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Abstract: Oral bioavailability (F) is an essential determinant for the systemic exposure and dosing
regimens of drug candidates. F is determined by numerous processes, and computational predictions
of human estimates have so far shown limited results. We describe a new methodology where F
in humans is predicted directly from chemical structure using an integrated strategy combining 9
machine learning models, 3 sets of structural alerts, and 2 physiologically-based pharmacokinetic
models. We evaluate the model on a benchmark dataset consisting of 184 compounds, obtaining a
predictive accuracy (Q2) of 0.50, which is successful according to a pharmaceutical industry proposal.
Twenty-seven compounds were found (beforehand) to be outside the main applicability domain for
the model. We compare our results with interspecies correlations (rat, mouse and dog vs. human)
using the same dataset, where animal vs. human-correlations (R2) were found to be 0.21 to 0.40 and
maximum prediction errors were smaller than maximum interspecies differences. We conclude that
our method has sufficient predictive accuracy to be practically useful with applications in human
exposure and dose predictions, compound optimization and decision making, with potential to
rationalize drug discovery and development and decrease failures and overexposures in early clinical
trials with candidate drugs.

Keywords: absorption; ADME; bioavailability; computational; in silico; PBPK; pharmacokinetics;
prediction; QSAR

1. Introduction

Oral bioavailability (F) is one of the most essential parameters determining the sys-
temic exposure profile and dosing regimens of orally administered drug candidates. Ac-
curate prediction of this parameter is crucial for accurate and safe dosing in first human
trials with new drug candidates and for successful drug development and pharmacokinetic
(PK) optimization. Overprediction of F might result in insufficient and varying systemic
exposure and failure in the clinical phase, and significant underprediction might lead to
unwanted side effects in first dose panels in first-time-in-man studies.

An example of a significant, unexpected underprediction of the systemic exposure
of a candidate drug was demonstrated by Fuse et al. [1]. The systemic exposure of the
anticancer compound UCN-01 following intravenous administration in an early clinical
trial was 5800 times higher than predicted from animal PK data (the allometric scaling
approach was applied), which corresponds to ca 1 million-fold expected underprediction
of the systemic exposure in case the compound had been given orally.

F is determined by several underlying factors, including gastrointestinal solubil-
ity/dissolution and passive and active intestinal permeability, which determine the fraction
absorbed (fabs), and gut-wall metabolism, intrinsic hepatic metabolic clearance (CLint), bile
extraction, binding to blood components (such as plasma proteins and red blood cells) and
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flow characteristics in the intestines and liver. The complex nature and species differences
complicate predictions of this parameter.

A predictive accuracy (Q2; forward-looking predictions) of 0.5 (for logit-transformed
data), approximately 40–50%, 60% and 75% of predictions with less than 2-, 3-, and 5-fold
errors, respectively, and ca 15% of compounds for which no estimates could be generated,
was considered successful for computational (in silico) F-predictions according to a recent
study by researchers at AstraZeneca [2]. This outcome was what they achieved for various
compounds with an in silico prediction model for F in rats. There was, apparently, a
skewness of their prediction method, with overprediction trend at low F and significant
underprediction trend at high F.

In silico methods have also been developed for prediction of F in man. Paixão reached
47% and 66% of predictions within 20% and 35% absolute errors and 65% of predictions
<2-fold error for a set of 68 compounds (50% of these had observed F (Fobs) ≥ 65%),
respectively [3]. There was, however, a 100-fold maximum prediction error and virtually
no predictive power of the model (Q2 = 0.01). Lawless et al. (SimulationsPlus) reached
68% of predictions within 2-fold error, Q2 or retrospective correlation (R2) (not clear which)
of ca 0.15, and significant maximum errors, for a set of 62 selected highly permeable and
soluble compounds [4].

The comparably low predictive power found for human F-prediction models high-
lights the need to develop new computational methods with fair/better accuracy and wider
compound range. Improved methodology could improve not only early drug candidate
selection and optimization, but potentially also enable more accurate and safer dosing in
early clinical trials, reduce failures in drug development, reduce the use of animal studies
and data, and decrease costs and time-consumption.

Our group has developed an in silico machine learning-based prediction system with
fully validated models for predictions of a range of primary and secondary parameters of
absorption, distribution, metabolism, excretion/pharmacokinetics (ADME/PK) in humans.
In this manuscript we applied this novel methodology to predict in vivo oral F (Fpred) in
humans and compare the results to corresponding Fobs.

The main aim of the study was to determine whether it is possible to develop a
computational system for F in humans with fair true predictive power (according to
industry quality standard, as proposed by AstraZeneca; see above) and better outcome
than previously developed and published methods. A secondary objective was to compare
the results with interspecies correlations—Fobs in commonly used laboratory animal models
(mice, rats and dogs) vs. Fobs in humans. Animal models still appear to be the golden
standard for laboratory method-based human ADME/PK-predictions.

The results show that it was possible to develop a new, integrated computational
system with sufficient predictive accuracy to be practically useful with applications in
human exposure and dose predictions, compound optimization and decision making and
that moves the research front forward. The advances also demonstrate that computational
systems can outperform and replace most commonly used animal models and potentially
also reduce risks and failures in early clinical trials with candidate drugs.

2. Results

The Q2 of the new methodology for a diverse dataset was 0.50 (lin-lin scale; n = 156;
Table 1; Figure 1), which can be considered fairly good and successful.

Table 1. Correlations between predicted oral bioavailability (forward-looking in silico predictions) and observed oral
bioavailability in animal models (mouse, rat and dog) vs. observed oral bioavailability in man for 156 compounds.

Comparison All 156
Compounds

28 Compounds with
Mouse Data

101 Compounds with
Rat Data

106 Compounds with
Dog Data

In silico predictive accuracy (Q2) 0.50 0.54 0.61 0.48
Mouse vs. man correlation (R2) - 0.40 - -

Rat vs. man correlation (R2) - - 0.21 -
Dog vs. man correlation (R2) - - - 0.31
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for in silico methods developed and tested by others [3,4]. 

 
Figure 2. Q2 (predictive accuracy; Y-axis) obtained with the new in silico model (n = 156), compared 
to interspecies R2 for compounds of the same dataset (n = 28, 101 and 106 for mice, rats and dogs, 
respectively) and Q2 achieved by other in silico method developers (n = 68 and 62 in studies by 
Paixão and Lawless et al., respectively) [3,4]. * Using a set of compounds with known high per-
meability, solubility and gastrointestinal absorption [4]. 

Figure 1. In silico predicted vs. observed human clinical oral bioavailability for 156 compounds.

The R2-estimates between animal and human Fobs were lower: 0.40 for mice (n = 28),
0.21 for rats (n = 101) and 0.31 for dogs (n = 106) (Table 1; Figure 2; Supplement Figure S1).
Corresponding Q2-estimates for head-to-head (same compounds) in silico predictions of F
in humans were 0.54, 0.61 and 0.48, respectively. Combining data from the three animal
species did not enhance the R2 (0.23; n = 26).
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Figure 2. Q2 (predictive accuracy; Y-axis) obtained with the new in silico model (n = 156), compared to interspecies R2 for
compounds of the same dataset (n = 28, 101 and 106 for mice, rats and dogs, respectively) and Q2 achieved by other in silico
method developers (n = 68 and 62 in studies by Paixão and Lawless et al., respectively) [3,4]. * Using a set of compounds
with known high permeability, solubility and gastrointestinal absorption [4].
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Figure 2 shows the Q2 for the new in silico model compared to interspecies R2 and Q2

for in silico methods developed and tested by others [3,4].
The benchmark dataset with Fobs-data for 184 different compounds in humans and

animals (see Materials and Methods) was taken from Musther et al. [5].
With this set of data, where the majority of compounds had high human Fobs (28 and

50% of human Fobs-estimates were above 90 and 65%, respectively), there was an intercept
for Fpred vs. Fobs of 16%. For animal models, there was an underestimation trend at low
human Fobs (ca 5%, 15% and 20% for mice, rats and dogs, respectively) and overestimation
trend at high human Fobs (ca 30%, 40% and 20% for mice, rats and dogs, respectively).

Forty-eight % of in silico predictions had an absolute error of maximally 15%. For
compounds in the sets for which mouse, rat and dog data are available numbers were 57%,
49% and 47%, respectively. Corresponding estimates for interspecies differences were 36%
(mouse), 29% (rat) and 51% (dog), respectively.

Three compounds with Fobs < 15% were predicted to have an F of >50%. No compound
with Fpred < 15% had an Fobs > 50%; 86% of compounds with an Fpred > 40% had an
Fobs > 40%, and 69% of compounds with an Fpred < 15% also had an Fobs < 15%.

The median absolute prediction error was 16% (= 1.4-fold relative median error),
and the maximum fold-error was 30-fold (for the low permeable risedronate; observed
fabs = 1% and predicted fabs = 0.02%). The maximum absolute interspecies differences were
greater than the maximum absolute prediction error of the in silico method, 85–92%. The
maximum x-fold F-difference for animals vs. man was 6-fold greater than the maximum
prediction error of the in silico model.

Eight compounds had a prediction error of >50% (52–69%)—glaziovine (base; phenol;
predicted CYP3A4-substrate and MDR-1-substrate; 3.6-fold underprediction), guanfacine
(base; MDR-1-substrate; 2.8-fold underprediction), isosorbide-2-mononitrate (neutral; pre-
dicted CYP3A4-substrate; 2.3-fold underprediction) isosorbide-5-mononitrate (neutral;
predicted CYP3A4-substrate; 2.2-fold underprediction), selegiline (base; CYP3A4-substrate;
7.5-fold overprediction), tetrabenazine (base; predicted CYP3A4-substrate and MDR-1-
substrate; 11-fold overprediction), tinidazole (base; CYP3A4-substrate; uncertainty regard-
ing prediction of substrate specificity for MDR-1 and BCRP; 3.3-fold underprediction) and
zalcitabine (base; CYP3A4-substrate; 3.4-fold underprediction). A significant portion of
selected compounds were substrates for CYP3A4 and/or MDR-1, and the F for many of
these was well predicted.

3. Discussion

Results clearly show that it is possible to develop an in silico-system with fair/successful
predictive accuracy for F in man, and with broad applicability (achieved despite a signifi-
cant number of compounds with complex ADME/PK) and better performance than earlier
models that have been developed for the purpose (both lab- and in silico-based).

According to a standard set at AstraZeneca, the Q2 and % of predictions with <2-, 3-,
and 5-fold errors of the new in silico system (0.50, and 77%, 90% and 96%, respectively)
is considered acceptable/successful (acceptance/success-limits at AstraZeneca set to 0.50
(logit-transformed) and 40–50%, 60% and 75%, respectively) [2]. The animal prediction
model that was considered to be adequate by AstraZeneca had a higher degree of skewness
than demonstrated for the new human model. In our own internal validation studies with
several hundred compounds we reached a Q2 of 0.54 (reproduced in the current study)
and an intercept of only a few %.

Within the main applicability domain for the new in silico methodology (including
a molecular weight range of 100 to 700 Da), and with the pre-selected, varied dataset, it
outperformed three common animal models (mouse, rat and dog) for predicting human
clinical F (assuming that the true predictive performances of animal models match the
retrospective fits). The Q2 was clearly higher than corresponding interspecies correlations
(Figures 1 and 2; Table 1; Supplement Figure S1) and median and maximum absolute errors
were smaller and systematic error was less pronounced.
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If an Fobs of 20% in two or three animal species had been used to determine whether
or not a compound is likely to reach minimum acceptable Fobs of 20% in humans, and to
select and opt out candidate drugs for clinical development, an incorrect stop-decision
(insufficient F in animals; sufficiently high F in humans) would have occurred in 42% of
cases. This is 2.5-fold as many as would have been found if the new in silico method had
been applied. This, and the 6-fold lower maximum underprediction error, imply improved
stop/go-decisions for and reduced overexposure risks in first-time-in-man studies with the
in silico method (compared to animal models).

The performance was also better than for in silico methods developed by others [3,4].
Paixão reached a Q2 of 0.01, 47% and 66% of predictions within 20% and 35% absolute
errors, respectively, 65% of predictions <2-fold error and a 100-fold maximum prediction
error with a dataset of 68 compounds [3]. Lawless et al. (SimulationsPlus) reached a Q2

or R2 (not clear which) of approximately 0.15, 68% of predictions within 2-fold error and
maximum prediction errors >30% with a set consisting of 62 selected highly permeable and
soluble, non-disclosed compounds [4]. (Note: apparently, as demonstrated by both clinical
data and predictions, the majority of modern small drugs do not have high gastrointestinal
permeability and/or solubility. Therefore, it is likely that the predictive accuracy of the
model by Lawless et al. would be significantly lower than 0.15 if incompletely absorbed
compounds had been added to a validation set). With the new in silico methodology and a
larger and more diverse dataset (n = 156) we reached 60% and 85% of predictions within
20 and 35% absolute errors, respectively, 77% of predictions < 2-fold error and a 30-fold
maximum prediction error.

The superior performance of the new system was achieved despite the significant por-
tion of compounds with properties that are challenging/problematic for in vitro labs and in
silico methods, such as significant gut wall metabolism, bile excretion, intestinal efflux and
active intestinal uptake, high metabolic stability, and low solubility/dissolution potential.

Approximately 20% of the compounds in the dataset has significant first-pass metabolism
in the gut wall (many phenols and CYP3A4-substrates, including midazolam, saquinavir
and sildenafil). A 36-fold prediction error of the fraction escaping gut wall extraction shown
for saquinavir in an in vitro study demonstrated the challenge for in vitro methodology
to quantify and predict it [6]. With the new in silico model a 3.7-fold prediction error was
obtained for this compound.

Excretion via bile and enterohepatic circulation are also challenging to predict. The
dataset contains ca 30% of compounds excreted via bile and reabsorbed by the intestines
(including fluvastatin and rosuvastatin).

Predictions of F for compounds with both limited passive permeability and active
transport (for example efflux by MDR-1, BCRP and MRP-2 and influx by PEPT-1) and for
substances with very high lipophilicity and low solubility/dissolution potential are also
challenging for labs.

Nearly every other compound in the dataset has, or is predicted to have, significant
active intestinal influx/efflux (including many antibiotics with significant active uptake).
Results show that the new in silico methodology has adequate predictive power also for
this group of substances.

The 30-fold underprediction of the fabs and F for the low permeability compound
risedronate can be compared to maximum prediction errors found for Caco-2-permeability-
based predictions. For example, in a Caco-2-study by Matsson et al. there was an approx-
imately 60-fold overprediction of the fabs for raffinose [7]. A R2 of ca 0.6 (predicted vs.
observed fabs) was obtained for a set of 30 passively absorbed compounds without signifi-
cant in vivo solubility limitations in that study. In another Caco-2 study with 63 soluble
compounds with and without significant efflux the R2 was approximately 0.3 [8]. This is
lower than Q2-values for both F and fabs in the present study.

The selected dataset contains a portion of substances from the top list of low solubility
compounds (including azathioprine, felodipine, itraconazole and nifedipine), and their fabs
was also overall well-predicted using the new in silico system. Non-specific binding to
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plastic devices and cells, for example in the Caco-2 assay, is an obstacle for permeability-
screening of many candidate drugs. It has been demonstrated by Skolnik et al. that 1/8
and 1/2 of compounds have Caco-2-recoveries below 30% and 80%, respectively, and that
this is most pronounced for sticky, lipophilic compounds [9]. According to the authors,
poor recovery is often neglected in data interpretation. Apparently, results for problematic
compounds are often excluded from analyses of the performance of permeability-screening
methods. The new in silico system is devoid of this limitation and predicts for permeability-
and solubility/dissolution-based uptake of highly hydrophilic to highly lipophilic sub-
stances. It predicts the in vivo dissolution potential with high accuracy (Q2 = 0.57). The
Q2-estimates of models for fabs,p, fdiss, log CLint, log fu, CLbile and Cbl/Cpl were 0.8, 0.6,
0.5, 0.7, 0.45, 0.8, respectively, and the correctness of transporter (MDR-1 and BCRP) and
enzyme (CYP3A4) specificities was 0.85, 0.85 and 0.6, respectively.

Approximately 40% of the compounds in the dataset is estimated to have too high
metabolic stability for successful quantification and prediction with conventional in vitro
metabolism assays. For example, the CLint of ondansetron, prednisolone, theophylline and
metformin could not be quantified with human hepatocytes, and flumazenil, lidocaine,
metoclopramide, naloxone and prazosin had non-quantifiable CLint with human micro-
somes [10,11]. The limit of quantification of the conventional hepatocyte assay corresponds
to an in vivo CLint of approximately 500–8000 mL/min (approximately 50% and 80% of
marketed drugs have an in vivo CLint below 500 and 5000 mL/min, respectively) [11]. With
the new in silico methodology it is possible to generate CLint-estimates below 5 mL/min,
which is a major advantage over laboratories. Examples of metabolically stable compounds
include atenolol (in vivo CLint = 5 mL/min), cimetidine (in vivo CLint = 6 mL/min) and
metformin (in vivo CLint = 20 mL/min). With the hepatocyte assay the in vivo CLint of
these compounds were overpredicted by approximately 80-, >1000-, and ≥200-fold, re-
spectively [10]. The selected dataset includes metformin. Its in vivo was overpredicted by
10-fold using the new in silico methodology.

Thus, in vitro labs are expected to meet challenges with quantifying and predicting
ADME/PK of a significant portion of compounds in the selected dataset. The new in silico
system can be utilized to generate missing values in such cases.

The new in silico methodology also has limitations. Absolute prediction errors of
52–69% for F found for some compounds need to be highlighted. These compounds
are mainly confirmed and/or predicted CYP3A4-substrates and anticipated to undergo
first-pass extraction in the gut-wall. Some of them are also confirmed and/or predicted
MDR-1-substrates. The maximum absolute interspecies differences were, however, greater
than the maximum absolute prediction error of the in silico model, 85–92%.

There are groups of compounds for which the in silico model does not work (metals
and quaternary amines), have limited use (hydrolysis sensitive compounds, for which
metabolism cannot be well predicted) and is more uncertain (compounds with molecular
weight <100 and >700 Da) and that have the potential/capacity to modulate blood-flows
and PK (changed metabolism). In such cases, additional laboratory data are required or
useful in order to generate PK data for clinical predictions.

Out of 184 compounds in the dataset, 27 compounds (15%) were outside the main
applicability domain for the F-model. Estimates could, however, be generated for all
except 2 compounds (a metal and a quaternary amine). For 20 of the 27 compounds
excluded from the F-analyses fabs could be predicted well (Q2 = 0.77) (Supplementary
Table S2). The percentage of compounds outside the main applicability domain was equal
to the percentage of non-predictable found for the rat model developed at AstraZeneca
(15%) [2], but lower than for the conventional hepatocyte model (48% in a study by Stringer
et al. [11]) and various laboratory methods used within the pharmaceutical industry
(16–82%) [12]. In validation and correlation studies of in vitro methods, the portion of
challenging compounds is typically kept low. In hepatocyte prediction studies by Sternbeck-
Sohlenius et al. and Yamagata et al. only approximately 5–10% of selected reference
compounds had low in vivo CLint (compared to approximately 50–80% of marketed drugs)
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and in vitro CLint (< limit of quantification) [10,13]. In Caco-2-studies by Matsson et al.
and Lin et al., compounds with low solubility/dissolution potential were excluded, and
the former of these studies was done without including compounds with significant active
transport [7,8].

The new in silico model is very useful in cases where laboratories fail, and for pre-
dicting when laboratory methods are likely to have problems and fail. This, and the
overall higher predictive accuracy vs. animal data based predictions, is believed to have
significant impact on predictions of exposures and doses in early clinical studies with new
drug candidates.

4. Materials and Methods

Here we describe a new model where Fpred in humans is predicted directly from
chemical structure using support vector machine (SVM) and partial-least squares (PLS)
models, new algorithms and a new integrated physiologically-based pharmacokinetic
(PBPK) system. We applied it on a benchmark dataset consisting of 184 compounds and
compared its performance vs. published dataset of in vivo Fobs in mice, rats and dogs vs.
humans [5].

4.1. Feature Extraction

The core of our method for prediction of Fpred in humans consists of a set of 14 models
integrated to one (see Table 2).

4.2. Quantitative Structure–Activity Relationship (QSAR)/Support Vector Machine (SVM) Model
Development

For Models M1-M3, the quantitative structure–activity relationship/support vec-
tor machine (QSAR/SVM) models were developed using the Bioclipse software pack-
age [14,15] with chemical structures represented using signature descriptors [16], machine
learning modeling using a SVM via the libSVM package [17].

A radial basis function (RBF) kernel was used and a g grid search was performed to
estimate the gamma and cost parameters for SVM optimizing for accuracy in a 10-fold cross
validation (CV) [18]. A 10-fold cross validation was performed to assess model performance.

For Models M4-M9, QSAR/PLS modelling was applied to develop regression-like
models for the different ADME-related endpoints using signature descriptors, and partial
least square discriminant analysis (PLS-DA) for classification models (SIMCA 16 [19]). The
predictive power of the resulting models was validated by a 10-fold cross validation proce-
dure, which we normally use in our work and which also appears to be common/default
in this field.

M1–M9 (with 4 to 8 components/dimensions) were trained either with QSAR/PLS
or QSAR/SVM, not both, and hence there is only one result per model. The application
domains for these models were beyond that of the proposed benchmark set for validation
of new experimental techniques or in silico models—log P −6.4 to 7.6, log D −10.6 to 12.3,
0 to 19 hydrogen bond donors, and 0 to 19 hydrogen bond acceptors [20].

For Models M10-M12, the structural alerts, based on ocular analyses of the molec-
ular fragments (phenol groups) and known compound class (quinolones, beta-lactam
antibiotics), were implemented.

Models M13–14 are PBPK models used for integration of Models M1-M12. The gastroin-
testinal absorption and extraction model (M13) takes the maximum solubility/dissolution
potential in the human gastrointestinal tract following oral dosing (fdiss; M5), passive
permeability-based fractional absorption (fabs,p; M1), active uptake (for quinolones and
beta-lactam antibiotics; M11 and M12), efflux (by MDR1 and BCRP; M6 and M7), CLint (M2)
of CYP3A4-substrates (M3) and phenols (M10) in vivo into consideration for prediction of
the fraction of dose absorbed from the intestines and transported unchanged across the
gut-wall (Fint).
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Table 2. The 14 models and algorithms that were integrated to predict oral bioavailability in humans (Fpred).

Model Predicted
Property Acronym Model Type (Number of

Components) Description

M1
Passive intestinal

permeability-based
fraction absorbed

fabs,p QSAR 1/SVM 2 (6)

Predicts passive intestinal
permeability-based fraction absorbed
in vivo in man (not considering active

transport, solubility or instability in
gastrointestinal fluids)

M2 Intrinsic hepatic
metabolic clearance CLint

QSAR/SVM
(5)

Predicts intrinsic hepatic metabolic
clearance in vivo in man (phase I

metabolism and conjugation)

M3 CYP3A4-specificity QSAR/SVM (5) Predicts the substrate specificity for
CYP3A4 (yes/no)

M4 Fraction unbound in
human plasma fu QSAR/PLS 3 (7)

Predicts in vitro fraction unbound in
human plasma

M5
Maximum in vivo

solubility/dissolution
potential

fdiss QSAR/PLS (5)

Predicts the maximum
solubility/dissolution potential in the
human gastrointestinal tract in vivo

following oral dosing

M6 MDR-1-specificity QSAR/PLS-DA 4 (4)
Predicts the substrate specificity for

MDR-1 (yes/no)

M7 BCRP-specificity QSAR/PLS-DA (5) Predicts the substrate specificity for BCRP
(yes/no)

M8 Biliary CL CLbile QSAR/PLS (6) Predicts the biliary clearance in vivo in
man

M9 Blood-to-plasma
ratio Cbl/Cpl QSAR/PLS (8) Predicts the blood-to-plasma

concentration ratio

M10 Phenol detection Structural alerts
Phenol groups are used for selecting a

different method for prediction of
gut-wall extraction

M11 Quinolones
detection Structural alerts

Quinolones generally require
consideration of active

intestinal uptake

M12 Beta-lactam
antibiotics detection Structural alerts Beta-lactam antibiotics generally require

consideration of active intestinal uptake

M13
Intestinal absorption
and extraction in the

gut-wall
PBPK 5

Algorithms for integrating mechanisms
involved in intestinal absorption and gut
wall extraction (fabs, fdiss, active uptake,

efflux by MDR1 and/or BCRP,
degradation by CYP3A4 and/or

conjugating mucosal enzymes) and
prediction of

fraction of dose absorbed across the
intestinal mucosa

M14 Extraction in the
liver PBPK

Algorithms for integrating mechanisms
involved in liver

extraction (CLint, fu, Cbl/Cpl, CLbile, liver
blood flow; well-stirred liver extraction

model) and prediction of fraction
extracted by the liver

1 Quantitative structure–activity relationship (QSAR); 2 Support vector machine (SVM); 3 Partial least squares regression (PLS); 4 Discrimi-
nant analysis (DA); 5 Physiologically-based pharmacokinetic (PBPK).
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The subsequent liver extraction model (M14), based on the classical well-stirred model
with a liver blood flow rate of 1500 mL/min, CLint (M2), unbound fraction in plasma (fu;
M4), blood-to-plasma concentration ratio (Cbl/Cpl; M9; used together with fu to estimate
the unbound fraction in blood) and biliary CL (CLbile; M8), is used to predict the fraction of
compound entering the liver that escapes first-pass extraction by the liver (Fliver). Finally
(the integrated model for Fpred), Fpred = Fint × Fliver, where Fint = fabs (considering fdiss and
passive uptake and active transport) × fraction escaping gut-wall extraction (M13) and
Fliver = (hepatic CL + CLbile)/liver blood flow (M14).

All predictions were forward-looking predictions, where compounds were treated as
unknown for the models used.

4.3. Data Collection

The dataset collected and analyzed for the study consisted of Fobs in humans and
animals for 184 compounds with varying physicochemical and PK properties (from Mus-
ther et al. [5]; see Supplementary Table S1)—bases, neutrals, acids, zwitterions, antibiotics
(many with significant active intestinal uptake), phenols (often significant gut-wall extrac-
tion), substrates for efflux transporters, CYP3A4 and bile excretion, log P ranging from −6
to 5, fabs ranging from 1–2% (the low permeability compounds risedronate and acarbose)
to 100% (e.g., diazepam), fu ranging from 0.1% (naproxen) to 100% (e.g., ifosfamide), CLint
ranging from 5 mL/min (fluconazole) to ca 100,000 mL/min (saquinavir), and low in vivo
fdiss (azathioprine, felodipine, itraconazole and nifedipine) to high solubility/dissolution
potential (e.g., zolpidem). The majority of compounds had high human fabs (78% of com-
pounds had an fabs of 80% or greater) and Fobs (28 and 50% of human Fobs-estimates were
above 90 and 65%, respectively).

For quality control, Fobs-data in the dataset were compared to those obtained by
others [21]. Apparently, erroneous Fobs-values (fabs is sometimes mistaken for F) were
replaced, and in case sources contained significantly different estimates a mean value was
calculated and used.

Twenty-seven of the 184 compounds were excluded from the analysis beforehand
as these are outside the main applicability domain for the F-model. These are groups
of compounds for which it does not work (metals and quaternary amines), have limited
use (cannot predict the stability, fabs and F of hydrolysis sensitive compounds) and is
more uncertain (compounds with molecular weight <100 and >700 Da) and that have the
potential/capacity to modulate blood-flows and (indirectly) also the PK (such as calcium-
blocking agents) (Supplement Table S2). M1–M9 were developed based on available
human data for marketed drugs not excluded due to these properties. One compound
was excluded because of non-applicable available SMILES (simplified molecular-input
line-entry system) (Supplementary Table S2).

For 28, 101 and 106 of the selected compounds with human Fobs-estimates, Fobs data
were also available in mice, rats and dogs, respectively.

4.4. Performance Evaluation

Fpred was compared with Fobs on the 156 compounds in the benchmark dataset using
Q2 and R2 metrics. Prediction errors, as well as interspecies differences, were presented
as median and maximum relative (Fpred/Fobs or Fobs/Fpred) and absolute errors (Fpred-
Fobs or Fobs-Fpred) and % of predictions within certain limits (for example, <15% absolute
prediction error). Prediction results were compared with results for interspecies differences,
both in total and head-to-head (with same sets of compounds).

5. Conclusions

In conclusion, the new in silico methodology had adequate predictive power and
range and outperformed animal models within the main applicability domain. It also
seems to have significant advantages vs. in vitro methods. Thus, it is now possible to
reduce animal use and laboratory studies, improve safety and dose-setting and (potentially
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also) reduce attrition risk in clinical studies, and obtain sufficiently reliable F-estimates
for decision making and optimization already at the drug design stage. This is a major
improvement, which also gives significant advantages regarding costs, cost-efficiency,
productivity and time.

Supplementary Materials: The following are available online, Figure S1: Observed oral bioavail-
ability in man vs. mouse, rat and dog, Table S1: Predicted and observed oral bioavailability (F) in
man for the selected compounds, Table S2: Compounds excluded beforehand for prediction of oral
bioavailability (F) and their predicted and observed fraction absorbed (fabs).
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