers with polydispersities
approaching 1.

The differential polymerization of ring-strained cyclics, as opposed to unstrained cyclic
siloxanes, was apparently observed in early industrial development, as is made particularly
clear in the example of fluorinated silicones generated from 3,3,3-trifluoropropylmethylcyclic
siloxanes [2]. Attempts to polymerize cyclic tetrasiloxanes were ineffective due to the
fact that the reversion kinetics apparently matched those of polymerization for the un-
strained cyclic tetramer. The polymerization of cyclic trisiloxanes, on the other hand, was
effective due to the ability to deactivate the catalyst before significant reversion could
occur. The potential for weak catalysts such as lithium phenoxide to produce polymers
of ring-strained monomers was first recognized by McVannel [3], while the quantitative,
selective formation of a lithium initiator generated from the reaction of organolithium
reagents with cyclic trimers was studied by Frye [4], who, surprisingly, observed that, in
a 1:1 molar stoichiometry, n-butyl lithium reacted with hexamethylcyclotrisiloxane (D3)
to form lithium n-butyldimethylsilanolate, leaving 2/3 of the D3 unreacted. Lee and Frye
also noted that polar “promoters” would then cause polymerization to proceed [5]. Finally,
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Fessler reported the relative effectiveness of promoters in the living polymerization process
and provided mechanistic insight into siloxane-silanolate reactions that could result in
shifts between triad, Gaussian, and redistribution products, as shown in Scheme 3 [6].
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A comparison of a GC (gas chromatograph) of siloxane macromers with equivalent
MW and PDIs, showing triad and Gaussian distributions, is provided in Figure 2 (author’s
work). In contrast to anionic polymerization with K+ and Na+, in which there is little
differentiation between chain scission points, the Li+ redistribution mechanism favors
chain termini: i.e., despite chain-end scrambling, narrow polydispersity is maintained.
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macromer (MCR-M11) with a nominal MW of 1000 showing shift from Triad to Gaussian distribution with a change in
promoter. (Author’s work)).

During the same period when Lee and Frye’s report was published but separate from
the discoveries relating to ring-strained siloxane monomers and lithium-based initiators,
there was significant interest within the silicone industry in generating block copolymers,
with lithium silanolate-based initiators being shown to lead to the sequential polymer-
ization of cyclotrisiloxanes. The combination of the growing interest in forming block
copolymers, the development of siloxanes with strained cyclic structures, and quantitative
lithium catalyzed polymerization underlies the publication by Saam [7,8] that reviewers
point to as establishing the potential of “living” AROP siloxanes—in which he clearly
demonstrated initiation, promotion, narrow MW distribution, and the ability to form block
copolymers. It was recognized at that time that these polymers had to be terminated
before equilibrium processes dominated in order to maintain the target molecular weight,
as visualized in Figure 3. Functionalized termination reagents were later used to create
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siloxane macromers [9,10], although a process for preparing these macromers was not
reported until 10 years later [11].
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The term “macromer” is a contraction of the word macromonomer and refers to a
relatively high molecular weight species with a single functional group which, although
used as a monomer, has sufficient internal monomer units to be considered a polymer. The
earliest commercial siloxane macromers contained methacrylate functionality and found
commercial utility in the formation of organic–inorganic hybrid polymers (Scheme 4). Their
termination, or “capping”, functionality was derived from the use of methacryloxypropy-
ldimethylchlorosilane. The general structure for a siloxane is depicted in Scheme 5. Varia-
tions of the basic structure are depicted in Schemes 6–8.
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A second class of functionality can be introduced into macromers by using novel
initiators, thereby yielding telechelic polymers in which the second functional class—e.g.,
hydroxyl—is located at the telechelic polymer termini, which are equidistant from the first
functional class.
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More recently, living AROP has been combined with the concept of functional initiators
to generate both monodisperse telechelic and heterobifunctional siloxanes.

This historic overview has only given a condensed description of the chemistry,
structure, and function of siloxanes derived via living AROP. For those interested in more
details regarding the chemical aspects of siloxanes derived from living AROP, the following
references should be consulted [1,12,13]. While the bulk of the literature and commercial
applications utilize a lithium anion as a weak base component of the initiator, an intriguing
recent series of reports utilize substituted cyclic guanidines in combination with water or
silanol that act as initiators for living AROP [14,15].

The following tables summarize monomeric building blocks (Table 1), the initiators
(Table 2), functional terminations, and architectures that have shown practical utility in
commercial applications.

1.2. Monomeric Building Blocks

The fact that there are only five monomeric building blocks for the living AROP-
derived polymers that represent virtually all commercial applications as well as the vast ma-
jority of published reports is a consequence both of practical synthetic routes [16–18] and the
sluggish rates of polymerization reported for cyclotrisiloxanes with greater organic substitu-
tion [19]. A preparation has been reported [20] for the simple and highly desirable monomer
trimethylcyclotrisiloxane, but its practical isolation has not yet been described. This has
led to interest in pentamethylcyclotrisiloxane [21] and hydridotetramethylsiloxanylethyl-
substituted cyclotrisiloxanes [22], which can be used directly as monomers for polymer-
ization or reacted with various olefins to form more elaborately substituted trisiloxanes.
Similarly, vinylpentamethylcyclotrisiloxane has been prepared, and offers an advantage
over trivinyltrimethylcyclotrisiloxane in cases where isolated vinyl substitution on the
polymer chain is desired [23]. The primary cyclic monomers used in the production of
macromers on both commercial and research levels are listed for convenience in Table 1.
Other cyclic monomers have been reported in the literature, and include higher hex-
aalkylcyclotrisiloxanes [24], chloropropylmethylcyclotrisiloxanes [25], and substituted
hexaarylcyclotrisiloxanes [26]. Specialty monomers with limited reference include D4 [27],
acrylate [28], cyclic ether [29], trimethylsiloxy-substituted [30] cyclotrisiloxanes, and simi-
larly substituted strained carbosiloxanes [31].
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Table 1. Cyclic Siloxane Macromer “Building Blocks”.

Cyclic Siloxane Macromer Monomers

Class Structure MW B.P. CAS# References

Primary

Hexamethylcyclotrisiloxane
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Table 2. Initiators.
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Class Structure Comments References
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1.3. Termination

Terminating molecules in living AROP can serve several functions. At a minimum,
they serve to quench the polymerization before redistribution processes associated with
reversion, interchain back-biting, and interchain scrambling; their potential functions can
be further divided into the following categories:

Non-functional termination;
Non-functional coupling to effect non-functional doubling of MW;
Non-functional coupling with block insertion;
Functional termination to form asymmetric macromers;
Functional coupling to form symmetric macromers;
Functional coupling to form branched structures.

Terminators in AROP processes are usually chlorosilanes, although other halosilanes
and alkoxysilanes have been reported. Apart from the terminators found in the litera-
ture associated with living AROP of siloxanes, terminators normally associated with the
living anionic polymerization of olefins and other organic polymers can provide similar
termination for siloxanes [77,78].

1.4. Macromers Commonly Reported in Literature

The structures and properties listed in Table 3 are an aggregate of the most common
siloxane macromers reported in the scholarly and commercial literature. They should
not be considered exact values, but rather nominal values for similar materials. Similarly,
heterobifunctional macromers are reported in Table 4.
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Table 3. Commonly Reported Macromers.

Asymmetric Monofunctional Siloxanes

Code * Description Molecular Weight, Mn Viscosity, cSt Density Refractive Index Reference
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1000 10–15 0.96 1.410 [79,89,90] 

MCR-E21 

Mono(2,3-
EPOXY)PROPYLETHER 

TERMINATED 
POLYDIMETHYLSILOXANE 

5000 120 0.97 1.408 [79] 

 

MCR-H07 
MonoHYDRIDE 
TERMINATED 

POLYDIMETHYLSILOXANE 
800–900 5–8 0.96 1.404 [60,79] 

MCR-H11 
MonoHYDRIDE 
TERMINATED 

POLYDIMETHYLSILOXANE 
900–1100 8–12 0.96 1.407 [60,79,91] 

MCR-H21 
MonoHYDRIDE 
TERMINATED 

POLYDIMETHYLSILOXANE 
4500–5000 80–120 0.96 1.411 [79] 

MCR-H22 
MonoHYDRIDE 
TERMINATED 

POLYDIMETHYLSILOXANE 
10,000 160–220 0.98 1.411 [79] 

MCR-E11
Mono(2,3-

EPOXY)PROPYLETHER
TERMINATED

POLYDIMETHYLSILOXANE
1000 10–15 0.96 1.410 [79,89,90]

MCR-E21
Mono(2,3-

EPOXY)PROPYLETHER
TERMINATED

POLYDIMETHYLSILOXANE
5000 120 0.97 1.408 [79]
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MCR-M11 
MonoMETHACRYLOXYPRO

PYL TERMINATED 
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,95–108] 

MCR-M17 
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POLYDIMETHYLSILOXANE 

10,000 150–200 0.97 1.405 
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MCR-MXe11 
MonoMETHACRYLOXYETH
OXY-PROPYL TERMINATED 
POLYDIMETHYLSILOXANE 

900–1000 9–10 0.95 1.415 None? 

 

MCR-MXt11 

MonoMETHACRYLOXYPRO
PYL, 

MonoMETHOXYPROPYL 
TERMINATED 

POLYDIMETHYLSILOXANE 

800–1000 8–12 0.96 1.430 [60,70] 

 

MFR-M15 

MonoMETHACRYLOXYPRO
PYL TERMINATED 

POLYTRIFLUOROPROPYLM
ETHYLSILOXANE 

800–1000 50–70 1.09 1.398 [59,60,70,79,93
,100] 

MCR-M07
MonoMETHACRYLOXYPROPYL

TERMINATED
POLYDIMETHYLSILOXANE

600–800 6–9 0.96 1.416 [60,79,92–97]
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Table 3. Cont.

Asymmetric Monofunctional Siloxanes

Code * Description Molecular Weight, Mn Viscosity, cSt Density Refractive Index Reference

MCR-M11
MonoMETHACRYLOXYPROPYL

TERMINATED
POLYDIMETHYLSILOXANE

800–1000 10–11 0.96 1.411 [60,70,79,92,93,
95–108]

MCR-M17
MonoMETHACRYLOXYPROPYL

TERMINATED
POLYDIMETHYLSILOXANE

5000 70–80 0.97 1.406
[54,70,79,89,90,
93,95–97,108–

110]

MCR-M22
MonoMETHACRYLOXYPROPYL

TERMINATED
POLYDIMETHYLSILOXANE

10,000 150–200 0.97 1.405 [54,79,93,94,96,
97]
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900–1000 9–10 0.95 1.415 None?
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MCR-ST11 MonoSTYRYL TERMINATED 
POLYDIMETHYLSILOXANE 

800–1000 8–15 0.95 1.429 [99,102] 

 

MCR-V21 MonoVINYL TERMINATED 
POLYDIMETHYLSILOXANE 

5500–6500 80–120 0.97 1.403 [79,91,111] 

MCR-V25 
MonoVINYL TERMINATED 
POLYDIMETHYLSILOXANE 15,000–20,000 400–600 0.97 1.403 [79] 

MCR-V41 MonoVINYL TERMINATED 
POLYDIMETHYLSILOXANE 

55,000–65,000 8000–12,000 0.98 1.404 [79] 

 

MCR-XT11 
MonoTRIETHOXYSILYLETH

YL TERMINATED 
POLYDIMETHYLSILOXANE 

500–1000 16–24 0.97 1.412 [79] 

Symmetric Monofunctional Siloxanes 

 

MCS-C13 
MonoCARBINOL FUNCTIONAL 

POLYDIMETHYLSILOXANE, 
symmetric 

550–650 35–40 1.02 1.446 [79] 

MCR-ST11 MonoSTYRYL TERMINATED
POLYDIMETHYLSILOXANE 800–1000 8–15 0.95 1.429 [99,102]
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Table 3. Cont.

Asymmetric Monofunctional Siloxanes

Code * Description Molecular Weight, Mn Viscosity, cSt Density Refractive Index Reference
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Asymmetric Monofunctional Siloxanes

Code * Description Molecular Weight, Mn Viscosity, cSt Density Refractive Index Reference
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MCS-E15 

Mono(2,3-EPOXY)PROPYL ETHER 
FUNCTIONAL 

POLYDIMETHYLSILOXANE, 
symmetric 

800–900 45–55 1.09 1.398 [59,70,79] 

 

MCS-M11 

MonoMETHACRYLOXYPROPYL 
FUNCTIONAL 

POLYDIMETHYLSILOXANE, 
symmetric 

800–1000 7–9 0.93 1.417 
[59,60,70,79,9

3] 

 

MCS-MXt11 

MonoMETHACRYLOXYPROPYL 
FUNCTIONAL 

POLYDIMETHYLSILOXANE, 
METHOXYPROPYL TERMINATED, 

symmetric 

900–1100 8–12 0.96 1.43 [60,79] 

MCS-E15
Mono(2,3-EPOXY)PROPYL

ETHER FUNCTIONAL
POLYDIMETHYLSILOXANE,

symmetric
800–900 45–55 1.09 1.398 [59,70,79]
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Asymmetric Monofunctional Siloxanes

Code * Description Molecular Weight, Mn Viscosity, cSt Density Refractive Index Reference

Molecules 2021, 26, x 18 of 43 
 

 

 

MCS-V212 
MonoVINYL TERMINATED 

POLYDIMETHYLSILOXANE, 
symmetric 

1200–1400 16–24 0.97 1.419 [79] 

 

MCS-VF14 

monoVINYL FUNCTIONAL 
POLYDIMETHYLSILOXANE, 

TETRAHYDROFURFURYLOXYPRO
PYL TERMINATED—symmetric 

1000–1200 30–40 0.976 1.4141 [61,79,87,112] 

 

MCS-VXt15 

MonoVINYL FUNCTIONAL 
POLYDIMETHYLSILOXANE, 

METHOXY(DIETHYLENEOXIDE)PR
OPYL TERMINATED, symmetric 

1000–1200 40–60 0.96 1.42 [61,79,87,112] 

* In order to provide a concise description of the macromer systems discussed, the following designation system was 
adopted: the first two letters, MC, indicate macromer M structure with a C conventional dimethylsiloxane repeat unit; the 
third letter indicates whether it is asymmetric (R), symmetric (S), or T-structure (T). Macromer functionality and viscosity 
are indicated after a hyphen, as follows: (1) letters indicate functionality, where M is methacrylate, H is hydride, C is 
carbinol, V is vinyl, and E is methoxy; (2) numbers are the viscosity ranges of the macromer in powers of 10, followed by 
the first significant figure. For example, MCR-H25 indicates a macromer, an asymmetric architecture with hydride 
functionality, and a viscosity of 102 × 5 or 500 cSt. These designations provide a facile method of discussing comparative 
structures but are not intended to be detailed structural descriptions of the polymers. To remove ambiguity for 
ethyleneoxy designated X spacer groups, the lower-case letter t, for “tipped”, or e, for “embedded”, is used. 
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O OO O

MCS-V212
MonoVINYL TERMINATED
POLYDIMETHYLSILOXANE,

symmetric
1200–1400 16–24 0.97 1.419 [79]
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MCS-
VXt15

MonoVINYL FUNCTIONAL
POLYDIMETHYLSILOXANE,
METHOXY(DIETHYLENEOXIDE)

PROPYL TERMINATED,
symmetric

1000–1200 40–60 0.96 1.42 [61,79,87,112]

* In order to provide a concise description of the macromer systems discussed, the following designation system was adopted: the first
two letters, MC, indicate macromer M structure with a C conventional dimethylsiloxane repeat unit; the third letter indicates whether
it is asymmetric (R), symmetric (S), or T-structure (T). Macromer functionality and viscosity are indicated after a hyphen, as follows: (1)
letters indicate functionality, where M is methacrylate, H is hydride, C is carbinol, V is vinyl, and E is methoxy; (2) numbers are the
viscosity ranges of the macromer in powers of 10, followed by the first significant figure. For example, MCR-H25 indicates a macromer, an
asymmetric architecture with hydride functionality, and a viscosity of 102 × 5 or 500 cSt. These designations provide a facile method of
discussing comparative structures but are not intended to be detailed structural descriptions of the polymers. To remove ambiguity for
ethyleneoxy designated X spacer groups, the lower-case letter t, for “tipped”, or e, for “embedded”, is used.

Table 4. Monodisperse Difunctional Macromers.

Heterobifunctional Siloxanes

Code Description Molecular Weight, Mn Viscosity, cSt Density Refractive Index Reference

Molecules 2021, 26, x 19 of 43 
 

 

Table 4. Monodisperse Difunctional Macromers. 

Heterobifunctional Siloxanes 

Code Description 
Molecular 

Weight, Mn 
Viscosity, 

cSt 
Density Refractive Index Reference 

 

DMS-HV15 
monoVINYL-monoHYDRIDE 

terminated 
POLYDIMETHYLSILOXANE 

2000–3000 40–60 0.96 1.404 [62,73,79,113,114] 

DMS-HV22 
monoVINYL-monoHYDRIDE 

terminated 
POLYDIMETHYLSILOXANE 

10,000 150–250 0.97 1.403 [62,73,79,113–
116] 

DMS-HV31 
monoVINYL-monoHYDRIDE 

terminated 
POLYDIMETHYLSILOXANE 

25,000 600–1000 0.97 1.403 [62,73,79,114] 

 

PMM-HV12 
α-monoVINYL,monoPHENYL-ω-

monoHYDRIDE terminated 
POLYDIMETHYLSILOXANE 

2000 20 0.97 1.414 [62,79] 

  

DMS-HV15
monoVINYL-monoHYDRIDE

terminated
POLYDIMETHYLSILOXANE

2000–3000 40–60 0.96 1.404 [62,73,79,113,
114]

DMS-HV22
monoVINYL-monoHYDRIDE

terminated
POLYDIMETHYLSILOXANE

10,000 150–250 0.97 1.403 [62,73,79,113–
116]

DMS-HV31
monoVINYL-monoHYDRIDE

terminated
POLYDIMETHYLSILOXANE

25,000 600–1000 0.97 1.403 [62,73,79,114]



Molecules 2021, 26, 2755 20 of 44

Table 4. Cont.

Heterobifunctional Siloxanes

Code Description Molecular Weight, Mn Viscosity, cSt Density Refractive Index Reference

Molecules 2021, 26, x 19 of 43 
 

 

Table 4. Monodisperse Difunctional Macromers. 

Heterobifunctional Siloxanes 

Code Description 
Molecular 

Weight, Mn 
Viscosity, 

cSt 
Density Refractive Index Reference 

 

DMS-HV15 
monoVINYL-monoHYDRIDE 

terminated 
POLYDIMETHYLSILOXANE 

2000–3000 40–60 0.96 1.404 [62,73,79,113,114] 

DMS-HV22 
monoVINYL-monoHYDRIDE 

terminated 
POLYDIMETHYLSILOXANE 

10,000 150–250 0.97 1.403 [62,73,79,113–
116] 

DMS-HV31 
monoVINYL-monoHYDRIDE 

terminated 
POLYDIMETHYLSILOXANE 

25,000 600–1000 0.97 1.403 [62,73,79,114] 

 

PMM-HV12 
α-monoVINYL,monoPHENYL-ω-

monoHYDRIDE terminated 
POLYDIMETHYLSILOXANE 

2000 20 0.97 1.414 [62,79] 

  

PMM-HV12
α-

monoVINYL,monoPHENYL-
ω-monoHYDRIDE terminated
POLYDIMETHYLSILOXANE

2000 20 0.97 1.414 [62,79]

2. Applications
2.1. Compatibility and Reactivity Introduction

The living polymerization of siloxanes provides the basis for synthesizing siloxane
macromers capable of acting as precise structural elements, achieving both the require-
ments of copolymerization with organic monomers as well as the desired properties of
copolymers. The incorporation of properties associated with siloxanes—including oxygen
and moisture permeability, release, or thermal performance—would thereby improve the
performance of a wide range of organic polymers. To date, however, the utilization of
silicone macromers in combination with organic monomers has been primarily limited by
economic considerations, as well as by structural and compositional challenges.

The most commonly used siloxane macromers are methacrylate-terminated, both in
the literature and in commercial applications. Reported reactivity ratios [79] and previously
unreported solubility in monomers are shown in Tables 5 and 6, respectively

Table 5. Reactivity Ratios of Methacrylate Functional Siloxane Macromers.

Siloxane Macromer Comonomer Reactivity Ratio (r1:r2) *

MCR-M11
Methylmethacrylate

nm **:1.60

MCR-M22 nm **:2.10

MCR-M11 Styrene 0.26:1.07

MCR-M11 Acrylonitrile 5.40:0.89

* Rate constants—M1M1/M1M2: M2M2/M2M1; ** no meaningful results.

Table 6. Solubility of Methacrylate Functional Silicone Macromers *.

Siloxane Macromer—Methacrylate
Functional

Macromer Solubility in Hydrogel Monomers
Water Solubility in

Macromer (ppm)Dimethylacrylamide (DMA) Hydroxyethylmethacrylate
(HEMA)

MCR-M11 (asymmetric) 4% 1% 2000
MCS-M11 (symmetric) 8% 2% 3500

MFR-M15 (fluorinated asymmetric) 100% (miscible) 2% 9000
MFS-M15 (fluorinated symmetric) 100% (miscible) 3% 10,000

MCS-MXt11 (methoxy-tipped,
symmetric) 100% (miscible) 100% (miscible) 10,000

* Author’s work, previously unreported.
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2.2. Gas/Vapor Permeability

In comparison to organic polymers, siloxanes possess a large free molal volume, a
consequence of the length of both silicon–oxygen and silicon–carbon bonds, which allows
greater permeation of small molecules. These same factors contribute to the flexibility of
silicones which imposes limitations on structural properties. Hybrid polymer systems
utilizing both macromer and block polymers generated by living AROP provide the balance
of properties required in contact lenses, breathable films, and membranes.

2.2.1. Contact Lens/Hydrogel

Oxygen permeability is a key feature of modern contact lenses, particularly those in-
tended for extended wear. In addition to the bloodstream, the corneal and scleral tissues of
the eye take about 1/3 of their respiratory requirement directly from the air. Methacrylate-
derived polymers, while possessing good optical and mechanical properties, are occlusive
to oxygen transport due to the fact that the permeability of siloxanes is more than 100X
greater than that of analogous hydrocarbon structures. Gaylord’s pioneering material
work [117,118] under the direction of Seidner led to the commercialization of rigid gas
permeable contact lenses by Syntex in 1980 [119]. While these lenses satisfied the physio-
logical requirement for extended wear, broad acceptance of silicone rigid gas permeable
(RGP) lenses was not achieved, since user comfort did not match that of hydrogel lenses.
Formulation and process challenges in silicone hydrogel contact lens manufacture include
combining hydrophobic silicones with hydrophilic monomers while maintaining optical
clarity, high water content, and high oxygen transport to the eye in the resulting hydrogels.
The first successful silicone hydrogel lens, based on technology disclosed by Vanderlaan,
was introduced to the marketplace by Vistakon in 2004 [102]. Monofunctional siloxane
macromers polymerized by living anionic polymerization routes are key materials in such
silicone hydrogel contact lens formulations: these monodisperse monofunctional materials
are used as comonomers with hydrophilic hydrogel monomers such as hydroxyethyl-
methacrylate (HEMA) and dimethylacrylamide (DMA). The earliest report of soft silicone
hydrogel lenses generated from siloxane macromers and HEMA that displayed acceptable
performance utilized group transfer polymerization [120]. One material requirement of
a silioxane macromer selected for such a formulation is a minimal solubility in the hy-
drophilic hydrogel monomers. It has been reported that, after curing the silicone hydrogel
contact lens reactive monomer mix, an optically clear co-continuous silicone and hydrogel
phase membrane suitable for contact lens use is formed [121]. Incorporating low molecular
weight (~1000 g mol−1) siloxane macromers into silicone hydrogel formulations enhances
oxygen permeability in the resulting contact lenses, achieving superior oxygen transport
to the eye compared to hard rigid gas permeable (RGP) and soft HEMA contact lens
technologies (Figure 4) [122].
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hydroxyethylmethacrylate or dimethylacrylamide; (b) comparison of contact lens materials and oxygen transport to the
cornea (redrawn with permission from Ref. [122] Copyright 1983 the Technomic Publication). (c) Hydrogel phase structure
as a determinant of lens comfort (redrawn with permission from Ref. [121] Copyright 2001 Elsevier Science).

During the contact lens molding process, extraction procedures are employed to re-
move undesirable impurities. Water insoluble impurities, for example, decrease optical
clarity and leach out of the contact lens, causing negative ocular effects such as stinging [92].
Unfortunately, the hydrophobic nature of these impurities makes conventional water extrac-
tion procedures insufficient. Silicone hydrogel extraction procedures using alcohols have
been reported, but possess drawbacks including increased manufacturing costs, organic
solvent waste handling concerns, and potential eye irritation from residual solvent. Living
anionic polymerization enables the synthesis of monodisperse monofunctional siloxane
macromers that are largely free of impurities. Indeed, newer generation silicone hydrogel
formulations employ siloxane macromers of sufficient purity to rely solely on aqueous
extraction and hydration steps post-molding. Table 7 gives an overview of the different
generations of silicone hydrogel technologies. Generation 1 silicone hydrogel contact lenses
did not use siloxane macromers and relied on tris(trimethylsilyl)-silylpropylmethacrylate
(TRIS) and difunctional silicone crosslinkers as the oxygen transport enhancers in the
formulation. TRIS made control of the lenses’ mechanical properties difficult, resulting in
higher modulus lenses that were not comfortable for the wearer [121]. Generation 2 and
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3 silicone hydrogel formulations incorporated siloxane macromers as oxygen transport
enhancers, which led to greater formulation flexibility and control of the final contact lens
material properties (e.g., Dk and modulus) [100,101,123].

Table 7. Silicone Hydrogel Contact Lens Technology.

Technology
Generation

Proprietary
Name Material Manufacturer Launch

Date
Water

Content
(%)

Dk O2 Transport
Enhancer

Hydrophilic
Component

*
Refs.

1

PureVision Balafilcon A Bausch &
Lomb 1998 36 91

TRIS,
Difunctional

siloxane

NVP amino
acid

monomer
Focus Night

& Day Lotrfilcon A CIBA
Vision 1999 24 140

TRIS,
Difunctional

fluorosiloxane
DMA Nicolson

[124]

AirOptix Lotrafilcon
B

CIBA
Vision 1999 33 110

TRIS,
Difunctional

fluorosiloxane
DMA Nicolson

[124]

2

Biofinity Cofilcon A Cooper
vision 2007 48 128

Monofunctional
siloxane

macromer
VMA

Ueyama
[125]

Iwata [126]

Acuvue
OASYS Senfilcon A JJVC 2004 38 103

SiGMA
monomer,

monofunctional
siloxane

macromer
(MCR-M11)

DMA,
HEMA,

PVP
Vanderlaan

[101,123]

PremuiO Amofilcon
A Menicon 2007 40 129

Difunctional
fluorosiloxane

macromer
DMA

Acuvue
Advance Gayfilcon A JJVC 2004 47 60

SiGMA
monomer,

monofunctional
siloxane

macromer
(MCR-M11)

DMA,
HEMA,

PVP
Vanderlaan

[101,123]

3

1-DAY
Acuvue
TruEYE

Narfilcon A JJVC 2008 46 100

SiGMA
monomer,

monofunctional
siloxane

macromers
(OH-mPDMS,

MCR-M11)

DMA,
HEMA,

PVP
Vanderlaan

[101,123]

Clariti
1-DAY Somofilcon Cooper

vision 2014 56 60

Monofunctional
siloxane

macromer,
difunctional

siloxane

HEMA Broad [100]

Avaira Enfilcon Cooper
vision 2011 46 100 Difunctional

fluorosiloxane VMA

Ultra Samfilcon A Bausch &
Lomb 2014 46 114

TRIS,
Difunctional

siloxane,
monofunctional
carbosiloxane

macromer

Unknown Awasti
[55,127]

DAILIES
TOTAL1 Delfilcon A Alcon 2013 33 140 Unknown DMPC,

DMA

MyDay Stenfilcon A Cooper
vision 2013 54 80

Difunctional
PEG-PDMS
copolymer,

monofunctional
siloxane

macromer

VMA

Acuvue
Vita Senfilcon C JJVC 2016 41 103

SiGMA
monomer,

monofunctional
siloxane

macromer
(MCR-M11)

DMA,
HEMA,

PVP

* DMA—Dimethylacrylamide; DMPC—(1,2-dimyristoyl-sn-glycero-3-phosphocholine; HEMA—Hydroxyethylmethacrylate; NVP—N-
Vinylpyrrolidone; PVP—Polyvinylpyrrolidone; SiGMA—3-(3-Methacryloxy-2-hydroxypropoxy)propylbis(trimethylsiloxy)methylsilane;
TRIS—Methacryloxypropyltris(trimethylsiloxy)silane; VMA—N-Vinylmethylacetamide.

Hydrogels comprised of macromers with both polycarbosiloxane units and
poly(trifluoropropylmethyl)siloxane units have been reported. The macromers are synthe-
sized by substituting D3 with other ring-strained monomers in a living polymerization
process. Awasti describes a monomethacrylate functional polycarbosiloxane synthesized
from a 2,2,5,5-tetramethyl-2,5-disila-1-oxacyclopentane monomer as resistant to hydrol-



Molecules 2021, 26, 2755 24 of 44

ysis and therefore suitable for use in silicone hydrogel soft contact lens design [55,128].
Monomethacrylate functional poly(trifluoropropylmethyl)siloxane macromers possess
increased polarity, improving their miscibility with hydrophilic monomers and potentially
reducing the non-specific binding of proteins on soft contact lens surfaces [59,70].

Low molecular weight symmetric siloxane macromers with hydrophilic termini
have increased miscibility with hydrophilic monomers compared to asymmetric siloxane
macromers, as the smaller siloxane block size of the symmetric architecture limits phase sep-
arated domain formation while still maintaining the oxygen transport-enhancing benefits of
asymmetric analogs. The hydrophilic termini reported by Kimble include methoxypropyl
and hydroxypropyl groups [59,60]. α-Methacrylate functional, ω-polyalkyleneoxide silox-
ane macromers have also been described; however, their block copolymer structure results
in microphase separation, rendering this macromer structure unsuitable for the production
of optically clear hydrogel films [129].

One approach for improving contact lens comfort is to utilize a plasma treatment
to improve hydrogel wettability and then apply hydrophilic terpolymers derived from
combinations of silicone macromers and hydrophilic monomers such as diethylazetidinium
methacrylate ester chloride salt, thereby providing permanent wettability [130].

In a separate but related area, siloxane-based interocular lenses (IOL) provide new
opportunities for macromers. Hydride terminated macromers are utilized to control the
modulus of cured elastomers used in IOLs [131]. Interestingly, silicone macromers are
broadly described as components in laser adjustable IOLs that enable a post-insertion
change in dioptric power by altering the refraction of the lens material [132].

Independent of contact lens development, optically clear films were derived from
copolymers of styrene, ethylene glycol dimethacrylate (EGDMA), and siloxane-urethane-
methacrylate (SiUMA). The SiUMA monomer was synthesized from carbinol-terminated
siloxane macromers reacted with isocyanatoethylmethacrylate [133].

2.2.2. Controlled Atmospheric Packaging—Modified Atmosphere Packaging

An appreciation of the role that gases play in maintaining the freshness of meats,
fruits, and vegetables during transport has created a role for polymer films with controlled
permeability. Optimal oxygen concentration is associated with the appearance of “red”
meat and “green” vegetables. In the case of meat, deoxymyoglobin, which is purple, forms
when metabolic, diffusion, and other processes deplete oxygen availability. Over time,
however, oxymyoglobin is oxidized to amber-brown methemoglobin, which is associated
with a lack of freshness [134]. Ethylene is associated with fruit ripening and abscission. Gas
permeable films derived from acrylate terpolymers act as overlayers to porous structures,
maintaining the oxygen transmission of these structures while providing a barrier to micro-
bial infiltration. Unlike in the case of contact lenses, transparency is usually not required for
packaging applications. The use of higher molecular weight monomethacrylate macromers
in packaging is therefore acceptable, and has been reported [135]. Breathable films based
on this technology have become components in commercial packaging applications offered
by BreatheWay, as shown in Figure 5.
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2.3. Membranes

The utilization of polydimethylsiloxanes and silicon-rich homopolymers such as
poly(trimethylsilylpropyne) [136] and poly(vinyltrimethylsilane) [137] for gas separation
membranes has been established. The removal of volatile organic compounds from aque-
ous mixtures has been more effectively addressed by hybrid polymer systems in which
there is formation of siloxane microphases in continuous organic phases. Reports on
graft polymer and interpenetrating polymer networks were able to demonstrate selective
pervaporation and removal of organics from aqueous streams [138,139]. The control of
selectivity and permeation rates has been accomplished with copolymers derived from
methacrylate functional macromers copolymerized with a variety of other methacrylate
monomers. Uragami demonstrated that macromers with molecular weights of ~4000
Daltons formed copolymers with methyl methacrylate which, depending on comonomer
content, allowed selective permeation of water or ethanol from ethanol–water solutions by
varying comonomer contents [140]. In a series of reports, Urgami extended these systems
to styrene copolymers and the incorporation of ionic liquids, enabling the selective perva-
poration of volatile organics, including toluene and chlorinated organics, from aqueous
streams [141–143].

2.4. Surface Properties/Modification
2.4.1. Dyes, Micelles and Particles for Advanced Printing, Reprographics, and Lithography

Methacrylate functional macromers have been used in both organic dye [89] and
pigment-based printing applications [98,99,144]. While these technologies are quite differ-
ent, the role of the silicone macromer has common features in each. In ink-jet applications,
a bulk solvent-based polymerization with dye is accomplished, after which micelles are
formed via the addition of water and simultaneous evaporation of solvent. In pigment-
based applications, the polymer forms an encapsulant or binder. In both cases, the silicone
macromer appears to serve as a hydrophobic outer surface of the micelle or pigment,
thereby helping to control particle charging and, secondarily, contributing to the spread and
adhesion of the micelles or particles on the substrate. Polymersomes with controlled archi-
tecture in both their overall dimensions and membrane thickness have been prepared from
diblock polymers of cabinol-termined siloxane macromers and methyloxazolidine [82].

Interestingly, while the ability of styrene-PDMS deblock polymers generated via living
AROP to form micelles was recognized during early development efforts [145], no recent
commercial applications have been reported.
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Colored fluids for electrowetting and electrofluidic applications have also been generated
from highly polar dyes by reaction with aminopropyl-terminated siloxane macromers [80]. For
example, the yellow dye 2-(4-carboxyphenylazo)acetoacetanalide reacted with a 1000 Mn
amino-terminated macromer to form the product 4-(E)-(2,4-dioxopentan-3-yl)diazenyl-
N-polydimethylsiloxane-benzamide, which was soluble in non-polar fluids including
silicones. Radiation-curable films for adhesive and lithographic applications, in which
aminopropyl-terminated siloxane macromers are acrylated, were reported by Leir [146].
Carbinol-terminated siloxane macromers were converted to phosphate-terminated macromers
by Tao and then reacted with the surfaces of CdSe quantum dots before incorporation into
bulk silicones to form electroluminescent transparent films, as shown in Figure 6 [85].
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2.4.2. Coatings Additives—Leveling Agents, Clean Surfaces and Release

Siloxane macromer block polymers are offered commercially as leveling agents to
reduce waviness and orange peel in organic coatings. The effect occurs at low concen-
trations and is based on activity at the liquid–gas interface, in which these polymers are
oriented due to limited incompatibility with the actual binder component of the coating sys-
tem [147,148]. Their versatile chemistry and modular molecular structure make it possible
to adjust the properties of these macromers for specific applications. For example, further
improvements in levelling have been reported when a fluorinated oxetane is reacted with
unsaturated termination in macromers [149].

High silicone content macromers can impart anti-graffiti properties to coated surfaces,
though this often requires concentrations higher than those used in levelling applications.
Macromers with a lower silicone content can reduce surface tension and improve substrate
wetting without impairing recoatability. In the case of automotive coatings, other benefits
include retaining the bonding characteristics of films and adhesives, while anti-blocking
properties can also be achieved in decorative coatings [150,151].

One of the earliest applications of styryl and methacrylate functional macromers
was for controlling release in adhesive tapes [54]. The investigators showed a correlation
between molecular weight and release characteristics—e.g., in butyl methacrylate, acrylic
acid, and macromer terpolymers—with macromers of low molecular weight proving
ineffective but macromers with molecular weights ≥2000 providing control. The same
general chemistry has been utilized more recently in dirt resistant coatings [93]. Release
coatings, including ice-phobic coatings, have been generated from carbinol-terminated
siloxane macromers by reaction with isocyanate and epoxy functional prepolymers to
form amphiphilic, self-stratified thin films [152]. A reduction of marine biofouling was
observed when aminopropyl-terminated macromers were incorporated into isophorone
diiosocyanate-derived urethanes, with low molecular weight macromers (1000 Daltons) pro-
viding more favorable results than high molecular weight macromers [81]. Methacrylate-
terminated siloxane macromers with embedded hydrophilicity have also been used in this
application [108]. Ultraphobic coatings—i.e., coatings exhibiting both superhydrophobic
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and oleophobic behavior—in which combinations of epoxy functional siloxane telechelics
and macromers are reacted with linear and/or branched polyethylenimine (PEI), have
been reported by Soane and Ready [94,107]. Hydride-terminated macromers have been
used to modify vinyl POSS structures in slippage coatings for ice-phobic applications [91]

2.5. Coatings
2.5.1. Thin Film Silicone Coatings

The inclusion of silicone macromers into the formal polymeric structures of coatings,
as distinguished from their use as additives, is a growing area of technology. These appli-
cations tend to be associated with release, lubricity, and mechanical properties related to
direct physical interactions with humans. Indeed, the sensory appeal of coatings has always
been an important driver of consumer applications in which positive tactile interaction is
critical to acceptance [87], such as synthetic leather, textile finishes, and hair care.

Older approaches to urethane materials mainly use polydisperse telechelic carbinol-
terminated siloxane polymers, in which the two identical functionalities on the termini serve
to introduce siloxanes into urethanes as soft-blocks. AROP-derived siloxane macromers
(oligomeric materials with functionality on one terminus) represent a newer approach in
which the functionality on one terminus of the oligomer allows the formation of a brush
polymer with siloxane segments as pendant, allowing the mechanical properties of the
urethane backbone to be maintained (Scheme 9) [87]. These structures also demonstrate sig-
nificantly greater wear resistance as well as lower friction and release properties compared
to telechelic controls [153], in which siloxane is incorporated into the urethane backbone
as shown in Scheme 10. Table 8 compares tribological and contact angle properties of
urethane in which siloxane has been introduced as an unreacted fluid, a soft segment, and
a pendant, respectively.
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Table 8. Comparing Contact Angle, Abrasion, and Friction in an IPDI-based Urethane.

Control A B C

Description Blend Block Polymer Pendant/Side-Chain

Silicone Component Silicone Fluid Telechelic Carbinol Dicarbinol Terminated
Asymmetric Macromer

Abrasion Test
Failure, cycles <100 <100 <100 4200

Coefficient of Friction 0.61 0.12 0.74 0.16

Contact Angle, water
before abrasion 56◦ 83◦ 72◦ 82◦

Contact Angle, water
after abrasion 55◦ 55◦ 72◦ 80◦

Control (no siloxane); (A) introduction of 50 cSt dimethylsiloxane fluid as a non-reactive additive; (B) telechelic siloxane MW 5000
(DMS-C21) added to form a soft-block copolymer; (C) macromer MW 5000 (MCR-C62) forming a brush polymer with siloxane pendant.

2.5.2. Thick Film Silicone Coatings

Depending on their formulation, silicone coatings elicit a wide range of tactile re-
sponses. Coatings that contain low molecular weight, particularly volatile species are
associated with a “silky” feel and exhibit slip. On the other hand, silicone coatings that
have been depleted of low molecular weight species are associated with a “tacky” feel.
Common to both these experiences is the extreme hydrophobicity of the polymer. When
silicone coatings are free of low molecular-weight species, they exhibit high coefficients
of friction and, due to their relatively poor mechanical properties, failure by abrasive
and adhesive spalling during continuous tactile interaction. Well-defined silicones with a
central vinyl functionality and discrete PEG2 (MCS-VX15), PEG3 (MCS-VX16—Scheme
11), or tetrahydrofurfuryl (MCS-VF14—Scheme 12) pendant end-groups can be used as
comonomers in addition-cure, platinum-catalyzed 2-part silicone elastomer formulations
in order to introduce hydrophilicity [61]. In such formulations, the surface tribological
properties are modified by introducing a hydrodynamic lubricating layer of adsorbed water.
The modified silicone elastomers retain optical clarity and mechanical performance charac-
teristic of this class of material with up to 15 wt.% comonomer in the 2-part formulation.
Contact angle measurements of deionized water on the silicone elastomer surface showed
improved wettability with comonomer content: at ~3 wt.% comonomer, the elastomer sur-
face shifts from hydrophobic (contact angle ~120◦C) to hydrophilic (contact angle < 90◦C).
Coefficient of friction measurements for the modified silicone elastomers demonstrate
increased surface lubricity with comonomer loadings (Figure 7) [112].

Molecules 2021, 26, x 28 of 43 
 

 

Table 8. Comparing Contact Angle, Abrasion, and Friction in an IPDI-based Urethane. 

 Control A B C 
Description  Blend Block Polymer Pendant/Side-Chain 

Silicone Component  Silicone Fluid Telechelic Carbinol 
Dicarbinol Terminated  
Asymmetric Macromer 

Abrasion Test Failure, cycles <100 <100 <100 4200 
Coefficient of Friction 0.61 0.12 0.74 0.16 

Contact Angle, water before 
abrasion 

56° 83° 72° 82° 

Contact Angle, water after  
abrasion 

55° 55° 72° 80° 

Control (no siloxane); (A) introduction of 50 cSt dimethylsiloxane fluid as a non-reactive additive; (B) telechelic siloxane 
MW 5000 (DMS-C21) added to form a soft-block copolymer; (C) macromer MW 5000 (MCR-C62) forming a brush polymer 
with siloxane pendant. 

2.5.2. Thick Film Silicone Coatings 
Depending on their formulation, silicone coatings elicit a wide range of tactile 

responses. Coatings that contain low molecular weight, particularly volatile species are 
associated with a “silky” feel and exhibit slip. On the other hand, silicone coatings that 
have been depleted of low molecular weight species are associated with a “tacky” feel. 
Common to both these experiences is the extreme hydrophobicity of the polymer. When 
silicone coatings are free of low molecular-weight species, they exhibit high coefficients 
of friction and, due to their relatively poor mechanical properties, failure by abrasive and 
adhesive spalling during continuous tactile interaction. Well-defined silicones with a 
central vinyl functionality and discrete PEG2 (MCS-VX15), PEG3 (MCS-VX16—Scheme 
11), or tetrahydrofurfuryl (MCS-VF14—Scheme 12) pendant end-groups can be used as 
comonomers in addition-cure, platinum-catalyzed 2-part silicone elastomer formulations 
in order to introduce hydrophilicity [61]. In such formulations, the surface tribological 
properties are modified by introducing a hydrodynamic lubricating layer of adsorbed 
water. The modified silicone elastomers retain optical clarity and mechanical performance 
characteristic of this class of material with up to 15 wt.% comonomer in the 2-part 
formulation. Contact angle measurements of deionized water on the silicone elastomer 
surface showed improved wettability with comonomer content: at ~3 wt.% comonomer, 
the elastomer surface shifts from hydrophobic (contact angle ~120°C) to hydrophilic 
(contact angle < 90°C). Coefficient of friction measurements for the modified silicone 
elastomers demonstrate increased surface lubricity with comonomer loadings (Figure 7) 
[112]. 

 
Scheme 11. Vinyl functional Siloxane with PEG Endgroups-Reactive in Two-component Pt-Cure Silicone RTVs Scheme 11. Vinyl functional Siloxane with PEG Endgroups-Reactive in Two-component Pt-Cure Silicone RTVs.



Molecules 2021, 26, 2755 29 of 44Molecules 2021, 26, x 29 of 43 
 

 

 
Scheme 12. Vinyl functional Siloxane with Tetrahydrofurfuryloxy Endgroups-Reactive in Two-component Pt-Cure 

Silicone RTVs 

 
 

(a) (b) 

Figure 7. Modification of silicone elastomers with symmetric silicone macromers. (a) Effect of comonomer on contact angle 
and hydrophobicity of silicone elastomer; (b) coefficient of friction of silicone elastomers modified with symmetric silicone 
macromers (Determined on AR-G2 Rheometer: aqueous, 37 °C, normal force 1N, velocity 1.0 rad/s (1.5 mm/s) and 1.0 rad/s 
(15 mm/s).) 

Separately, in the field of dielectric elastomer actuators, monovinyl-terminated 
PDMS macromers have been used to selectively adjust the network behavior of silicone 
films between compliant electrodes [111]. 

2.6. Cosmetics and Hair Care 
Hair-care formulations, including shampoos and conditioners with the ability to 

withstand multiple washings, require good film-forming properties with strong adhesion 
to the hair cuticle, but must simultaneously offer lubricity in order to provide combability. 
Copolymers of dimethylaminoethylmethacrylate and low molecular weight methacrylate 
functional silicone macromers (MW 2000) [89,90] have been used directly or in 
combination with other polymers [154] to provide increased lubricity and combability of 
hair. Dispersions of macromer-derived terpolymer particles have been reported in 
hydrocarbon vehicles such as isododecane, yielding film-forming compositions that are 
useful in eyeliners and mascaras [97]. Hydride-terminated macromers have been reacted 
with unsaturated terpenes and cannabidiol (CBD) (Scheme 13 to form emollient 
compounds with solubility in the siloxane vehicles preferred for skin care [155,156]. 

Scheme 12. Vinyl functional Siloxane with Tetrahydrofurfuryloxy Endgroups-Reactive in Two-component Pt-Cure Silicone
RTVs.

Molecules 2021, 26, x 29 of 43 
 

 

 
Scheme 12. Vinyl functional Siloxane with Tetrahydrofurfuryloxy Endgroups-Reactive in Two-component Pt-Cure 

Silicone RTVs 

 
 

(a) (b) 

Figure 7. Modification of silicone elastomers with symmetric silicone macromers. (a) Effect of comonomer on contact angle 
and hydrophobicity of silicone elastomer; (b) coefficient of friction of silicone elastomers modified with symmetric silicone 
macromers (Determined on AR-G2 Rheometer: aqueous, 37 °C, normal force 1N, velocity 1.0 rad/s (1.5 mm/s) and 1.0 rad/s 
(15 mm/s).) 

Separately, in the field of dielectric elastomer actuators, monovinyl-terminated 
PDMS macromers have been used to selectively adjust the network behavior of silicone 
films between compliant electrodes [111]. 

2.6. Cosmetics and Hair Care 
Hair-care formulations, including shampoos and conditioners with the ability to 

withstand multiple washings, require good film-forming properties with strong adhesion 
to the hair cuticle, but must simultaneously offer lubricity in order to provide combability. 
Copolymers of dimethylaminoethylmethacrylate and low molecular weight methacrylate 
functional silicone macromers (MW 2000) [89,90] have been used directly or in 
combination with other polymers [154] to provide increased lubricity and combability of 
hair. Dispersions of macromer-derived terpolymer particles have been reported in 
hydrocarbon vehicles such as isododecane, yielding film-forming compositions that are 
useful in eyeliners and mascaras [97]. Hydride-terminated macromers have been reacted 
with unsaturated terpenes and cannabidiol (CBD) (Scheme 13 to form emollient 
compounds with solubility in the siloxane vehicles preferred for skin care [155,156]. 

Figure 7. Modification of silicone elastomers with symmetric silicone macromers. (a) Effect of comonomer on contact
angle and hydrophobicity of silicone elastomer; (b) coefficient of friction of silicone elastomers modified with symmetric
silicone macromers (Determined on AR-G2 Rheometer: aqueous, 37 ◦C, normal force 1N, velocity 1.0 rad/s (1.5 mm/s) and
1.0 rad/s (15 mm/s).)

Separately, in the field of dielectric elastomer actuators, monovinyl-terminated PDMS
macromers have been used to selectively adjust the network behavior of silicone films
between compliant electrodes [111].

2.6. Cosmetics and Hair Care

Hair-care formulations, including shampoos and conditioners with the ability to with-
stand multiple washings, require good film-forming properties with strong adhesion to
the hair cuticle, but must simultaneously offer lubricity in order to provide combability.
Copolymers of dimethylaminoethylmethacrylate and low molecular weight methacrylate
functional silicone macromers (MW 2000) [89,90] have been used directly or in combi-
nation with other polymers [154] to provide increased lubricity and combability of hair.
Dispersions of macromer-derived terpolymer particles have been reported in hydrocarbon
vehicles such as isododecane, yielding film-forming compositions that are useful in eyelin-
ers and mascaras [97]. Hydride-terminated macromers have been reacted with unsaturated
terpenes and cannabidiol (CBD) (Scheme 13 to form emollient compounds with solubility
in the siloxane vehicles preferred for skin care [155,156].
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2.7. Magneto-Rheological Fluids

Well-defined biocompatible magnetic nanoparticles are of interest as materials for
biomedical applications including magnetic field-directed drug delivery, biomolecule
separations, and assay devices. Superparamagnetic iron oxide (Fe3O4) nanoparticles
(SPION) sterically stabilized with PDMS macromers synthesized by Living AROP produced
homogeneous hydrophobic ferrofluids that are stable against precipitation [157,158]. PDMS
macromers with a tricarboxylate endgroup capable of binding to the surface of magnetite
nanoparticles were synthesized by first making a trivinyl-terminated PDMS via Living
AROP, followed by a thiol-ene reaction between the vinyl silane groups and mercaptoacetic
acid, as depicted in Figure 8 [159,160]. Molecular effects of the PDMS tail on the stability
of the PDMS-magnetite complexes were studied. Magnetic separation methods were
developed to narrow the particle size distribution of the magnetite nanoparticles using
tricarboxylate PDMS stabilizer while controlling the PDMS surface concentration [161].
In other studies, a monocarboxydecyl-terminated PDMS macromer (MCR-B12) was used
to stabilize magnetite nanoparticles; however, the resulting ferrofluids had issues with
stability and sedimentation, likely due to the lower number of carboxylate binding groups
per macromer chain [88]. The magnetophoretic mobility of the magnetite-PDMS fluids was
then studied in different magnetic field conditions (magnetic fields and field gradients),
with the results demonstrating that the shape and speed of these droplets in viscous media
can be independently manipulated [160,162].
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These magnetite-polydimethylsiloxane ferrofluids were proposed by Wilson as a
material that could aid in the treatment of retinal detachment disorder [159]. The proposed
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treatment entailed inserting a pre-aligned magnet into the conjunctiva and then injecting
the PDMS-based ferrofluid into the vitreous humor. As shown below in Figure 9, the
ferrofluid would close the tear as it moved toward the permanent magnetite, allowing the
surgeon to repair the tear.
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2.8. Bulk Macroscale Materials

Ultra-High Elongation Elastomer
An ultra-high elongation silicone elastomer has been prepared from a heterobifunc-

tional silicone macromer compounded with reinforcing agent, achieving elongations near-
ing 5000%, nearly four times greater than conventional silicone elastomers. The cure
mechanism of this elastomer is a step-growth polymerization of an α-vinyl-ω-hydride-
terminated silicone macromer [62,113,114] via intermolecular hydrosilylation reaction,
which yields a linear polymer of exceptionally high molecular weight with no apparent
covalent crosslinking (Scheme 14) [73,113].
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Scheme 14. Step-Growth Polymerization of Heterobifunctional α-Vinyl-ω-Hydride-terminated Silicone Macromer.

Atomistic modeling (Figure 10) of the cured silicone macromer shows the probability
of knotting within a 50,000 Da segment [115], which correlates to an experimental value
of critical molecular weight (Mc) for entanglement of ~42,000 Da [163]. The stress-strain
curve is remarkably different from those of crosslinked silicone elastomers, as shown in
Figure 11.
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2.9. Nanoscale Morphology
2.9.1. Photoresist and Contact Printing

Templated self-assembly of a cylinder-forming poly(styrene-b-dimethylsiloxane)
(PS−PDMS) diblock copolymer was first described by Saam and Fearon [51]—followed by
others [164–167]—and has been investigated for nanolithography applications [44,145,168,
169]. The general structure is depicted in Scheme 15. The general structure (PS−PDMS)
diblock copolymer is depicted in structure 11. These copolymers undergo microphase
segregation above their Tg, and the large X-polymer-solvent interaction parameter of the
blocks is advantageous for achieving long-range ordering as well as for minimizing defect
densities. Furthermore, the high Si content in PDMS leads to a robust oxide etch mask after
two-step reactive ion etching (RIE) [170], as exemplified in Figure 13.

To address the critical needs of nano-dimensional photoresists, materials that possess
dual surface properties are required. When cast or hot-pressed on a high-surface-energy
substrate such as silicon, glass, or aluminum, the copolymer film forms both a lower-
surface-energy component (PDMS)-enriched air/polymer interface and a higher-surface-
energy component (organic block)-dominated polymer/substrate interface [171–173].
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Silylated styrene block polymers that employ conventional radical polymerization
rather than AROP have been proposed [174,175], and azidopropyl functional silicone
macromers have been separately “clicked” with alkynyl-terminated ATRP-generated
macromers to form PDMS-b-PMMA, producing sub-10 nm structures [174,176]. A second
potential solution is star block polymers generated by AROP, which provide a mecha-
nism through which the non-siloxane block can dominate interfacial behavior [52]. The
reviewers note that similar morphologies have also been reported for polybutadiene-
polydiethylsiloxane block copolymers (PBD-b-PDES) [19]; these copolymers possess less dif-
ferentiation in surface energy, potentially mitigating issues with the styrenic and methacry-
late systems, but have not been evaluated in lithographic systems. Similarly noteworthy
in this context, while the synthesis of diblock polymers typically starts with an organic
macroanion and then proceeds to a siloxane polymerization, the potential of the reverse
process, in which a siloxane macromer starts and proceeds to an acrylate polymerization,
was demonstrated using ATRP [177]. Other organic block copolymer polymerization
examples initiated by carbinol-terminated macromers include caprolactone and trimethy-
lene carbonate blocks [83,178]. This approach clearly expands the options for generating
polymers with varying self-assembly structures.

The use of polystyrene macroanions was further elaborated by Bellas to form triblock
and microarm polymers [44], and by Shefelbine to form continuous core–shell gyroid
morphologies [179]. This work led to the observation of periodic double gyroid (DG)
behavior, as well as a series of publications displaying an appreciation of the potential for
extended novel 3D structures (Figure 14) [180–182]. As suggested by the DG topological
visualizations of Thomas [183], potential structural, dielectric, charge transport, and mass
transport material behavior can be controlled by the direct use of DG block polymers
structures or by the removal, conversion, and/or infiltration of a DG microphase.
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2.9.2. Biomimetic Polymers and Bottle-Brush (BB) Architecture

Recently, grafting-through polymerization and surface-initiated polymerization have
led to bottle-brush polymers and particle-brush materials that have shown potential in the
fabrication of biomimetic materials. These materials can be broadly considered filamentous
structures that exhibit non-linear behavior under deformation, greater relaxation times,
and the potential for complex non-covalent interactions leading to the formation of super-
molecular structures. Siloxane macromers appear to be of particular interest in creating
these structures due to both the palette of functionality and the intrinsic flexibility of
the siloxane structures, which allows the length-scale of the filaments to extend beyond
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the primary polymer backbone or nano-feature without imposing a “hard” structural
domain. Siloxane macromers allow entry to classes of materials that possess an unusually
low modulus while maintaining mechanical failure properties consistent with the main
polymer backbone for both methacrylate [96] and norbornene [84] functional siloxane
macromers.

Separately, this recognition revealed such macromers’ potential for generating biomimetic
gel structures [95]. The complexity of the potential range and behavioral characteristics
associated with bottle-brush polymers in terms of macromer molecular weight, graft
density, and final molecular weight is readily apparent. Their tunable physical properties in
both crosslinked and uncrosslinked states—based on the Dp of the main chain and grafting
density of methacryloxypropyl-terminated polydimethysiloxane (Dp = 10) prepared by
Grafting Through Atom Transfer Radical Polymerization—have been investigated in this
context [103]. The dynamics of deformation have also been modeled [104,109,110]. A
striking extension of this approach can be found in the “chameleon-like” color changes
demonstrated in these systems—in which vibrant color, extreme softness, and intense strain
stiffening on par with that of skin tissue have been observed as a consequence of placing a
heterogeneous polymeric system under varying degrees of strain (Figure 15) [106].
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2.9.3. Liquid Crystal Siloxanes

Most polymers that exhibit liquid crystalline behavior have anisotropic side groups.
Polydiethylsiloxane, which is distinct from both lost LCPs and its simpler homolog, poly-
dimethylsiloxane, demonstrates mesophasic liquid crystalline behavior at ambient temper-
atures, as first reported by Beatty [184]. This behavior extends to poly(di-n-alkylsiloxane)s
with side chains no longer than seven carbons that are also able to form a columnar
mesophase. Such polymers are positionally and orientationally ordered in a two-dimensional
hexagonal lattice, but without positional order along the chain. While early work was
conducted with polymers of high polydispersity (>2.0), the desire to optimize liquid crys-
tal behavior by controlling the PDI has led to the use of living AROP conditions for the
polymerization of polydiethylsiloxane (PDES)—as first reported by Molenberg, who uti-
lized lithium sec-butyldiethylsilanolate as the initiator [41,43]. The phase behavior of
diethylsiloxane is shown in Figure 16.
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There are few reports of living AROP with higher dialkylsiloxanes, presumably be-
cause of either ineffective termination or these systems’ sluggish kinetics.

Molenberg also reported on elastomeric block polymers of butadiene and diethyl-
siloxane that exhibited mesophase formation under tensile stress [19]. Later work with
styrene-diethylsiloxane diblock polymers showed periodic nanoscale lamellar structures
with compositions possessing greater than 20% styrene content, as shown in Figure 17 [42].
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The vast majority of liquid crystal polysiloxanes based on side chain substitution that
have recently been reviewed are polydisperse in nature [185]. Hepenius, however, utilized
AROP to form vinylmethylsiloxane copolymers from vinylpentamethylcyclotrisiloxane
and then functionalized the positions with mesogenic groups: for example, by reacting
4-cyano-4′-(ω-alkenoxy)biphenyl with an excess of tetramethyldisiloxane and then reacting
with the remaining Si-H group (Scheme 16) [46].
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3. Conclusions

The accelerating interest in living AROP-derived siloxanes has been spurred by the
increasing drive to provide soft matter structures associated with tactile interaction and
biocompatibility, particularly in the areas of contact lenses and biomimetic structures,
and by these materials’ ability enable control of nano-dimensional physical properties
associated with “smart” particles and morphologies associated with self-assembly. Silicone
macromers have had great impact in practical applications, primarily due to their ability to
cross-over from the paradigm of inorganic siloxane chemistry to the greater paradigm of
organic polymerization. Further, the elaboration of simple macromers into heterobifunc-
tional monomers has created opportunities for polymers with new bulk phase properties,
including ultra-high elongation and self-healing materials.
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