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Abstract: This review article provides a perspective on the synthesis of alicyclic and heterocyclic
ring-fused benzimidazoles, imidazo[4,5-f ]benzimidazoles, and imidazo[5,4-f ]benzimidazoles. These
heterocycles have a plethora of biological activities with the iminoquinone and quinone derivatives
displaying potent bioreductive antitumor activity. Synthesis is categorized according to the cycliza-
tion reaction and mechanisms are detailed. Nitrobenzene reduction, cyclization of aryl amidines,
lactams and isothiocyanates are described. Protocols include condensation, cross-dehydrogenative
coupling with transition metal catalysis, annulation onto benzimidazole, often using CuI-catalysis,
and radical cyclization with homolytic aromatic substitution. Many oxidative transformations are
under metal-free conditions, including using thermal, photochemical, and electrochemical methods.
Syntheses of diazole analogues of mitomycin C derivatives are described. Traditional oxidations of
o-(cycloamino)anilines using peroxides in acid via the t-amino effect remain popular.

Keywords: green chemistry; halogen; heterocycle; hydrogen peroxide; imidazole; iodine; nitrosoben-
zene; oxone; palladium; quinone

1. Introduction
1.1. Significance and Biological Activity

Benzimidazole is an important heterocyclic pharmacophore. Therapeutic interest was
aroused in the 1950s, when 5,6-dimethylbenzimidazole was discovered as a degradation
product of vitamin-B12 (Figure 1) [1,2]. Benzimidazoles possess a wide range of biolog-
ical activities [3–6], significantly utilized as APIs in medicines [5], and as pesticides [6].
Moreover among the ring-fused benzimidazoles, pyrimido[1,2-a]benzimidazoles were
discovered as effective corticotropin releasing factor-1 (CRF-1) receptor antagonists for
potential treatment of mental health disorders [7]. A pyrrolo[1,2-a]benzimidazole was
found to be the most effective cyclin-dependent kinase 4/6 (CDK4/6) inhibitor evalu-
ated within a series of highly functionalized five to seven-membered alicyclic ring-fused
benzimidazoles [8]. Other ring-fused benzimidazoles, the imidazobenzodiazepines were
investigated as poly(ADP-ribose) polymerase (PARP-1) inhibitors, allowing reduction of
hyperglycemia with neuroprotective effects in animal models [9].

The most widely studied of the applications of ring-fused benzimidazoles and imi-
dazobenzimidazoles is as bioreductive antitumor agents, when the fused benzene part is
an iminoquinone or quinone functionality (Figures 2–5). Indole-based natural products
often inspire analogue synthesis, including imidazoquinoxalinone analogues of the marine
natural product, wakayin [10], a topoisomerase I inhibitor (Figure 2).
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Figure 1. Benzimidazole in vitamin B12 and biologically-active ring-fused systems [1–9]. 

 
Figure 2. Imidazole-based wakayin analogues [10]. 

Mitomycin C (MMC) has, however, attracted most interest, as the archetypal biore-
ductive antitumor antibiotic, which cross-links to DNA [11]. Incorporation of the DNA-
alkylating aziridinyl moiety leads to cytotoxicity via the FANC DNA-repair pathway 
[12,13], and the benzimidazole analogue of the bioactivated form of MMC (aziridinomi-
tosene) was prepared and evaluated against breast cancer cell lines [14] (Figure 3). Skibo 
has published extensively on aziridinylpyrrolo[1,2-a]benzimidazolequinones (PBIs) as 
DNA cleaving agents with analogues showing melanoma-specific cytotoxicity [15–18]. 
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One or two-electron reductases are responsible for bioreductive activation. NADPH-
cytochrome c (P450) reductase is predominant under hypoxic conditions with the one-
electron reduction reversed by oxygen [19]. Many solid tumors also over-express the ob-
ligatory two-electron reductase NAD(P)H:quinone oxidoreductase 1 (NQO1, also known 
as DT-diaphorase), which is a popular target for anti-cancer studies [20]. Many anti-cancer 
agents do not contain conventional DNA damaging functionality, and cytotoxicity may 
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Figure 2. Imidazole-based wakayin analogues [10].

Mitomycin C (MMC) has, however, attracted most interest, as the archetypal biore-
ductive antitumor antibiotic, which cross-links to DNA [11]. Incorporation of the DNA-
alkylating aziridinyl moiety leads to cytotoxicity via the FANC DNA-repair pathway [12,13],
and the benzimidazole analogue of the bioactivated form of MMC (aziridinomitosene) was
prepared and evaluated against breast cancer cell lines [14] (Figure 3). Skibo has published
extensively on aziridinylpyrrolo[1,2-a]benzimidazolequinones (PBIs) as DNA cleaving
agents with analogues showing melanoma-specific cytotoxicity [15–18].
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One or two-electron reductases are responsible for bioreductive activation. NADPH-
cytochrome c (P450) reductase is predominant under hypoxic conditions with the one-
electron reduction reversed by oxygen [19]. Many solid tumors also over-express the
obligatory two-electron reductase NAD(P)H:quinone oxidoreductase 1 (NQO1, also known
as DT-diaphorase), which is a popular target for anti-cancer studies [20]. Many anti-cancer
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agents do not contain conventional DNA damaging functionality, and cytotoxicity may
be due to the formation of reactive oxygen species. Pyrido[1,2-a]benzimidazolequinone 1
(Figure 4) is more than 300 times more cytotoxic under hypoxic conditions than the clinical
drug, MMC (Figure 3), with cytotoxicity for alicyclic ring-fused benzimidazoles correlated
to reductive potentials [21,22]. Highly conjugated naphthyl fused benzimidazolequinone 2
leads to increased stability of reduced intermediates leading to specificity towards human
cancer cell lines over-expressing NQO1 [23].
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Ring-fused imidazo[4,5-f ]benzimidazolequinones 3a and 3b are NQO1 substrates [24,25],
with 3a, at the National Cancer Institute (NCI), showing specificity towards the killing of
melanoma cell lines (Figure 5) [24]. Our group was the first to provide viable synthetic
protocols for accessing ring-fused imidazo[5,4-f ]benzimidazoles, enabling evaluation of
quinone and iminoquinone derivatives for toxicity against cancer cell lines [26–29]. Com-
pared to alicyclic ring-fused analogues 4a and 4b, the oxygen atom of the 1,4-oxazino ring
was found to increase toxicity of 4c [27]. Iminoquinone 5a isolated from the Fremy oxida-
tion to prepare 4b, was unexpectedly the most potent imidazobenzimidazole, with more
than 12 times greater cytotoxicity towards a prostate cancer cell line (DU145) than a normal
fibroblast cell line (GM00637) [26]. More intensive cytotoxicity assays, computational
docking, and NCI COMPARE analysis on 5a, revealed good correlation with NQO1 [28].
In contrast, isomeric imidazo[4,5-f ]benzimidazole 5b was inactive against the NCI 60 cell
line panel [29].
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1.2. Available Synthetic Methods

The categories of syntheses of ring-fused benzimidazoles 6 are according to the cy-
clization reaction (Scheme 1). Oxidative cyclizations from aniline or anilide derivatives is
the most studied route (Route A) and is presented in context with the plethora of other
syntheses that build the benzimidazole moiety (Routes B–D). The section on Route A is
sub-divided into syntheses of benzimidazole and imidazobenzimidazole scaffolds. Lastly,
there is a section on syntheses, which begin with the benzimidazole moiety (Route E),
sub-divided according to reaction (type) conditions. This is not an exhaustive review, and
the reader should consult reviews on polycyclic benzimidazoles for comprehensive lists of
syntheses [30–33]. Since the late 1990s, Aldabbagh et al. have worked on the discovery of
new ring-fused benzimidazoles and synthetic methods, and the collated articles related
to their research are reviewed herein. A reviewer recommended a Scifindern search of
“benzimidazole-fused”, which was completed, and significant references are incorporated.
For brevity, full papers are cited and not the preceding communication article. A historical
perceptive is taken and analysis of the most significant contributions to the field is carried



Molecules 2021, 26, 2684 4 of 29

out. In particular, methodology that forms a variety of ring-fused benzimidazoles is of
interest, rather than procedures that give mainly the benzimidazole core.
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2. Syntheses of Ring-Fused Benzimidazoles and Imidazobenzimidazoles
2.1. Oxidations of o-Cycloaminoanilines and Anilide Derivatives (Route A)

There are distinct differences in the reaction mechanisms and conditions for ring-fused
benzimidazole and imidazobenzimidazole formation warranting sub-division. Benzim-
idazoles form by oxidative cyclization of anilines via nitrosobenzene intermediates; in
contrast, cyclization to give the ring-fused imidazobenzimidazole must begin from anilides
and proceed via amine N-oxide intermediates under acidic conditions.

2.1.1. Forming Ring-Fused Benzimidazoles

In 1908, Spiegel and Kaufmann reported that Caro’s acid (peroxymonosulfuric acid,
H2SO5) oxidized 5-nitro-2-(piperidin-1-yl)aniline to 7-nitro-1,2,3,4-tetrahydropyrido[1,2-
a]benzimidazole [34]. In the absence of the nitro-substituent, no oxidative cyclization
occurred. Caro’s acid was already known to oxidize anilines to nitrosobenzenes [35], so
supporting the idea of a nitroso intermediate. The prominent 20th century chemist and
creator of Adam’s catalyst, Roger Adams with Nair refined this methodology, and accessed
a range of five to seven-membered ring-fused benzimidazoles in good to high yields us-
ing peroxytrifluoroacetic acid generated in situ from H2O2 and trifluoroacetic acid (TFA)
(Scheme 2) [36]. Six-membered cyclization yields were higher, when the anilines contained
a nitro-substituent. Meth-Cohn and Suschitzky [37] soon refuted the observation made
by Nair and Adams that acyl derivatives do not undergo cyclization to give benzimida-
zoles. These workers showed a range of anilide derivatives (formyl, acetyl and benzoyl)
underwent oxidative cyclizations using peroxytrifluoroacetic acid or performic acid (H2O2
and HCO2H). Meth-Cohn preferred the use of o-cyclic amine substituted anilides as sub-
strates for making ring-fused benzimidazoles [37,38]. Meth-Cohn commented that Nair
and Adams [36] had possibly formed the anilide in situ, due to the initial addition of TFA
followed by H2O2 [38]. Mechanisms were proposed for benzimidazole formation from
anilide, via an amine-N-oxide rather than the nitroso intermediate (see Section 2.1.2). Later
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the use of anilide derivatives as substrates for preparation of ring-fused benzimidazoles
would become commonplace (Scheme 3) [13,15,27,37–40].
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[42]. In a more recent study, recyclable ethyl acetate (EtOAc) replaced formic acid, with 
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Significant amounts of seven- and eight-membered ring-fused [1,2-a]benzimidazoles
9a and 9b were formed from nitrobenzenes 7a and 7b during the one-pot catalytic hy-
drogenation and acetylation to give acetamides 8a and 8b (Scheme 3a) [39]. It seemed
that the conformation of these large alicyclic rings favored advantageous cyclization of
nitroso intermediates formed during the hydrogenation process. Acetamides 8a and 8b
were cyclized using performic acid to 9a and 9b in good yields, with the former trans-
formed to 3-aziridinylazepino[1,2-a]benzimidazolequinone [13,39]. A readily available
and safer alternative to Caro’s acid is Oxone (2KHSO5·KHSO4·K2SO4) [41]. Due to the
absence of organic waste products, Oxone in the presence of formic acid gives ring-fused
benzimidazole [27,40] and imidazobenzimidazole [27] adducts without the requirement for
chromatography. 2-Oxa-7-azaspiro[3.5]nonane acetamide 10 gave the spirocyclic oxetane
ring-fused benzimidazole 11 in good yield by simple organic extraction from the basified
aqueous mixture (Scheme 3b) [40].
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[40] derivatives.

Preparations of ring-fused benzimidazoles using o-cyclic amine substituted anilines
with performic acid compare favorably with the derivative anilide reaction, with Smalley et al.
reporting moderate to good yields for five- to seven-membered adducts (Scheme 4a) [42]. In
a more recent study, recyclable ethyl acetate (EtOAc) replaced formic acid, with aqueous
effluent, organic-aqueous extraction and chromatography avoided for the preparation of
pyrrolo[1,2-a]benzimidazoles from commercial o-(pyrrolidin-1-yl)anilines (Scheme 4b) [43].
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Although, the presence of strong electron-withdrawing substituents (NO2, CN) and the
six-membered cyclization required methanesulfonic acid (MsOH) to reach high yields.
However, MsOH is a green acid undergoing biodegradation by forming CO2 and sul-
fate [44].
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Alternatives to peroxide-based oxidizing systems, include MnO2 in cold chloroform,
but yields of ring-fused benzimidazoles from o-cycloaminoanilines were 15–20% due to
presumed formation of azo-compounds [45]. Möhrle and Gerloff reported the use of a
Hg(II) EDTA complex to deliver ring-fused benzimidazoles, in quantitative yield, apart
from the morpholino compound, synthesized in 47% yield (Scheme 5) [46].
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Scheme 5. Hg(II)-mediated oxidative synthesis [46].

The cross dehydrogenative coupling (CDC) involves forming the C-N bond directly
from C-H and N-H bonds under oxidative conditions with a formal loss of H2, in a process
often catalyzed by transition metals. CDC is used to describe pentamethylcyclopentadienyl
Ir(III)dichloride ([Cp*IrCl2]2) catalyzed oxidative cyclization of o-tetrahydroisoquinoline
substituted aniline derivatives (Scheme 6a) [47]. The bulk around the primary amine
dictated regioselectivity. The o-cyclic amine substituted aniline gave the benzimidazo[2,1-
a]isoquinoline 12, while the more hindered acetamide derivative gave the alternative kinetic
product 13. The formamide has less steric bulk than the acetamide forming a mixture of
the thermodynamic and kinetic products. The reaction was extended to the synthesis of
pyrrolo-, pyrido-, and azepino-[1,2-a]benzimidazoles, without the requirement for a ligand
(Scheme 6b), but was less successful for making morpholino- and piperazino-ring-fused
analogues [48].
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Scheme 6. Ir(III)-mediated cyclizations (a) with ligand [47] and (b) without ligand [48].

The isoindoline and tetrahydroisoquinoline substrates are the easiest to oxidize at high
temperatures, including in the presence of TEMPO in air (Scheme 7a) [49], and catalytic
iron(III) [50]. The latter gave the highest yields for the benzimidazo[2,1-a]isoquinoline
systems (Scheme 7b).
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Scheme 7. Thermal oxidative cyclizations mediated by (a) TEMPO/air [49] and (b) Fe(III) [50].

Aniodic oxidation gave the required iminium ion 14 for cyclization (Scheme 8) [51].
The electrolyte was n-Bu4NPF6 (20 mol%), and the anode is reticulated vitreous carbon
(RVC), and Pt is the cathode in an undivided cell at a constant current of 10 mA. A Russian
team reported the electrochemical oxidative cyclization with reduction of nitrobenzene for
cyclization onto an o-piperidinyl-substituent to give pyrido[1,2-a]benzimidazoles [52].
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Scheme 8. Electrochemical oxidative cyclizations [51].

In the early 1970s, o-cyclic amine substituted anilines reacted in neat sulfuryl chloride
in an oxidative cyclization with concomitant tetrachlorination of the activated aromatic
nucleus (Scheme 9) [53]. The attempt to tetrachlorinate the o-pyrrolo substituted aniline
analogue led to an inseparable mixture of mono-, di-, and trichloro ring-fused benzimida-
zoles.
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Scheme 9. Synthesis of polychlorinated ring-fused benzimidazoles using SO2Cl2 [53].

More recently, we heralded the use of H2O2 with hydrohalic acid (HX), as a convenient
oxidizing and halogenation system for organic synthesis [54–56]. The system allows in
situ generation of Cl2 and Br2, with the only by-product, being water (Scheme 10). The
salt of hypochlorous acid (HOCl) is the active ingredient in domestic bleach and is the
intermediate of the reaction between H2O2 and HCl.
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Scheme 10. Molecular halogen (X2) generated from H2O2 and HX [54–56].

Domestic bleach gave cyclization and dichlorination of aniline 15 in 56% yield (Scheme 11a),
with the lower yield attributed to the requirement for chromatography to separate the ad-
ditives in the bleach [54]. Moreover, using H2O2/HX a library of selectively dichlorinated
and dibrominated ring-fused benzimidazoles was prepared in high yields from commer-
cial o-cyclic amine substituted anilines, with most cases not requiring chromatography
(Scheme 11b,c). 5-Fluoro-2-piperidinylaniline was an exception, giving significant amounts
of cyclization with monochlorination or monobromination. Bromination tended to be
slower than chlorination, and tribrominated product 16 was isolated for the o-(pyrrolidin-
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1-yl)aniline, due to difficulties in cleanly isolating 5,7-dibromopyrrolo[1,2-a]benzimidazole
(Scheme 11d).
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Scheme 11. One-pot ring closure with selective halogenation using (a) domestic bleach or H2O2/HCl, (b) H2O2/HCl, and
(c) H2O2/HBr, and (d) five to eight-membered ring-fused adducts [54].

3,6-Dimethoxy-2-(cycloamino)anilines underwent 6-electron oxidations to afford a
variety of ring-fused halogenated benzimidazolequinones, when using higher amounts of
HCl or HBr relative to H2O2 (Scheme 12a) [55]. The active species is the elemental halogen
(X2) with water required for quinone formation (Scheme 12b). When less in situ halogen
was generated, using [H2O2] > [HX], the 4-electron oxidation occurred, to give ring-fused
halogenated benzimidazoles (Scheme 12c).

The use of hydroiodic acid (HI) is preferred when oxidative cyclization is required
without halogenation [56], due to the relatively smaller electrophilicity of iodine [57]. Five-
and seven-membered cyclizations of 3,6-dimethoxy-2-(cycloamino)anilines with H2O2
and a catalytic amount of HI in EtOAc proceeded in high yield (Scheme 13a), but 1,4,6,9-
tetramethoxyphenazine 17, was unexpectedly formed, as an orange precipitate from six-
membered cyclizations (Scheme 13a,b) [56]. The absence of phenazine 17 from the five- and
seven-membered cyclizations was consistent with previous observations that six-membered
oxidative cyclizations are more difficult [36,43]. The formation of 17 was optimized by
reducing the amount of EtOAc (the reaction solvent) by four-fold and by decreasing the
reaction temperature to room temperature (Scheme 14). Moreover, the isolation of 17 was
indicative of a nitrosobenzene intermediate in the conversion of o-(cycloamino)anilines to
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ring-fused benzimidazoles via the so-called t-amino effect [58]. Syntheses of phenazines
involve nitroso intermediates [56,59,60]. Recent evidence in the synthesis of ring-fused
benzimidazoles, included GC-MS of the reaction mixture (Scheme 14), after 1 h, which
revealed EI-MS fragmentation pattern consistent with intermediate 18 [56].
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c) [62]. Oxone oxidation of commercial anilines gave the nitrosoarene substrates. Nucleo-
philic aromatic hydrogen substitution (SNArH) led to the pyrrolo[1,2-a]benzimidazoles, 
however piperido- and azepino-analogues required nucleophilic aromatic substitution 
(SNAr) of 2-fluoronitrosobenzene to achieve reasonable yields for the [1,2-a] ring-fused 
benzimidazoles (Scheme 16a). Nucleophilic ipso-substitution of nitrosonaphthols with cy-
clic amines and subsequent oxidative cyclization delivered a diverse range of ring-fused 
naphthoimidazoles (Scheme 16b). The authors proposed a mechanism with mass spec-
trometry detecting the o-cyclic amine substituted phenyl hydroxylamine 21, which oxi-
dized to the o-cyclic amine substituted nitrosoarene 22 (Scheme 16c). A formal 1,5-hydride 
shift gave the key iminium ion intermediate 23 for oxidative cyclization [58]. In contrast 
to our recent work [43,56,61], the nitrosoarene cyclizations, were carried out using ele-
vated temperatures and under acidic conditions [62].  

Scheme 14. Optimizing the synthesis of 1,4,6,9-tetramethoxyphenazine 17 [56].

3,4-Dihydro-1H-[1,4]oxazino[4,3-a]benzimidazole can however be prepared in good
yield in the absence of acid from 2-(morpholin-4-yl)aniline using Oxone at room tempera-
ture (Scheme 15) [61]. Sampling the reaction at short reaction times (within 2 min), gave
4-(2-nitrophenyl)morpholine (20), which formed through advantageous air oxidation of
the nitroso intermediate 19. The proposed mechanism postulates that KHSO5 (the ac-
tive ingredient of Oxone) is catalytic, consistent with the use of catalytic amounts of HI
in the H2O2/HI-mediated oxidative cyclization of 3,6-dimethoxy-2-(cycloamino)anilines
(Schemes 13 and 14) [56].
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Scheme 15. Oxone-mediated ring-closure of 2-(morpholin-4-yl)aniline [61].

Jana et al. reported one-pot sequential amination of nitrosoarenes with alicyclic amines,
followed by oxidative cyclization to give ring-fused benzimidazoles (Scheme 16a–c) [62].
Oxone oxidation of commercial anilines gave the nitrosoarene substrates. Nucleophilic
aromatic hydrogen substitution (SNArH) led to the pyrrolo[1,2-a]benzimidazoles, however
piperido- and azepino-analogues required nucleophilic aromatic substitution (SNAr) of 2-
fluoronitrosobenzene to achieve reasonable yields for the [1,2-a] ring-fused benzimidazoles
(Scheme 16a). Nucleophilic ipso-substitution of nitrosonaphthols with cyclic amines and
subsequent oxidative cyclization delivered a diverse range of ring-fused naphthoimidazoles
(Scheme 16b). The authors proposed a mechanism with mass spectrometry detecting the
o-cyclic amine substituted phenyl hydroxylamine 21, which oxidized to the o-cyclic amine
substituted nitrosoarene 22 (Scheme 16c). A formal 1,5-hydride shift gave the key iminium
ion intermediate 23 for oxidative cyclization [58]. In contrast to our recent work [43,56,61],
the nitrosoarene cyclizations, were carried out using elevated temperatures and under
acidic conditions [62].



Molecules 2021, 26, 2684 12 of 29Molecules 2021, 26, x FOR PEER REVIEW 12 of 29 
 

 

 
Scheme 16. Sequential aminations of nitrosoarenes to prepare (a) alicyclic ring-fused benzimidaz-
oles, (b) naphthoimidazoles, and (c) the proposed mechanism [62]. 

2.1.2. Forming Ring-Fused Imidazobenzimidazoles 
Oxidative cyclizations in this class date back to the 1950s and 1960s [37,63], and Skibo 

et al. used the performic acid mediated protocol to convert diacetamides to dipyrrolo- and 
dipyrido-ring-fused imidazo[4,5-f]benzimidazoles, but yields were low (Scheme 17a) 
[24,25]. One-pot double alkyl radical cyclizations onto the 2- and 6-positions of imidazo-
benzimidazole gave dipyrrolo-, dipyrido-, and diazepino-ring-fused imidazo[4,5-f]ben-
zimidazoles and imidazo[5,4-f]benzimidazoles in 47–90% yield (see Section 2.5.3) [26]. 
However, the radical cyclization route cannot easily give imidazobenzimidazoles contain-
ing two different fused rings. Oxone in acid enabled the synthesis of symmetrical and 
unsymmetrical ring-fused imidazo[4,5-f]benzimidazoles and imidazo[5,4-f]benzimidaz-
oles (Scheme 17b–d) [27,29,61]. Yields were higher than older oxidative methods 
[24,25,37,63], perhaps due to the easier work up, allowing isolation of the imidazobenzim-
idazole directly from the acidic reaction mixture using precipitation with solid Na2CO3 
[27]. It is noteworthy that 49 and 55% yield for the spirocyclic oxetane ring-fused isomers, 
represent ≥70% yield for each ring closure [61]. 

Scheme 16. Sequential aminations of nitrosoarenes to prepare (a) alicyclic ring-fused benzimidazoles,
(b) naphthoimidazoles, and (c) the proposed mechanism [62].

2.1.2. Forming Ring-Fused Imidazobenzimidazoles

Oxidative cyclizations in this class date back to the 1950s and 1960s [37,63], and Skibo
et al. used the performic acid mediated protocol to convert diacetamides to dipyrrolo- and
dipyrido-ring-fused imidazo[4,5-f ]benzimidazoles, but yields were low (Scheme 17a) [24,25].
One-pot double alkyl radical cyclizations onto the 2- and 6-positions of imidazobenzimida-
zole gave dipyrrolo-, dipyrido-, and diazepino-ring-fused imidazo[4,5-f ]benzimidazoles and
imidazo[5,4-f ]benzimidazoles in 47–90% yield (see Section 2.5.3) [26]. However, the radical
cyclization route cannot easily give imidazobenzimidazoles containing two different fused
rings. Oxone in acid enabled the synthesis of symmetrical and unsymmetrical ring-fused
imidazo[4,5-f ]benzimidazoles and imidazo[5,4-f ]benzimidazoles (Scheme 17b–d) [27,29,61].
Yields were higher than older oxidative methods [24,25,37,63], perhaps due to the easier
work up, allowing isolation of the imidazobenzimidazole directly from the acidic reaction
mixture using precipitation with solid Na2CO3 [27]. It is noteworthy that 49 and 55%
yield for the spirocyclic oxetane ring-fused isomers, represent ≥70% yield for each ring
closure [61].
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Anilide reactant and acidic conditions are a prerequisite for oxidation to the imida-
zobenzimidazole, with attempts to cyclize 4,6-di(piperidin-1-yl)-1,3-phenylenediamine
(24) giving an intractable mixture (Figure 6) [61]. Meth-Cohn proposed the oxidative
cyclization of acetamides to benzimidazole derivatives occurs via the amine-N-oxide in-
termediate 25 [38]. Isolated amine-N-oxides undergo acid-mediated benzimidazole and
imidazobenzimidazole formation [27,61].
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The diamine-N-oxide intermediate 26 for imidazo[5,4-f ]benzimidazole formation was
isolated by Fagan [27]. The X-ray crystal structure of 26 showed hydrogen bonding between
the amide NH and the amine N-oxide residues, supporting the absence of the amide NH
peaks in the 1H NMR spectra of solutions of amine N-oxides [27,38,61]. This is contrary to
the orientation of the amine-N-oxide 25 adopted in Meth-Cohn’s Polonovski-type reaction
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mechanism [38]. Our proposed mechanism begins with oxidation of the cyclic amines of di-
acetamide 27 to the Fagan amine-N-oxide orientation 26 (Scheme 18). Protonation in acidic
media gives the imidols, upon loss of water. The double intramolecular nucleophilic imidol
addition onto the iminum ion leads to the ring-fused imidazo[5,4-f ]benzimidazole [27].

Molecules 2021, 26, x FOR PEER REVIEW 14 of 29 
 

 

type reaction mechanism [38]. Our proposed mechanism begins with oxidation of the cy-
clic amines of diacetamide 27 to the Fagan amine-N-oxide orientation 26 (Scheme 18). Pro-
tonation in acidic media gives the imidols, upon loss of water. The double intramolecular 
nucleophilic imidol addition onto the iminum ion leads to the ring-fused imidazo[5,4-
f]benzimidazole [27]. 

 
Scheme 18. Mechanism for oxidation o-(cycloamino)acetamide to imidazobenzimidazole [27]. 

An acid-catalyzed cyclization mechanism was proposed for conversion of dimorpho-
line N-oxide 26 to the [1,4]oxazino[4,3-a]benzimidazole (Scheme 19a) [27]. In the absence 
of an external oxidant, oxidation is possible through the internal conjugated system. 
MsOH allowed conversion of amine N-oxide 28 to the imidazo[4,5-f]benzimidazole, 
where presumably another molecule of 28 acts as oxidant (Scheme 19b) [61].  

 
Scheme 19. Acid-mediated cyclization of amine N-oxides to (a) benzimidazole [27] and (b) imid-
azo[4,5-f]benzimidazole [61]. 

2.2. Reductions of Nitrobenzene-o-Cycloamines (Route B) 
The reduction under acidic conditions of the aromatic nitro-group with cyclization 

onto the adjacent cycloamine substituent dates to the 1960s and employ ZnCl2/Ac2O 
[16,64,65], TiCl3/HCl [66], and Fe/AcOH [67]. There are cyclizations using Pd-catalysis 
with CO [68] or H2 [69]. Recent metal-free conditions use visible light, phenylthiourea as 
catalyst and PhSiH3 as reductant [70], and electrochemical cyclizations [52]. Thermal an-
nulation using nitrobenzene substrates are possible with neat 1,2,3,4-tetrahydroisoquino-
line (THIQ) (Scheme 20a) [71], and cyclizations occur using I2/HCO2H [72] (Scheme 20b). 
For the former reaction, the authors speculated on THIQ acting as a hydride donor after 

Scheme 18. Mechanism for oxidation o-(cycloamino)acetamide to imidazobenzimidazole [27].

An acid-catalyzed cyclization mechanism was proposed for conversion of dimorpho-
line N-oxide 26 to the [1,4]oxazino[4,3-a]benzimidazole (Scheme 19a) [27]. In the absence of
an external oxidant, oxidation is possible through the internal conjugated system. MsOH
allowed conversion of amine N-oxide 28 to the imidazo[4,5-f ]benzimidazole, where pre-
sumably another molecule of 28 acts as oxidant (Scheme 19b) [61].
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imidazo[4,5-f ]benzimidazole [61].

2.2. Reductions of Nitrobenzene-o-Cycloamines (Route B)

The reduction under acidic conditions of the aromatic nitro-group with cyclization
onto the adjacent cycloamine substituent dates to the 1960s and employ ZnCl2/Ac2O [16,
64,65], TiCl3/HCl [66], and Fe/AcOH [67]. There are cyclizations using Pd-catalysis with
CO [68] or H2 [69]. Recent metal-free conditions use visible light, phenylthiourea as catalyst
and PhSiH3 as reductant [70], and electrochemical cyclizations [52]. Thermal annulation
using nitrobenzene substrates are possible with neat 1,2,3,4-tetrahydroisoquinoline (THIQ)
(Scheme 20a) [71], and cyclizations occur using I2/HCO2H [72] (Scheme 20b). For the
former reaction, the authors speculated on THIQ acting as a hydride donor after the initial
SNAr and redox cyclization, while HI generated in situ, is the active catalytic species in the
latter reaction, acting as a strong Brønsted acid and reductant [71,72].
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2.3. Using Aromatic Amidines, Lactams, and Isothiocyanates (Route C)

Non-redox cyclizations of o-haloarylamidines give ring-fused benzimidazoles, using
CuI as catalyst [73,74] (Scheme 21a) or strong base (Scheme 21b) [8,75], where nitrogen
displaces the o-halogen. Pyrrolo[1,2-a]benzimidazole was reported from an o-lactam substi-
tuted aniline cyclization using di-t-butyl sulfoxide/NBS via an aza-Wittig type-reaction
(Scheme 21b) [76]. 1-(2-Isothiocyanatophenyl)pyrrolidines cyclize under thermal acidic
conditions to benzimidazothiazepines (Scheme 21c) [77].
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and (c) a rearrangement of aryl isothiocyanates [77].

Hypervalent iodine(III) reagents allow cyclization of aryl amidines onto non-functionalized
benzenes (leaving group = H) [78,79]. The overall dehydrogenative process is proposed to
proceed via a homolytic aromatic substitution (HAS) of nitrogen-centered radicals giving
pyrrolo- and pyrido[1,2-a]benzimidazoles (Scheme 22a) [78]. Kosher’s reagent (PhI(OH)OTs)
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gave a range of thiazino and oxazino ring-fused benzimidazoles (Scheme 22b) [79]. The
oxazino ring-fused benzimidazole required a longer reaction time, and the use of 4Å
molecular sieves.

Molecules 2021, 26, x FOR PEER REVIEW 16 of 29 
 

 

Hypervalent iodine(III) reagents allow cyclization of aryl amidines onto non-func-
tionalized benzenes (leaving group = H) [78,79]. The overall dehydrogenative process is 
proposed to proceed via a homolytic aromatic substitution (HAS) of nitrogen-centered 
radicals giving pyrrolo- and pyrido[1,2-a]benzimidazoles (Scheme 22a) [78]. Kosher’s re-
agent (PhI(OH)OTs) gave a range of thiazino and oxazino ring-fused benzimidazoles 
(Scheme 22b) [79]. The oxazino ring-fused benzimidazole required a longer reaction time, 
and the use of 4Å molecular sieves. 

 
Scheme 22. Cyclization of aryl amidines using (a) phenyliodine(III) diacetate [78] and (b) Kosher’s 
reagent [79]. 

A combination of Chan−Lam and Ullmann type couplings were said to give the fully 
unsaturated pyrido[1,2-a]benzimidazoles using 2-aminopyridine and 2-iodoarylboronic 
acids via an amidine intermediate (Scheme 23) [80].  

 
Scheme 23. Synthesis of pyrido[1,2-a] benzimidazoles via amidine intermediates [80]. 

2.4. Condensations (Route D) 
This includes the traditional bimolecular condensation of 1,2-phenylenediamines 

with aldehydes (Scheme 24) [81,82]. Rh-catalyzed cyclization of N-alkenyl-1,2-diamino-
benzenes with CO/H2 gas gave alicyclic ring-fused benzimidazoles via a hydroformyla-
tion intermediate [83].  

Scheme 22. Cyclization of aryl amidines using (a) phenyliodine(III) diacetate [78] and (b) Kosher’s reagent [79].

A combination of Chan−Lam and Ullmann type couplings were said to give the fully
unsaturated pyrido[1,2-a]benzimidazoles using 2-aminopyridine and 2-iodoarylboronic
acids via an amidine intermediate (Scheme 23) [80].
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2.4. Condensations (Route D)

This includes the traditional bimolecular condensation of 1,2-phenylenediamines with
aldehydes (Scheme 24) [81,82]. Rh-catalyzed cyclization of N-alkenyl-1,2-diaminobenzenes
with CO/H2 gas gave alicyclic ring-fused benzimidazoles via a hydroformylation interme-
diate [83].
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2.5. Annulations onto Benzimidazoles (Route E)

A widely reported category for the synthesis of ring-fused benzimidazoles is annula-
tions onto the 1- and 2-positions of benzimidazoles. This section reviews syntheses over
the past 20 years, sub-divided according to the employed reaction (type) conditions.

2.5.1. Base-Mediated Methods

Early examples of annulation of the benzimidazole moiety cyclized 2-haloalkylbenzi-
midazoles under basic conditions through N-1 benzimidazole deprotonation to give
pyrrolo-, pyrido- and azepino[1,2-a]benzimidazoles [84,85]. Bromoethylsulfonium salt
disintegrated under basic conditions with loss of diphenyl sulfide, upon reaction with
benzimidazole-2-methanols to give oxazino[4,3-a]benzimidazoles (Scheme 25) [86]. Exten-
sion of the latter sulfur ylide approach, achieved thiazino- and piperazino-adducts, but in
lower yields.
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2.5.2. Transition Metal and Lewis Acid Catalyzed Methods

InCl3-catalyzed the synthesis of benzimidazole-fused 1,4-oxazepines by intramolecu-
lar addition of a pendant alcohol onto an in situ-generated imine (Scheme 26) [87].
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Starting from 2-arylbenzimidazoles and aryl iodides, a tandem Pd(II)-catalyzed C-H
arylation and aerobic oxidative C-H amination sequence gave a variety of benzimidazole-
fused phenanthridines (Scheme 27) [88]. Arylated intermediate 29 underwent C−H acti-
vation in a seven-membered palladacycle with the nitrogen of benzimidazole to yield the
aminated products.
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Scheme 27. Pd(II)-catalyzed synthesis of benzimidazole-fused phenanthridines [88].

There are several transition metal mediated benzimidazole-2-CH activated annulations
including onto benzimidazole N-alkenyl [89–91] and N-alkynyl [92] substituents, with high
entantioselectivity also achieved [90,91]. These include the use of chiral Ni/JoSPOphos
manifolds (Scheme 28) [91].
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Ru(II)-catalyzed [4+2] annulations of 2-arylbenzimidazole with styrenes yielded
benzimidazo[2,1-a]isoquinolines (Scheme 29) [93].
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Scheme 29. Annulations [4+2] of benzimidazoles using Ru(II)-NH and CH activation [93].

DeBoef et al. employed Pd(II)/Cu(I) catalysis with the oxidant of Cu(OAc)2 to effect ox-
idative dehydrogenative coupling of 1-benzyl substituted benzimidazoles (Scheme 30a) [94].
The Pd(II) C-H aryl-activation of 2-phenylbenzimidazoles with C-N coupling of two ben-
zimidazole fragments gave benzimidazoquinazolines, with Cu(OAc)2 or air being the
terminal oxidants (Scheme 30b) [95].



Molecules 2021, 26, 2684 19 of 29Molecules 2021, 26, x FOR PEER REVIEW 19 of 29 
 

 

 
Scheme 30. Pd-catalyzed dehydrogenative cross-couplings to give (a) 11H-isoindolo[2,1-a]benzim-
idazoles [94] and (b) benzimidazoquinazolines [95]. 

CuI-catalyzed an aminothiolation of 1,1-dibromoalkenes (Scheme 31a) [96]. The 
mechanism involves initial in situ dehydrobromination of the 1,1-dibromoalkene to 1-bro-
moalkyne. N-alkylation of the aromatic alkene and Cu-catalyzed C-S coupling or 5-endo-
dig cyclization gives the annulated benzimidazole. More recently, 2-(2-bromoaryl)- and 2-
(2-bromovinyl)benzimidazole substrates were coupled with cyanamide using CuI to give 
2-aminoquinazoline and 2-aminopyrimidine hybrid structures (Scheme 31b) [97]. Similar 
conditions allowed CuI-mediated coupling and cyclization between 2-(2-bromoaryl)in-
doles and 2-aminoazoles [98], including 2-aminobenzimidazoles with loss of ammonia to 
give indole analogues of Scheme 30b adducts [95]. 

 
Scheme 31. CuI-catalyzed annulations onto N-1 of benzimidazole using (a) 1,1-dibromoalkenes 
[96] and (b) cyanamide [97]. 

Scheme 30. Pd-catalyzed dehydrogenative cross-couplings to give (a) 11H-isoindolo[2,1-a]benzimidazoles [94] and (b)
benzimidazoquinazolines [95].

CuI-catalyzed an aminothiolation of 1,1-dibromoalkenes (Scheme 31a) [96]. The
mechanism involves initial in situ dehydrobromination of the 1,1-dibromoalkene to 1-
bromoalkyne. N-alkylation of the aromatic alkene and Cu-catalyzed C-S coupling or 5-endo-
dig cyclization gives the annulated benzimidazole. More recently, 2-(2-bromoaryl)- and
2-(2-bromovinyl)benzimidazole substrates were coupled with cyanamide using CuI to give
2-aminoquinazoline and 2-aminopyrimidine hybrid structures (Scheme 31b) [97]. Similar
conditions allowed CuI-mediated coupling and cyclization between 2-(2-bromoaryl)indoles
and 2-aminoazoles [98], including 2-aminobenzimidazoles with loss of ammonia to give
indole analogues of Scheme 30b adducts [95].

Molecules 2021, 26, x FOR PEER REVIEW 19 of 29 
 

 

 
Scheme 30. Pd-catalyzed dehydrogenative cross-couplings to give (a) 11H-isoindolo[2,1-a]benzim-
idazoles [94] and (b) benzimidazoquinazolines [95]. 

CuI-catalyzed an aminothiolation of 1,1-dibromoalkenes (Scheme 31a) [96]. The 
mechanism involves initial in situ dehydrobromination of the 1,1-dibromoalkene to 1-bro-
moalkyne. N-alkylation of the aromatic alkene and Cu-catalyzed C-S coupling or 5-endo-
dig cyclization gives the annulated benzimidazole. More recently, 2-(2-bromoaryl)- and 2-
(2-bromovinyl)benzimidazole substrates were coupled with cyanamide using CuI to give 
2-aminoquinazoline and 2-aminopyrimidine hybrid structures (Scheme 31b) [97]. Similar 
conditions allowed CuI-mediated coupling and cyclization between 2-(2-bromoaryl)in-
doles and 2-aminoazoles [98], including 2-aminobenzimidazoles with loss of ammonia to 
give indole analogues of Scheme 30b adducts [95]. 

 
Scheme 31. CuI-catalyzed annulations onto N-1 of benzimidazole using (a) 1,1-dibromoalkenes 
[96] and (b) cyanamide [97]. 
Scheme 31. CuI-catalyzed annulations onto N-1 of benzimidazole using (a) 1,1-dibromoalkenes [96]
and (b) cyanamide [97].



Molecules 2021, 26, 2684 20 of 29

A Pd-catalyzed reductive cyclization gave a variety of benzimidazole-fused thia-
zocine scaffolds (Scheme 32), but also thiazonines (9-membered rings), and thiazecines
(10-membered) having an exocyclic double bond [99]. Ammonium formate is the hydrogen-
donor.
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2.5.3. Radical Cyclization Methods

We have reported annulations utilizing the benzimidazole-2-position to form nucle-
ophilic ylide for condensation reactions [100,101] and the benzimidazol-2-yl radical for
initiator-free photochemical HAS (Scheme 33a) [102]. Photochemical intramolecular HAS
of the imidazol-2-yl radical are superior to analogous Bu3SnH-mediated reactions [103].
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Scheme 33. Radical initiator-free HAS using (a) UV-light [102] and (b) Barton ester intermedi-
ates [104].

Bu3SnH-mediated chain reactions enabled 6-exo-trig cyclizations of aryl or pyridinyl
radicals to yield a variety of aromatic-ring fused benzimidazoles [23,105] (Scheme 34a).
HAS using alkyl radical cyclizations onto benzimidazole [21], imidazo[4,5-f ]benzimidazole
and imidazo[5,4-f ]benzimidazole [26] proceed as non-chain reactions [106–108] requiring
full equivalents of Bu3SnH and azo-initiator to give the aromatic products in moderate
to high yields (Scheme 34b). Single ring-fused imidazo[5,4-f ]benzimidazolequinones
for anti-cancer evaluation studies, were also derived via this radical cyclization route
(Scheme 34c) [28]. The latter cyclization required a substrate prepared by two separate alky-
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lations of imidazobenzimidazole using 1-chlorobutane and 1-chloro-4-(phenylselenyl)butane.
For Bu3SnH-mediated reactions, slow addition of radical initiators is required, which pre-
vents Bu3SnH reduction of the cyclizing radical. Camphorsulfonic acid (CSA) or Ac2O are
added to more difficult cyclizations, to activate the benzimidazole-2-position towards nucle-
ophilic radical addition [21,26]. For the HAS onto imidazobenzimidazoles (Scheme 34b,c),
exposing the reaction mixture to air for part of the reaction time gave higher yields, since
oxygenated radicals are thought to be involved in the oxidative re-aromatization (or hydro-
gen atom-abstraction) step [26,108].
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An alternative approach to HAS, is initiator-free, using in situ generated Barton ester
intermediates derived from robust and readily accessible carboxylic acid substrates, giving
five- to seven-membered alkyl and cyclopropyl radical cyclizations via a chain reaction
mechanism (Scheme 33b) [104,109]. Most recently, benzimidazo[2,1-a]isoquinolin-6-ones were
prepared by the addition of methyl radicals onto N-methacryloyl-2-phenylbenzimidazoles 30
using di-tert-butyl peroxide (DTBP) initiator (Scheme 35) [110]. The tertiary adduct radical
undergoes six-membered cyclization followed by oxidation of the derived cyclized radical.
Earlier, tert-butyl radicals generated from pivalic acid and several other carboxylic acids
with K2S2O8/AgNO3 initiated an analogous cascade [111].
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2.5.4. Other Metal-Free Methods

Mal et al. reported the use of PIFA (PhI(OCOCF3)2) for six-membered aromatic substi-
tutions via a proposed nitrenium ion intermediate (Scheme 36a) [112]. Cho et al. made the
reaction at N-1 of benzimidazole intermolecular, with addition onto aryl isocyanate and aro-
matic substitution of the carbamoyl-NH to give fused quinazolinones and pyrimidinones
(Scheme 36b) [113].
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cyanates [113].

There are now several reports of benzimidazole syntheses using iodine in metal-free
procedures [56,72,114]. Benz[4,5]imidazo[1,2-a]quinoxaline derivatives were obtained by an I2-
mediated oxidative condensation of 2-(benzimidazol-1-yl)aniline substrates (Scheme 37) [114].
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2.5.5. Miscellaneous: Syntheses of Mitomycin Analogues

We reported the synthesis and anti-cancer evaluation of diazole analogues of MMC
derivatives (Figure 3) and related indolequinones [14,21,22,115,116]. The formation of
pyrrolo-, pyrido-, azepino- and azocino[1,2-a]benzimidazoles with a fused cyclopropane
ring involves N-aziridinyl imines (Eschenmoser hydrazones) undergoing thermolysis with
a loss of nitrogen and trans-stilbene (Scheme 38a) [22,115,116]. The formation of the aziridi-
nomitosene analogue skeleton was via an intramolecular anionic aromatic ipso-substitution
of an aziridinyl functionality onto the benzimidazol-2-yl position (Scheme 38b) [14]. Earlier
the 2-phenylsulfanylbenzimidazole precursors gave five to seven-membered ring-fused
benzimidazoles using alkyl radical cyclizations with substitution of the radical leaving
group at the 2-position [117].
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3. Conclusions

Over the past 20 years, significant advances in the synthesis of ring-fused benzimi-
dazoles have occurred, notably using dehydrogenative coupling and radical cyclization.
Transition metal catalysts achieve intramolecular and intermolecular aminations with benz-
imidazoles, with enantioselectivity for the former. Ring-fused benzimidazoles are prepared
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using hypervalent iodine(III) reagents and elemental iodine under metal-free conditions.
There is an increasing use of sustainable and non-metal-mediated protocols, including
photochemical, electrochemical, and thermal methods. Mild oxidative conditions tend to
be more effective for preparing isoindoline and tetrahydroisoquinoline-fused scaffolds.
There are effective methods for incorporating heteroatoms into the fused-ring, including
N, O, and S atoms, and forming alicyclic rings with additional fused cyclopropane or
delicate oxetane and aziridine rings. In terms of versatility, green chemistry, and value
for money, it is difficult to beat the use of H2O2 in traditional oxidative cyclizations of o-
(cycloamino)anilines. H2O2 in combination with HX generates the ordinarily inconvenient
elemental halogen (X2) in situ, to mediate one-pot oxidative cyclization with halogenation.
The latter includes one-pot approaches to potential antitumor ring-fused benzimidazole-
quinones from readily accessible anilines. Oxone is a cheap alternative, with technical and
environmental benefits, including the circumvention of organic waste by-products. Our
present work generates X2 in situ, by combining Oxone with benign NaX, to carry out one-
pot halogenation with oxidative demethylation to give the dimeric quinones of ring-fused
dimethoxybenzimidazole-benzimidazolequinones (DMBBQs) [118]. The DMBBQ scaffold
offers unique regioselective functionalization opportunities for bis-quinone motifs, and
these unique dimeric structures require investigation as bioreductive anti-tumor agents.

Mechanisms for ring-fused benzimidazole and imidazobenzimidazole formation via
the t-amino effect are now better defined. Recent studies have shown that acid and
heat are unnecessary for oxidative cyclization via a nitrosobenzene intermediate using
o-(cycloamino)anilines as substrates for benzimidazole formation. This offers opportunities
for further investigations into the synthesis of ring-fused benzimidazoles under nonag-
gressive ambient conditions using commercial anilines as starting materials. While use of
anilide derivatives results in a different mechanism via an amine-N-oxide intermediate.
The anilide derivative and acidic conditions are mandatory for peroxide-mediated ring-
fused imidazobenzimidazole preparations. To date ring-fused imidazobenzimidazoles
have only been prepared via oxidative cyclizations of anilides and radical cyclizations
onto imidazobenzimidazoles, surely new synthetic methods will merge for this interesting
scaffold.
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