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Abstract: Hydrosilylation is an important process, not only in the silicon industry to produce silicon
polymers, but also in fine chemistry. In this review, the development of rhenium-based catalysts for
the hydrosilylation of unsaturated bonds in carbonyl-, cyano-, nitro-, carboxylic acid derivatives and
alkenes is summarized. Mechanisms of rhenium-catalyzed hydrosilylation are discussed.
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1. Introduction

Hydrosilylation is a very versatile transformation consisting of the addition of a
hydrosilane (H-SiR3) to an unsaturated bond. Organosilicon compounds have found
widespread applications in our daily lives in silicon-based materials such as silicon rub-
bers, adhesives, paper release coating, and so forth. In addition, hydrosilylation is an
atom economic reaction to access valuable organosilane intermediates for fine chemical
synthesis [1,2]. For many years, platinum has been the metal of choice for designing
hydrosilylation catalysts, Speier’s, Karstedt’s or Markó’s catalysts being the most repre-
sentative examples (Figure 1). Other noble transition metals, such as rhodium, ruthenium,
iridium or palladium, have also been used in this transformation [3]. However, the limited
availability of these precious transition metals has prompted researchers to explore alter-
natives metals in the periodic table, in particular first row transition metals such as iron,
cobalt and nickel [4–6].
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1. Introduction 
Hydrosilylation is a very versatile transformation consisting of the addition of a 

hydrosilane (H-SiR3) to an unsaturated bond. Organosilicon compounds have found 
widespread applications in our daily lives in silicon-based materials such as silicon 
rubbers, adhesives, paper release coating, and so forth. In addition, hydrosilylation is an 
atom economic reaction to access valuable organosilane intermediates for fine chemical 
synthesis [1,2]. For many years, platinum has been the metal of choice for designing 
hydrosilylation catalysts, Speier’s, Karstedt’s or Markó’s catalysts being the most 
representative examples (Figure 1). Other noble transition metals, such as rhodium, 
ruthenium, iridium or palladium, have also been used in this transformation [3]. 
However, the limited availability of these precious transition metals has prompted 
researchers to explore alternatives metals in the periodic table, in particular first row 
transition metals such as iron, cobalt and nickel [4–6]. 
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Figure 1. Representative platinum-based hydrosilylation catalysts. 

In this regard, group 7 transition metals, manganese [7] and rhenium [8], were not 
an obvious choice at first glance. Indeed, rhenium complexes, in particular oxo-rhenium 
compounds, have been mainly recognized as efficient catalysts in oxidations, such as 
epoxidation or oxygen atom transfer reactions [9–14]. This is highlighted by organo-
rhenium(VII) trioxide, particularly methyltrioxorhenium (MeReO3, abbreviated as MTO), 
arguably one of the most versatile transition metal catalysts known to date. Rhenium is 
also well-known to promote olefin metathesis [15] or aldehyde olefinations [16]. In 
complement, the coordination chemistry of rhenium was explored for the potential 
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Figure 1. Representative platinum-based hydrosilylation catalysts.

In this regard, group 7 transition metals, manganese [7] and rhenium [8], were not
an obvious choice at first glance. Indeed, rhenium complexes, in particular oxo-rhenium
compounds, have been mainly recognized as efficient catalysts in oxidations, such as epoxi-
dation or oxygen atom transfer reactions [9–14]. This is highlighted by organo-rhenium(VII)
trioxide, particularly methyltrioxorhenium (MeReO3, abbreviated as MTO), arguably one
of the most versatile transition metal catalysts known to date. Rhenium is also well-known
to promote olefin metathesis [15] or aldehyde olefinations [16]. In complement, the co-
ordination chemistry of rhenium was explored for the potential application of 186/188Re
radioisotopes in nuclear medicine and bio-medical chemistry [17,18].
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The application of rhenium derivatives in hydrosilylation [19,20] was not unveiled
until 2003 [21,22]. Since the application of the lighter congener of rhenium, namely man-
ganese, has been increasing lately in hydrosilylation [23,24], we report here the evolution
of rhenium in this catalytic transformation.

2. Hydrosilylation of C=O, C=N, C≡N and NO2 Bonds
2.1. Hydrosilylation of Carbonyl Derivatives

The first rhenium-catalyzed hydrosilylation was described in 2003 by Toste et al.
(Scheme 1a). This seminal contribution represents the first example of a hydrosilylation
catalyst with a high-valent metal bearing two terminal oxo ligands, reversing the traditional
use of metal-oxo complexes in catalysis. Indeed, the hydrosilylation of aldehydes and ke-
tones was promoted by the readily available iododioxo(bistriphenylphosphine)rhenium(V)
complex [(PPh3)2Re(O)2I] (C1) [21,22]. The scope of this reaction included aromatic or
aliphatic ketones and aldehydes with a good tolerance of functional groups (amino, nitro,
halo, ester, cyano, cyclopropyl and alkene groups remained untouched). This air and
moisture tolerant reaction provides silyl-protected alcohols in a straightforward reduction-
protection protocol as bulky hydrosilanes were used (HSiMe2Ph, HSiEt3, HSiMe2Ph and
HSitBuMe2).

A detailed mechanism, supported by experimental evidence, was proposed by the
same group [21,25] and confirmed by a computational study by Wu et al. in 2006 [26]
(Scheme 1b). The first step involves the formal [2 + 2] addition of silane to the Re=O
bond in C1 to produce metal hydride I-1, which was isolated and characterized by X-ray
diffraction. Alkoxy-metal intermediate I-3 is produced by the addition of rhenium hydride
to the carbonyl group. Transfer of the silyl group to the alkoxy ligand, formally a retro-[2 +
2] reaction, forms the silyl ether product and regenerates the dioxo catalyst C1.
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Scheme 1. ReI(O)2(PPh3)2 (C1) catalyzed hydrosilylation of carbonyl compounds with related
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However, the computational study by Wei [27] showed that the ionic outer-sphere
mechanistic pathway (Scheme 1c) is energetically more favorable than the [2 + 2] addition
mechanism supported by Wu for the C1. In this alternative mechanism, the activation of
Si−H goes through η1-bonding of silane to the metal center followed by a nucleophilic
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addition of the organic substrate on the Si center in II-1 to cleave the Si−H bond forming
the anionic rhenium hydride II-2 and the activated organic substrate II-3. Finally, hydride
transfer from the rhenium metal II-2 to the carbon atom of the organic substrate II-3
produces the desired product and regenerates complex C1.

Intrigued by the work of Toste, Royo et al. explored in 2005 the catalytic activity of a
family of oxo-rhenium complexes (C2–C7, Scheme 2) [28]. All these complexes showed
activity in the reduction of aliphatic and aromatic aldehydes (six examples) and ketones
(four examples) with dimethylphenylsilane in C6D6 solution (Scheme 2), demonstrating
the general ability of oxo-rhenium complexes to promote hydrosilylation. Notably, C2
catalyzes the hydrosilylation of aldehydes at room temperature, within 30 min, affording
the corresponding silyl ethers in a good yield, but is ineffective as a ketone hydrosily-
lation catalyst (even at 80 ◦C). C5–C7 (5.0 mol%) are active for the hydrosilylation of
4-trifluoromethylbenzaldehyde at 80 ◦C, giving 40% yield (C5, 20 h), >95% yield (C6, 10 h)
and >95% yield (C7, 10 h), respectively.
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Scheme 2. Reduction of carbonyl groups by high-valent rhenium oxides C2–C7.

In the same year, Abu-Omar and co-workers reported a new system for the hydrosi-
lylation of aldehydes and ketones using a mono-oxorhenium(V) catalyst (C8) containing
two oxazoline ligands (Scheme 3) [29,30]. The reaction proceeds efficiently under ambient
temperatures with low catalyst loading (0.1 mol%), 1.5 equiv. HSiEt3 using CH2Cl2 as a
solvent or without a solvent. Interestingly, the catalyst preserves its activity after being
recycled (for 2-butanone, 80% NMR yield (1st cycle) and 50% NMR yield (2nd cycle)).
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Scheme 3. Reduction of carbonyl groups by oxazoline containing rhenium oxide C8.

Then, Abu-Omar and co-workers prepared a number of cationic oxorhenium(V) salen
based complexes such as [Re(O)(salpn)(Solv)][B(C6F5)4] C9 [31,32] in 2006 (Scheme 4a)
and [ReO(saldach)(H2O)][B(C6F5)4] C10 [33] in 2008 incorporating a chiral environment,
(Scheme 4b). C9 and C10 serve as good catalysts for hydrosilylation of carbonyl compounds
(1.0 mol% cat. loading, 1.5 equiv. silane, room temperature (r.t.), although asymmetric
versions (C10) of these reactions afford poor enantioselectivity, even in the presence of
bulky silane such as HSitBuMe2.
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Scheme 4. Hydrosilylation of carbonyl compounds with cationic oxorhenium(V) non chiral salen (a)
and chiral salen (b) based complexes.

The mechanism of action of these high-valent mono-oxo-rhenium(V) catalysts was
investigated, providing new insights [34] including via a theoretical study [35–37]. The
addition of silane across the Re-O multiple bond was not observed in mono-oxo-rhenium(V)
complex Re(O)Cl3(PPh3)2 (C4) catalyzing the hydrosilylation of carbonyls. Furthermore,
they observed that silanes slowly reacted with C4 to give the isolated hydride intermediate
Re(O)Cl2H(PPh3)2 (III-1). However, this isolated hydride intermediate is not sufficiently
reactive to account for the catalytic turnover, as only 20% yield of the silyl ether product is
observed (Scheme 5 left). These observations lead the authors to propose that the reaction
pathway involves the formation of a η2–silane complex (IV-1), followed by the heterolytic
cleavage of the Si-H bond at the rhenium center after elimination of one PPh3 ligand
(Scheme 5, right). This ionic mechanism involves the sequential transfer of a silyl ion
(R3Si+) and then a hydride to a polar double bond to furnish the reduction reactions. In this
proposed catalytic cycle, neither the coordination of unsaturated substrates to the metal
center nor its insertion into the M-H bond is involved.
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Scheme 5. The σ-bond metathesis pathway involving the isolated hydride intermediate
Re(O)Cl2H(PPh3)2 (left). The pathway involving a η2–silane complex (right).

The enantioselective reduction of prochiral ketones [38] and imines [39] with 2 equiv.
HSiMe2Ph was reported by Toste (Scheme 6) using chiral (CN-box)Re(V)–oxo complexes
(3.0 mol%, CN-Box = cyanobis(oxazoline)). These reduction reactions proceed under
an ambient air atmosphere with a highly functional group tolerant with ees of up to
>99%. The (CNbox)Re(V)–oxo complexes (C12) can be prepared by simply stirring L1
with Re(O)Cl3(OPPh3)(SMe2) (C11) in CH2Cl2 at r.t. and isolated as a green stable solid
(Scheme 6a) or generated directly in situ.
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complexes C12 (a).

Similarly, a theoretical investigation of the mechanism for the high-valent mono-oxo-
rhenium(V) hydride Re(O)HCl2(PPh3)2 (III-1) catalyzed hydrosilylation of C=N functional-
ities was performed by Wei and co-workers [40]. These results suggest that an ionic SN2-Si
outer-sphere pathway proceeding via the heterolytic cleavage of the Si-H bond competes
with the hydride pathway featuring the C=N bond inserted into the Re-H bond.

Besides these oxorhenium complexes, a series of novel low-valent Re(III) complexes
were synthesized by Ison et al., such as C13 [41] in 2012 and C14 [42] in 2017 (Scheme 7a).
C14 (0.03 mol%, r.t.) is more reactive than C13 (0.1 mol%, 80 ◦C) for the hydrosilylation of
aldehydes [42]. Excellent NMR yields (65–100%, 13 examples) were achieved at ambient
temperature under neat conditions using dimethylphenylsilane with C14. The reaction
affords TONs of up to 9200 and a TOF of up to 126 h−1 (Scheme 7a).

Based on kinetic and mechanistic studies, an ionic outer-sphere mechanism for the
catalytic hydrosilylation of benzaldehyde by C14 has been proposed (Scheme 7b). First,
silane is activated through η1 (V-2) or η2 (V-2′) coordination to the rhenium center. Then,
the aldehyde substrate attacks the Si center in (V-2) or (V-2′) to prompt the heterolytic
cleavage of the Si-H bond yielding an ion pair, the hydride complex V-3 and a silylated
aldehyde ion. Finally, hydride transfer from rhenium to the carbonyl carbon of the activated
substrate completes the catalytic cycle [43].

Berke and co-workers reported several easily available nitrosyl-rhenium complexes, for
example, Re(H)(PiPr3)2(NO)(NOB(C6F5)3) (C15) [44] in 2005, Re(H)2(η2-C2H4)3(NO)(PR3)2
(C16, R = iPr, C17, R = Cy) [45] in 2008, Re(CH3CN)3Br2(NO) (C18) [46] in 2009,
Re(CH3CN)3Cl2(NO) (C19) [47] and Re(CH3CN)Cl2(NO)(PCy3)2 (C20) [47] in 2011. Those
nitrosyl rhenium complexes were employed in the catalytic hydrosilylation of a variety of
carbonyl compounds (Scheme 8a). Hydrosilylations of carbonyl compounds were carried
out with the catalyst C15, HSiR3 (1 equiv., R = Et or Ph) from r.t. to 70 ◦C either in toluene or
under solvent-free conditions. TONs up to 9000 and TOFs up to 22,500 h−1 were observed.
C16 and C17 exhibited similar activity in hydrosilylation of acetophenone (0.5 mol% cat.
loading at 70 ◦C in toluene-d8, giving full conv. and TOF up to 800 h−1).
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For C18, chlorobenzene was found to be superior to all the other solvents used.
Various aliphatic and aromatic silanes were tested. Excellent yields were achieved at r.t. in
dichloromethane using triethylsilane, the reaction affording TOF values of up to 495 h−1.

Phosphine-free complex C19 proved to be less effective than the bisphosphine deriva-
tive C20, as the reaction of benzophenone and Et3SiH (1.12 equiv.) with 1.0 mol% of C19
was carried out at 80 ◦C, a conversion of less than 10% was achieved within 4 h, while in
the same conditions, C20 gave a 99% yield.

A possible mechanism for the hydrosilylation of ketones catalyzed by C18 was pro-
posed (Scheme 8b). The initial step consists of the dissociation of a CH3CN ligand to
generate the pre-catalyst VI-1 followed by the coordination of the silane to the rhenium
center to form a η2–silane complex VI-2. Displacement of a second CH3CN ligand by
the ketone at the rhenium center yields complex VI-3. The silyl-oxy complex VI-4 could
be obtained either from the transfer of a hydride from the silane to the ketone atom or
from the oxidative addition of the silane followed by a β-hydride transfer process. Fi-
nally, the reductive elimination step produces the siloxy product and regenerates the
pre-catalyst VI-1.
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In 2012, carbonyl rhenium(I) complexes, namely Re(CO)5Cl (C21) and Re2(CO)10
(C22), have been found by Fan and co-workers [48] to be effective catalysts for the hy-
drosilylation of carbonyl substrates with various silanes and with TOF of 20−25 h−1 for
aldehydes (Scheme 9a). In this methodology, 1.0 mol% catalyst and a Et3SiH:carbonyl ratio
of 3:1 were used. When different silanes such as Ph2SiH2 and Ph3SiH were used, a decrease
in the corresponding silyl ether yield was observed.
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A detailed mechanism for the hydrosilylation of carbonyl compounds was proposed
by the same author to account for the experimental observations (Scheme 9b). Upon
photolysis of Et3SiH with Re(CO)5Cl or Re2(CO)10, a dimeric rhenium carbonyl species
(VII-1) with a bridging hydride was identified in the mixture. When VII-1 was isolated
and tested for aldehyde hydrosilylation, the silyl ether was generated about 2–3 times
faster in comparison to Re(CO)5Cl.

Upon photolysis, the dimer complex VII-1 dissociates to afford Et3SiRe(CO)4 (VII-2)
and HRe(CO)5 (VII-3) which was found to be inactive in catalysis. Then, the coordination
of the carbonyl substrate to the vacant site of VII-2 facilitates the silyl ligand shift onto
the oxygen atom and forms an alkyl ligand bound to the Re center VII-5. Another silane
coordinates to the Re center in VII-5 via a η2-silyl complex or a σ-silyl (σH) complex.
Migration of a H atom from the silane to the alkyl group yields the silyl ether product and
regenerates the catalyst VII-2. When either the carbonyl or silane has been depleted, the
Et3SiRe(CO)4 complex(VII-2) coordinates back to HRe(CO)5 (VII-3) and becomes part of
the resting state VII-1.

2.2. Hydrosilylation of Nitriles

The reduction of nitriles using rhenium are rare. However, in 2011, Fernandes reported
a new catalytic system for the reduction of nitriles into the corresponding primary amines
with silane as a reducing agent and catalyzed by oxo-rhenium complexes. Using (10 mol%)
of rhenium(V)-dioxo complex C1 and 3 equiv. of phenylsilane in refluxing toluene un-
der air atmosphere, a large range of nitriles bearing functional groups, such as halogen
derivatives, OCH3, SCH3, SO2CH3 and NHTs, was reduced with high chemoselectivity
(Scheme 10a) [49].
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Then, the catalytic cycle was proposed by the same author (Scheme 10b): Replacing
two phosphine ligands with two nitriles at the rhenium center in C1 produces complex
ReIO2(nitrile)2 (VIII-1). The addition of the Si-H bond to one of the oxo-rhenium bond
results in the formation of the hydride species (nitrile)2(O)IRe(H)OSiR3 (VIII-2). Dihy-
drosilylation of the nitrile to the corresponding N,N-disilylamino-rhenium complex VIII-5,
followed by hydrolysis of the N-disilylamine, affords the primary amine as product.

2.3. Reductive Amination

The direct reductive amination of aldehydes with primary and secondary anilines [50],
using the same oxorhenium complex C1, was achieved by the group of Fernandes. A
large variety of functional groups, such as nitro, sulfone, ester, nitrile, amide, halides
including iodide, were well tolerated, using 2.5% of catalyst loading under refluxing
THF for 5 min to 7 h (Scheme 11) [51]. The same mechanism as in Scheme 10 was pro-
posed by the authors. In 2013, the same group has reported a series of oxorhenium
complexes containing heterocyclic ligands, which were found to also be very efficient
catalysts for such transformation. For instance, similar efficiency and chemoselectivity
were obtained with the oxo-rhenium complex [ReOBr2(L)(PPh3) C23 (L = 2-(2′-hydroxy-5′-
methylphenyl)benzotriazole) (Scheme 11) [52].
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Furthermore, in 2013, Ghorai reported a direct reductive amination of ketones such
as alkanones and cycloalkanones with electron-deficient amines using Re2O7 (1.5 mol%)
and NaPF6 (20 mol%) as the catalytic system and triethylsilane (1.2 equiv.) as the reductant
in dichloromethane at 50 ◦C for 12–60 h (Scheme 12) [53]. Excellent diastereoselective
reductive amination of 2-alkyl cyclohexanones was also observed, the formation of cis-
selective 2-alkyl amines was obtained with high chemoselectivity (up to >1:99).
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2.4. Hydrosilylation of Nitro Derivatives

In 2009, the group of Fernandes also reported the reduction of aromatic nitro com-
pounds to the corresponding amines with silanes catalyzed by high valent oxo-rhenium
complexes C1 or C4 in the presence of 3.6 equiv. of PhMe2SiH in refluxing toluene condi-
tions for 1–48 h (Scheme 13) [54]. Aniline derivatives were then isolated in moderate to
good yields (31–96%). It is noticeable that this catalytic transformation tolerated a huge va-
riety of functional groups such as halides, esters, amides, sulfones and nitriles. By contrast,
the hydrosilylation of nitroalkanes, such as 2-nitroethylbenzene, led to the corresponding
nitrile in 38% yield.
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2.5. Hydrosilylation of Carboxyl Acids Derivatives

Following our study of the hydrosilylation of various carboxylic acids catalyzed with
Mn2(CO)10 [55], our group recently reported the direct reduction of carboxylic acids [56]
and esters [57] catalyzed by Re2(CO)10, under mild conditions (r.t., irradiation 350, 395, or
365 nm), with low catalyst loading (0.5 mol%) in the presence of a stoichiometric amount
of Et3SiH as a reducing agent (Scheme 14). A large variety of carboxylic acids and esters
was reduced in moderate to good yields to the corresponding protected aldehydes without
noticeable formation of silylethers arising from over-reduction. Good functional group
tolerance was achieved over amino, halogeno, isolated C=C as well as heteroaromatic
groups. In addition, this new protocol was applied to a range of benzoic acid derivatives
that are reluctant to be reduced by traditional methods with more drastic conditions:
Re2(CO)10 (5 mol%), Ph2MeSiH (4.0 equiv.) to afford the corresponding aldehydes after
acid treatment (Scheme 14a).
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3. Hydrosilylation of C=C Bonds
3.1. Hydrosilylation of Alkenes

Despite the importance of the hydrosilylation of alkenes for the production of sili-
cones, only limited examples have been reported with rhenium catalysts in contrast to
the hydro-elementation of polar bonds. In 2006, the group of Hua reported the addi-
tion of hydrosilanes to styrenes catalyzed by low-valent rhenium complexes, such as
Re(CO)5Br (C24), to selectively afford anti-Markovnikov adducts in good to high yields
(Scheme 15) [58]. For the hydrosilylation of styrenes, 1.2 equiv. of HSiMePh2 was em-
ployed at 120 ◦C in toluene (1 M) for 10 h. It is worth mentioning that other rhenium
complexes, such as Re(CO)5Cl (C21) and Re2(CO)10 (C22), also showed catalytic activity for
the hydrosilylation of styrenes, although less actively than C24, to give silylated alkanes in
moderate yields as well as a slightly decreased selectivity. However, CpRe(CO)3 (C25) and
NH4ReO4 (C26) did not show any catalytic activity at all in such a transformation. Aliphatic
alkenes, such as 1-octene and methyl methacrylate, were reduced to their corresponding
adducts in poor yields (30% and 28%, respectively).
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Interestingly, rhenium mono-nitrosyl complex C16 developed by Berke et al., can
also promote the catalytic hydrosilylation of cyclohexene [45] (Scheme 16a) under similar
conditions that those employed for ketones (0.5 mol% cat., 80 ◦C, 3 h). This process was
investigated theoretically by the group of Li with ethylene and trimethylsilane as model
reactants (Scheme 16b) [59]. The proposed catalytic cycle starts with the insertion of the
ethylene ligand into the Re-H bond, followed by the cleavage of the agostic interaction
involved in VIII-1 to afford VIII-2. Then, a silane molecule coordinates to the Re center to
give a σ complex VIII-3. The next step involves an oxidative addition process to afford a
seven coordinate complex VIII-4. Last step consists of a reductive elimination process to
form the product. The catalytic cycle completes by coordination of an ethylene to VIII-5.

Molecules 2021, 26, x  12 of 15 
 

 

[Re]
H

+ HSiEt3
C16 (0.5 mol%)

C6D6, 80 oC, 3 h
conv.: 81%, TOF: 54 h−11.2 equiv.

SiEt3

a)

b)

[Re]
H

[Re]

[Re]
SiMe3

H
[Re]

SiMe3
H

[Re] H

HSiMe3

CH2CH2SiMe3

C16

VIII-1

VIII-2

VIII-3

VIII-4

VIII-5

Re

PiPr3

PiPr3

NOH

H

 
Scheme 16. Rhenium mono-nitrosyl complex catalyzed hydrosilylation of alkenes (a) and pro-
posed mechanism (b). 

In 2014, the same group reported a highly selective hydrosilylation of acrylonitrile 
and its derivatives catalyzed by C18 (1.5 mol%) by reaction with alkyl or aryl silanes (1 
equiv.) at 60–115 °C in 8–48 h (Scheme 17) [60]. The regioselectivity of all the reactions 
were found to be around α:β = 3:1. Improved regioselectivity was obtained with a high 
ratio of acrylonitrile:silane. 

 
Scheme 17. Re-catalyzed hydrosilylation of nitrile substituted olefins. 

3.2. Dehydrogenative Silylation of Alkenes 
Dehydrogenative silylation is often considered an undesired side reaction in the hy-

drosilylation of alkenes, but the selective production of vinylsilanes is also a valuable 
transformation. In this context; Berke et al. reported several rhenium mono-nitrosyl com-
plexes (C18 [60], C19–C20 [47], C25–C26 [61], C27–C28 [62]) catalyzing the dehydrogena-
tive silylation of alkenes with high chemoselectivity to produce silyl alkenes, along with 
the corresponding alkanes, with 1.0–4.0 mol% cat., at 70–110 °C in toluene-d8 (Scheme 18). 
Hydrosilylation products appear only rarely in very minor amounts. The complexes C19–
C20 and C27–C28 gave better E/Z selectivity (96:4→99:1). Noticeably, ethylene can be 
transformed quantitatively into the corresponding dehydrogenative silylation product 
with C27–C28 as catalysts with a ratio dehydro/hydro silylation products of 79:21 and 
68:32, respectively. C18 catalyzes the dehydrogenative coupling of styrene derivatives 
with HSiMe2Ph leading to dehydro/hydro silylation products in ratio of about 85/15. 

Scheme 16. Rhenium mono-nitrosyl complex catalyzed hydrosilylation of alkenes (a) and proposed
mechanism (b).

In 2014, the same group reported a highly selective hydrosilylation of acrylonitrile and
its derivatives catalyzed by C18 (1.5 mol%) by reaction with alkyl or aryl silanes (1 equiv.)
at 60–115 ◦C in 8–48 h (Scheme 17) [60]. The regioselectivity of all the reactions were
found to be around α:β = 3:1. Improved regioselectivity was obtained with a high ratio of
acrylonitrile:silane.
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3.2. Dehydrogenative Silylation of Alkenes

Dehydrogenative silylation is often considered an undesired side reaction in the hy-
drosilylation of alkenes, but the selective production of vinylsilanes is also a valuable
transformation. In this context; Berke et al. reported several rhenium mono-nitrosyl com-
plexes (C18 [60], C19–C20 [47], C25–C26 [61], C27–C28 [62]) catalyzing the dehydrogena-
tive silylation of alkenes with high chemoselectivity to produce silyl alkenes, along with
the corresponding alkanes, with 1.0–4.0 mol% cat., at 70–110 ◦C in toluene-d8 (Scheme 18).
Hydrosilylation products appear only rarely in very minor amounts. The complexes C19–
C20 and C27–C28 gave better E/Z selectivity (96:4→99:1). Noticeably, ethylene can be
transformed quantitatively into the corresponding dehydrogenative silylation product
with C27–C28 as catalysts with a ratio dehydro/hydro silylation products of 79:21 and
68:32, respectively. C18 catalyzes the dehydrogenative coupling of styrene derivatives with
HSiMe2Ph leading to dehydro/hydro silylation products in ratio of about 85/15.
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4. Conclusions

In conclusion, we have highlighted in this review the diversity of rhenium complexes
that can be encountered as pre-catalysts for hydrosilylation reactions. The oxidation state
of the reported catalysts spans from +VII to +I leading to an extraordinary variety of
coordination complexes, but also diverse mechanisms. It is now evident that rhenium can
be an alternative to noble metals for hydrosilylation reactions, but we strongly believe
that this less-studied metal also has great potential to discover new or complementary
reactivity and selectivity in this field, in particular for alkyne derivatives and in other
catalytic processes.
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