
molecules

Article

Prediction of Chromatography Conditions for Purification in
Organic Synthesis Using Deep Learning
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Abstract: In this research, a process for developing normal-phase liquid chromatography solvent sys-
tems has been proposed. In contrast to the development of conditions via thin-layer chromatography
(TLC), this process is based on the architecture of two hierarchically connected neural network-based
components. Using a large database of reaction procedures allows those two components to per-
form an essential role in the machine-learning-based prediction of chromatographic purification
conditions, i.e., solvents and the ratio between solvents. In our paper, we build two datasets and
test various molecular vectorization approaches, such as extended-connectivity fingerprints, learned
embedding, and auto-encoders along with different types of deep neural networks to demonstrate a
novel method for modeling chromatographic solvent systems employing two neural networks in
sequence. Afterward, we present our findings and provide insights on the most effective methods
for solving prediction tasks. Our approach results in a system of two neural networks with long
short-term memory (LSTM)-based auto-encoders, where the first predicts solvent labels (by reaching
the classification accuracy of 0.950 ± 0.001) and in the case of two solvents, the second one predicts
the ratio between two solvents (R2 metric equal to 0.982 ± 0.001). Our approach can be used as a
guidance instrument in laboratories to accelerate scouting for suitable chromatography conditions.

Keywords: deep learning; chromatography; neural networks; machine learning; solvent prediction;
organic synthesis; purification

1. Introduction

Cheminformatics is a rapidly evolving field, especially with modern machine-learning
algorithms. Big data and GPU-accelerated algorithms present solutions to routine problems
faced by organic chemistry specialists. Organic chemistry is beneficial for such fields as
medicine, biochemistry, biotechnology, pharmaceutical, agrichemical, and others, con-
stantly shaping human life and our society [1]. In practice, chemistry presents unique
challenges due to the enormous chemical space size of synthetically feasible molecules
(<500 Da) that is [2,3]. Various approaches have been offered to tackle challenging problems
(such as optimization of chemical reactions, retrosynthesis, or drug design). However,
outdated rule-based prediction algorithms [4,5] have been recently replaced with machine
learning [6], as in [7–10]. Rapid and lower-cost production of new synthetic molecules
has recently received a lot of interest from the chemists’ research community, especially
with the advent of AI-assisted drug discovery [11,12]. However, a significant bottleneck
for the production of novel compounds is purification, which can be accelerated with
AI-based solutions. In this paper, we focus on the laboratory technique, namely chromatog-
raphy which is used to purify compounds by separating a chemical mixture. Although this
method is widely used in organic synthesis, its drawback is the need to identify appropriate
conditions: solvents and the ratio between solvents. Traditionally, the process of scouting
suitable chromatography conditions is performed by manually testing series of solvent
combinations and ratios between them using thin-layer chromatography (TLC) as the
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primary tool. The objective of this paper is to develop an effective methodology based on
modern machine-learning algorithms for modeling of solvent systems and ratio between
solvents used for chromatographic purification. Two novel datasets were created for this
task that contain a wide variety of reaction types and are not related to a limited range
of compounds. In our paper, we test three vectorization methods (extended-connectivity
fingerprints, learned embedding, auto-encoders) and three types of deep neural networks
(feed-forward neural network (FFNN), convolutional neural networks (CNN), long short-
term memory (LSTM)). The main advantage of such a tool is the ability to facilitate the
scouting of acceptable purification conditions that may lead to higher throughput in labo-
ratories. Also, fewer solvents and materials could be used when manually scouting using
TLC. Our research is based on the premise that the prediction of chromatography conditions
can be transferred from the artificial environment to the real with deep neural networks
(DNNs). Similar premises have been investigated, e.g., prediction of the retention time for
the peptide chromatography with DNNs [13,14] have already led to very successful results.
Prediction tasks are only accurate if machine learning is performed in a supervised manner
and only if enough quantity and quality of training data are available. Big noise-free and
diverse data is needed to reflect various experimental conditions and assure high accuracy
levels; unfortunately, such datasets are often proprietary or do not exist.

2. Related Work

In our paper, we focus on the purification of final products because it is an essential
element of successful synthesis and ubiquitous to various industries. Traditional methods
for liquid separation (such as liquid/liquid extraction) have some disadvantages: low
efficiency and flux increase time and cost of separation [15]. A mixture separation technique
known commonly as column chromatography is often used [16]. The method is useful for
the purification of various mixtures of organic synthesis [17].

To facilitate the process of chromatographic purification, various approaches for the
prediction of retention time have been used, ranging from simple log-P-based models [18]
to more complex models based on artificial neural networks [19]. Retention time modeling
is one of the methods for scouting suitable chromatographic conditions by predicting how
much time is taken for a compound to pass through the chromatography column. Deep
learning has been used to predict the retention time of peptides [13] and steroids [20]. Other
machine-learning methods such as multiple linear regression [21], partial least squares
regression [22], support vector machine [23] also have been tested and achieved a consider-
able level of accuracy. A distinction between global and local modeling is important and
has been clarified in a review paper [24]. Local modeling can relate to a limited range of
solvent compositions or to a limited range of analytes for which the model is suited. Global
models that can accurately model a wide range of solvent compositions and analytes are
generally more useful; however, they require more data and are more complex. Direct
prediction of solvent systems suitable for chromatography conditions is a different method
of modeling chromatographic techniques. Multiple linear regression algorithm has been
used for prediction of the solvent system of counter current chromatography and was
found accurate for 9 out of 21 bi-phasic solvent systems [25].

In recent years, deep learning has emerged as one of the effective supervised machine-
learning solutions with a wide variety of applications. Chemical compounds are vectorized
to become a suitable input for the machine-learning algorithms to process. Various molec-
ular representation methods have been implemented, simpler methods such as one-hot
encoding [26,27] or vectorization of bond strings [28]. Molecular descriptors have also
been shown to be useful for the representation of compounds [29,30]. More complex
methods used with ANNs have been implemented to represent structures in latent space
with the use of auto-encoders [31], variational encoders [32], conditional variational auto-
encoders [33], and other unique methods such as Attentive fingerprints (FP) that uses
a graph attention mechanism [34]. However, it is important to notice that there is no
consensus on which vectorization method is the best: different methods are the best for
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different tasks. Morgan fingerprints or extended-connectivity fingerprints (ECFP) [35]
have been used to vectorize molecules which then are used with deep neural networks to
predict reaction outcomes [36]. The long short-term memory (LSTM) method with memory
and feedback connections between cells is suitable for training on sequences and therefore
used in a sequence to sequence (seq 2 seq) approaches for chemical synthesis pathway
design [37]. In addition, convolutional neural networks (CNNs) were successfully used to
evaluate chemical molecules by first producing a digital image of the structure and later
feeding it to the neural network to classify it [38]. Similar to vectorization methods, the
optimal types and topologies of neural networks used in the field of organic synthesis are
very dependent on the task.

In summary, modeling of chromatographic conditions is usually done by predicting
the retention time of the compounds within a mixture. However, it is essential that the
structure of molecular impurities is known, and additional computation is required to
produce a specific solvent system for purification. However, organic synthesis reaction mix-
tures more than often include by-products that are formed during synthesis which cannot
be directly identified. Therefore, a system that can produce predictions for chromatography
conditions must at least to some degree intrinsically approximate possible by-products in
the reaction mixture. D. M. Lowe’s dataset [39] used in our research is extracted from US
patents contains data about organic synthesis reaction compounds and chromatographic
conditions used for purification of synthesis mixtures. We have used the unstructured text
data to build two new datasets for modeling of solvent system and the ratio of solvents
used for chromatographic purification. In our paper, we test three vectorization types along
with different types with neural network modification to demonstrate a novel method for
modeling chromatographic solvent systems employing two neural networks in sequence.
Since our system’s input is compounds of the reaction, not the compounds of the resultant
mixture, a difficult step of identifying impurities in the laboratory is not required. This
unique feature provides an opportunity to directly predict the solvents and the ratio be-
tween solvent used in the process of chromatographic purification, which can facilitate the
scouting of chromatographic conditions.

3. Formal Definition of Tasks

In this research paper, we are solving two tasks:

• Task No. 1: Prediction of the solvent labels that make up the solvent system for
chromatographic purification.

• Task No. 2: Prediction of the ratio between solvents if two solvents are used.

These tasks can be formally defined as follows:

Task No. 1 (Multiclass Classification) Task No. 2 (Regression)

Input
Let a chemical reaction be denoted as di and belong to a space of chemical
reactions di ∈ D. Each di can be converted into a p-dimensional feature
vector Xi = (xi,1, xi,2, . . . , xi,p)

Output
Let Y = {y1, y2, . . . yN} be a label space of
size N that represents possible solvents

(class) labels

Let γi ⊆ [0, 1] be a continuous
variable which represents the

ratio between the solvents

Prediction function
Let η be a function that η(X)→ Y correctly predicts

a set of solvents labels a ratio between solvents

Method
Let Γ be a machine-learning algorithm that finds an approximation η′

(model) of a function η when given a learning dataset DL ⊂ D

Both tasks aim to find the closest approximation (a model) η′ of function η that
produces the most accurate predictions on the testing dataset DT ⊂ D. The training DL

and testing DT datasets are not overlapping in our experiments (DL ∩ DT = ∅) and DT is
composed to have enough diversity of chemical reactions and their correct distribution
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in the space. Due to both reasons, we can assume that the evaluation results on DT will
indicate how accurate the model is for unseen instances: i.e., on D–DL–DT.

4. The Data

The dataset for deep learning has been created using Daniel Mark Lowe’s and
NextMove’s open-source collection of chemical reactions extracted from US patents issued
from 1976–2016 [39]. It is composed of 3.7 million reactions in simplified molecular-input
line-entry system (SMILES) notation, synthesis descriptions, and additional information.
Synthesis description is a paragraph of text that specifies what actions are taken to perform
the synthesis. The dataset is a structured XML file, whereby all synthesis instructions
are expanded into separate actions by segmentation of relevant parts of the paragraph
that relate to the action. Employing this structure, we have been able to use the data of
a particular synthesis step, so-called purification to form datasets, whereby an object—a
chemical reaction is described by solvents (nominal labels) used in the purification step
and by the ratio between solvents. Only reactions that have employed normal-phase
chromatographic purification have been used in our experiments. Table 1 illustrates a
few examples of the synthesis instruction paragraph segment (purification) in the raw
text column. Other columns Solvents and Ratio present the extracted labels and the ratio
between solvents, respectively. One or two solvents in the purification step are commonly
used in reactions (which represents 95.57% of all cases in our dataset). The rest of the cases
(with three or more solvents) are too rare to form a sufficient subset for training a machine-
learning algorithm. The required data extraction was performed by a custom-made script
that first compiled a list of all used solvents in the chromatographic purification and then
automatically matched it to the raw text.

Table 1. An example of the extracted data from the purification step within the synthesis instruction.
Regions in bold text draw attention to the exact parts that were extracted.

Raw Text Solvents Ratio

the residue is chromatographed on silica gel with hexane/ethyl
acetate 9:1

Hexane,
ethyl acetate 9:1

the residue was purified by column chromatography on silicagel
with ethylacetate/methanol (1:1)

Ethyl acetate,
methanol 1:1

the residue was chromatographed rapidly on 300 g of silica gel 60
eluting with ethyl acetate/hexane (2:3 parts by volume)

Hexane,
ethyl acetate 2:3

All instances in datasets are chemical reactions expressed with sequences of symbols
representing reactants’ chemical structure and reaction products. The simplified molecular-
input line-entry system (SMILES) [40] allows for the graph-like structure of a molecule
to be written in one line of symbols. Each individual molecule is separated by “.” a dot
symbol. Figure 1 illustrates an example of a chemical reaction with a graphical picture
of molecules and how it appears in the datasets as a symbol sequence that denotes three
molecules separated by a dot. Three molecules: reactant 1-CC(C)(C)OC(N(C)C)N(C)C,
reactant 2-C/C = C/OC(C) = O, product-C/C = C/OC(/C = C/N(C)C) = O are separated by a

“.” dot symbol.



Molecules 2021, 26, 2474 5 of 24Molecules 2021, 26, 2474 5 of 25 
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Table 2 contains snippets from datasets DS1 and DS2 (their inputs and outputs). DS1 
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the other is calculated (1 − 0.9 = 0.1). Binary labels have only one format. For example, only 
ethyl acetate and hexane exist while hexane and ethyl acetate does not. Therefore, when a 
solvent system of ethyl acetate and hexane is predicted with the ratio of 0.9, it indicates 
the value for the first label as they appear in the dataset. Ethyl acetate would be 0.9 and 
hexane 0.1 (1 − 0.9 = 0.1). This makes the output value of the ratio a single continuous value 
and reduces the complexity to achieve higher accuracy. In essence, the prediction of both 
ratio components would be redundant and could lead to a more complex regression task. 
Hence, the normalization reduces the calculation complexity, makes the output more suit-
able and stable for supervised machine-learning algorithms, but at the same time does not 
distort the data. 
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the vectorization (di). 
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OCc(cc1)cc2c1OCO2.BrCC = CCBr.[Na].BrCC = 
CCOCc(cc1)c1OCO2 
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OCc(cc1)cc2c1OCO2.BrCC = CCBr.[Na].BrCC = 
CCOCc(cc1)c1OCO2 2:3 

In total, the dataset DS1 consists of 454,259 instances (di), with a split of 10% as the 
testing dataset (45,426 instances) and 90% as the training (408,833). Each instance has ei-
ther one or two solvent labels (~1.8 labels on average per instance). DS1 contains ten labels 
(acetone, ethanol, hexane, toluene, petroleum ether, methanol, chloroform, ethyl acetate, 

Figure 1. A graphical representation of the reaction and its notation in SMILES. This relation maps
SMILES encoding segments into corresponding molecules.

Two datasets named DS1 and DS2 were created for tasks No. 1 and No. 2 (described
in Section 3), respectively. The necessity of two datasets (created from the original one)
is based on the fact that we are solving two different tasks that have different outputs.
Only labels of solvents and ratios between solvents are needed, but other contextual text
information is irrelevant to the solving tasks. Thus, the DS1 dataset is used to train a
model for the prediction of solvents used in chromatographic purification (corresponds to
task No. 1 in Section 3), while DS2 is used to train a model for the prediction of the ratio
between solvents (task No. 2 in Section 3). Datasets are described in more detail in this
section below.

Table 2 contains snippets from datasets DS1 and DS2 (their inputs and outputs). DS1
and DS2 both have a sequence of molecules in SMILES notation as inputs. DS1 has solvent
labels as outputs. DS2 has a single continuous output variable that describes the ratio
between the solvents. The ratio is normalized by dividing each number by a sum of both.
For instance, the ratio of 9:1 is scaled to 0.9:0.1. A sum of both normalized values is always
equal to 1 (0.9 + 0.1 = 1), which means that only one value needs to be predicted, (0.9) and
the other is calculated (1− 0.9 = 0.1). Binary labels have only one format. For example, only
ethyl acetate and hexane exist while hexane and ethyl acetate does not. Therefore, when a
solvent system of ethyl acetate and hexane is predicted with the ratio of 0.9, it indicates
the value for the first label as they appear in the dataset. Ethyl acetate would be 0.9 and
hexane 0.1 (1 − 0.9 = 0.1). This makes the output value of the ratio a single continuous
value and reduces the complexity to achieve higher accuracy. In essence, the prediction of
both ratio components would be redundant and could lead to a more complex regression
task. Hence, the normalization reduces the calculation complexity, makes the output more
suitable and stable for supervised machine-learning algorithms, but at the same time does
not distort the data.

Table 2. The table illustrates examples from DS1 (the first one) and DS2 (the second one) before the
vectorization (di).

Dataset 1 (DS1)

Input Output (Labels)

OCc(cc1)cc2c1OCO2.BrCC = CCBr.[Na].BrCC = CCOCc(cc1)c1OCO2 Hexane,
ethyl acetate

Dataset 2 (DS2)

Input Output (Ratio)

OCc(cc1)cc2c1OCO2.BrCC = CCBr.[Na].BrCC = CCOCc(cc1)c1OCO2 2:3

In total, the dataset DS1 consists of 454,259 instances (di), with a split of 10% as the
testing dataset (45,426 instances) and 90% as the training (408,833). Each instance has
either one or two solvent labels (~1.8 labels on average per instance). DS1 contains ten
labels (acetone, ethanol, hexane, toluene, petroleum ether, methanol, chloroform, ethyl
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acetate, dichloromethane, diethyl ether) for solvents. In total, there are 52 possible unique
combinations: 10 single labels and 42 two label sets. The dataset is imbalanced and the
top 5 most common label sets are ethyl acetate and hexane, ethyl acetate, methanol and
dichloromethane, dichloromethane, chloroform, and methanol. Table 3 represents the
distribution of instances over different class labels of the training and testing subsets
in DS1.

Table 3. Distribution of instances over different class labels (DS1).

Class Label Training Subset
(Number of Instances)

Testing Subset (Number
of Instances)

Total (Number
of Instances)

Ethyl acetate 255,251 28,361 283,612

Hexane 155,858 17,318 173,175

Dichloromethane 85,643 9516 95,159

Methanol 84,626 9403 94,029

Chloroform 31,582 3509 35,091

Petroleum ether 16,964 1885 18,849

Diethyl ether 7943 883 8825

Toluene 7636 848 8484

Acetone 6139 682 6821

Ethanol 3424 380 3804

The trained models are only considered reasonable if the testing dataset’s accuracy
exceeds random (Equation (1)) and majority (Equation (2)) baselines. The random baseline
naively determines the accuracy boundary based on probabilities of classes Yi in the dataset.
The majority baseline determines the accuracy when all instances are attached to the major
class Ytop.

Random baseline =
n

∑
i=1

(
P(Yi)

2
)

(1)

n—dataset size, (P(Yi))—the probability of Yi class.

Majority baseline = max
(

P
(
Ytop

))
(2)

Random and majority baselines for the DS1 dataset are equal to 0.172 and 0.313,
respectively. Since the majority baseline is higher (compared to random), the goal of our
research is to exceed it.

The dataset DS2 consists of 272,329 number of instances (di), with a split of 10% as
the testing dataset (27,233 instances) and 90% of the training dataset (245,096 instances).
Dataset DS2 is smaller because it is only used to predict the ratio for binary systems. DS1
contains examples that have one or two solvent labels. In the case of a single solvent
systems, ratio is not needed. The total number of instances of DS1—454,259. The number
of one solvent systems in DS1—180,669. This leaves: 454,259–180,669 = 273,590 binary
systems. DS2 contains the ratio of the binary solvents (272,329). The number on binary
systems (around 1000) was not used due to inaccurate extraction from the original dataset,
for example, the ratio being 0:1 or 0:0). Table 4 presents descriptive statistics about the
dataset DS2. Because the target value of task No. 2 is a float variable, the dataset is
described using different statistical characteristics such as mean, standard deviation (Std),
minimum (Min), and maximum (Max) values. In addition, 25%, 50% and 75% quartiles are
included. Values of the same metrics are similar for training and testing subsets, which
assures similar training/testing conditions.
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Table 4. Descriptive statistics about dataset DS2.

Dataset 2

Training Subset Testing Subset Total

Numb. of instances 245,096 27,233 272,329

Mean 0.356 0.355 0.356

Standard deviation 0.306 0.304 0.306

Minimum value 0.001 0.001 0.001

25% quartile 0.100 0.100 0.100

50% quartile 0.250 0.250 0.250

75% quartile 0.500 0.500 0.500

Maximum value 0.998 0.998 0.998

For task No. 2, regression problem, two baseline metrics were calculated using central
tendency measures, mean baseline, and median baseline. Baseline metrics have been
evaluated by taking mean and median separately of the testing dataset and calculating MSE
with the testing dataset using formulas (Equations (3) and (4)) where y−mean, ỹ−median.
In contrast to task No. 1, the goal is to create models with lower MSE scores than mean
and median baselines.

Mean MSE baseline =
1
n

n

∑
i=1

(y− yi)
2 (3)

Median MSE baseline =
1
n

n

∑
i=1

(ỹ− yi)
2 (4)

Mean MSE baseline = 0.094, Median MSE baseline = 0.105.
Despite all reactants and products of the reaction being combined into a sequence, the

neural network model must be independent of all possible permutations. For example, the
order of reactant 1, reactant 2, reactant 3, can be changed to reactant 2, reactant 1, reactant 3, etc.
Since it is entirely unclear in what order separate molecules will be presented to the models,
they must be prepared to predict correctly in any case. For this reason, created datasets were
augmented with the new instances by permuting sub-strings (molecules) for all objects
in the dataset. To control the exponential growth of new instances, we have restricted
the maximum permutation number per instance to the range of [2–7]. After additional
analysis, this value was set to 5. The lower values could not sufficiently cover typical forms
of inputs, whereas the higher values generated redundant instances. Redundant training
instances usually lead to overfitting and a decrease in the model’s accuracy.

5. Materials and Methods
5.1. Vectorization

For supervised machine-learning algorithms, the input data must be a matrix or a
vector containing numeric values. In our case, the symbolic line representing chemical
structure in SMILES notation must also be transformed into a form compatible with the
input layer of a DNN. Our investigated embedding types:

• Learned Embedding (LE). An object’s attributes—chemical structures in SMILES
notation are concatenated into one line of symbols with a dot as their separator. The
downstream supervised machine-learning task symbol representations (embeddings)
can be learned jointly. 56 unique symbols are used in the SMILES representation and
they all must be represented with N-dimensional vectors. N was set to 12 because
larger values did not increase the accuracy in the preliminary experiments. Not to
lose the input information, the maximum length of a symbol sequence was set to
200. Thus, the embedded 2D vector for any input sequence consisted of 200 rows
(one row per symbol) of 12 vector values each. In short, each of 56 unique symbols is
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embedded with vectors of 12 dimensions that are trained the same way as weights
are trained in a neural network. For a single instance, a matrix 200 × 12 is formed
by looking up the symbol and its vector and later combining them into a matrix [41].
Some key advantages of a learned embedding type are the following: (1) encoding is
fast, as it does not require any additional processing if compared to, e.g., fingerprints
or descriptors; (2) embedding vectors are jointly learned with the training model,
therefore complements each other well; (3) compared to one-hot encoding, learned
embeddings provide a more uniform and less sparse vectorization which may extract
more features of the molecular compounds.

• Extended-connectivity fingerprints (ECFP). Morgan fingerprints or extended-connectivity
fingerprints (ECFP) [42] are representations of molecular structures explicitly created
to capture chemical features. ECFPs are a variant of the Morgan algorithm that solves
the molecular isomorphism problem, where two molecules numbered differently
should produce the same fingerprint vector. ECFPs are very useful for the repre-
sentation of topological structural information and have been used in a diverse set
of applications, such as virtual screening [42], activity modeling [43], and machine
learning [44–46]. Since the maximum number of molecules participating in a single
reaction is 8, it results in an 8 × 512 matrix composed for every reaction. The main
features of ECFPs are that they represent the presence of particular substructures
by means of circular atom neighborhoods. ECFPs represent both the presence and
absence of functionality, which are significant for extracting the molecule’s features.
This results in a more informative vectorization method. Compared to the one-hot
encoding method able to encode only characters or symbols, ECFPs encode fragments
of the molecular structure.

• ECFP auto-encoder (ECFP + E). Auto-encoders have been offered as the dimensional-
ity reduction solution for rather large and sparse matrices of extended-connectivity
fingerprints. The auto-encoder consists of two connected neural networks called en-
coder and decoder. Training of a neural network works by taking in ECFPs and trying
to reproduce the same fingerprints using a bottleneck layer called a latent space. Later,
encoder weights are transferred into a separate neural network. During the training,
each instance passes the encoder layer and is compressed to the latent layer’s size.
It is even hypothesized that an auto-encoder can denoise the data by learning only
the key features representing a specific reaction. The main advantage of an encoder
is that it learns how to map the larger multiple molecules input into smaller vectors
during the training phase. This action forces the encoder to detect relevant ECFP parts
and disregard irrelevant, which, in turn, may lead to higher accuracy. Auto-encoders
were also proved to be successful for the dimensionality reduction in the QSAR
(Quantitative structure-activity relationship) modeling [47]. Furthermore, we present
approaches (including encoder-decoder parts, topologies, and hyperparameter values)
used to develop auto-encoders for vectorization. Three types of auto-encoders were
constructed and investigated: (1) feed-forward, (3) 1DCNN, and (2) LSTM. Two types
of input formats were used: (1) an unchanged ECFP with a size of 8 × 512 for LSTM
and 1DCNN auto-encoders; (2) a flattened ECFP of size 1 × 4096 with a feed-forward
auto-encoder for feed-forward. These input types were used to simplify encoders’
topology: i.e., the feed-forward auto-encoder does not require an additional flattening
layer if the input is a one-dimensional vector. The latent dimension size, which is
the key auto-encoder’s parameter, was set to 512. Out of tested latent dimensionality
sizes (32, 64, 128, 256, 512) in the preliminary experiments, 512 produced the most
accurate reconstructions and at the same time assured significant compression by
8 times compared to the vector size (4096) of the initial input. Binary cross-entropy
loss function was used for the training of auto-encoders. Topologies of auto-encoders
were selected experimentally based on the lowest loss scores on the testing dataset.
These experiments helped us to end up with an exact parameter set for this particular
vectorization type. The tuning of parameters was performed separately with each
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classification method. The optimization of parameters was performed by testing all
values of the selected parameter, setting the best determined one, and then iteratively
advancing to the optimization of the following parameter. Deep auto-encoders have
been constructed by stacking feed-forward layers with different numbers of neurons
(16, 32, 64, 128, 256, or 512). However, these deeper architectures underperformed
shallow auto-encoders, therefore, were not selected for our further experiments. The
investigation of the 1DCNN auto-encoder included the addition/removal of convolu-
tional layers (with sizes of 8, 16, 32, 64, 128, 256), their kernels (with sizes from 2 to
20), and pooling layers (with sizes of 2, 3, 4, 5). The experiment investigating revealed
the optimal topology containing three convolutional layers of sizes (256, 128, 64 in
sequence with kernel sizes of 12, 10, 10) and pooling layers of sizes (2, 2, 2). Various
LSTM auto-encoders were tested by stacking LSTM layers with different numbers of
neurons (16, 32, 64, 128, 256, or 512). However, deeper architectures underperformed
shallow auto-encoders. Figures A1–A3 (Appendix A) illustrate the topologies and
sizes of layers of all three previously described auto-encoders (Feed-forward, LSTM,
and 1D CNN). Figure A1 (Appendix A) represents feed-forward auto-encoder with a
flattened input of 4096, one latent layer size of 512; Figure A2 (Appendix A) represents
a 1D CNN auto-encoder. Kernel sizes of encoder are 12, 10, 10; kernel sizes of decoder
are 1, 1, 1, 1; rectified linear units (ReLU) activation function used for convolutional
layers. Figure A3 (Appendix A) represents the LSTM auto-encoder with one LSTM
layer of size 512. Encoders were later combined with a simple feed-forward neural
network (FFNN) illustrated in Figure A4 (Appendix A). All encoders output a 1 × 512
vector and therefore are compatible with the illustrated FFNN. Encoder’s weights
were set to be untrainable except for the weights of the added neural network. In
essence, different types of encoders take in an uncompressed ECFP encoding (with
a size of 8 × 512) and produce (output) a compressed representation (with a size
1 × 512) which is an input of a second (i.e., FFNN) performing label classification (task
No. 1) or prediction of the ratio between solvents (task No. 2). The only difference in
the ratio prediction task is that the output layer size is set to 1 neuron (instead of 20)
because it corresponds to a single numeric value; also, a linear activation function is
used instead of a sigmoid. The encoders were kept stable in this stage, while different
topologies of the FFNN were investigated. These investigations involved the addi-
tion/removal of fully connected layers with different sizes equal to 16, 32, 64, 128, 256,
512. The determined optimal topology (able to work well with all types of encoders)
is illustrated in Figure A4 (Appendix A): it contains three fully connected layers.

5.2. Supervised Machine-Learning Approach

In recent years deep learning has become the most popular approach from the super-
vised machine-learning group. DNNs often outperform classic supervised approaches and
even can boost the accuracy to a higher level. DNNs are general approximators, they do
not bind to specific fields and, therefore, are suitable for many applications, as well as for
our tasks, i.e., multilabel classification (task No. 1) and regression (task No. 2) described
in Section 3. In general, modeling the various chemical phenomena is difficult mostly
due to large datasets that arise from the combinatorial nature of molecules and complex
physicochemical relations between them. This is one more reason the most cutting-edge AI
technologies in the field of chemistry rely on deep learning, using its ability to work with
very large quantities of data. Thus, deep learning greatly benefits from big and diverse
datasets (especially if relations between the input and output data are rather complex);
therefore, it must be suitable for our datasets (Section 4) as well. In addition to large
quantities and a variety of data, enough attention must be paid to the correct choice of the
DNN method modification (type, topology, hyperparameter values), because it directly
affects the accuracy.
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The multiple specialized modifications (types) have been successfully developed for
neural networks. Due to it, our focus is on the following ones that could be interesting and
suitable for our solving tasks:

• Feed-Forward Neural Network (FFNN) is a simple DNN type in which information
moves from input to output nodes without any loops. Despite it being much simpler
than its successors, FFNNs have been successfully used to explore and visualize
chemical space [48]. However, FFNNs are adjusted to learn the relationships between
independent variables, which theoretically makes them unsuitable for solving tasks.
Despite it, we will use FFNN in our experiments as the baseline approach to be able to
compare the results with more sophisticated topologies.

• Convolutional neural networks (CNNs) [49] are a type of deep learning network
initially developed for image recognition to detect recurring spatial patterns in the data.
Recently CNNs are used in many applications to cope with the data, with grid patterns.
Graph CNNs have been applied for predicting drug-target interactions [50]. Widely
used CNN architectures VGG-19, ResNet512, AlexNet, DenseNet-201 [51–54] were
used for the prediction of cytotoxicity for 8 cancer cell lines. In addition, CNNs have
been proven to effectively identify steroids via deep learning retention time modeling
when analyzed using gas chromatography [55]. It is hypothesized that molecules with
similar chemical substructures or functional groups can behave similarly and form
patterns recognized and processed by convolutional layers. It explains why CNNs are
suitable for our solving tasks as well. Since we are dealing with sequences of symbols,
we deal with models with 1D convolutions.

• Long short-term memory (LSTM) [56] neural networks are suitable for training on
sequences due to a memory cell and feedback connections between cells. Contrary
to their predecessors Simple Recurrent Neural Networks (RNNs), LSTMs do not
suffer from the vanishing gradient problem and; therefore, learning longer sequential
dependencies is not challenging anymore. Additional internal mechanisms (so-called
gates) in LSTMs control information flow and carry relevant information forward
while processing the sequence. Carrying information from earlier time moments
in a sequence bears significant meaning on a conceptual level for the interpretation
of chemical symbol sequences. For example, O and H symbols separately are less
indicative than compared to (OH), which symbolizes a hydroxyl group or symbols c1
of aromaticity notation compared to an entire sequence cc1ccccc1 where c1 denotes
a start and end of an aromatic ring. Thus, the sequential character of the input data
explains the selection of LSTMs for our experiments.

Next to the DNN type, hyper-parameters (controlling the neural network learning
process) play the very important role as well, therefore must be discussed:

• Activation functions. All layers except for the output one use rectified linear units
(ReLU) activation function, and it is done on purpose. This activation function has
statistically outperformed sigmoid and Tanh activation functions in similar bioactivity
modeling tasks [57]. Additionally, ReLU is faster to compute compared to non-linear
activation functions. Moreover, it generalizes better and converges faster [58]. In
our preliminary tests, the ReLU activation function led to more stable training and
convergence; moreover, it outperformed the other tested functions: i.e., Tanh, sigmoid,
SoftMax, SeLU. The last layer’s activation function type fully depends on the solving
task. Prediction of solvents is a multilabel prediction problem where the target output
contains multiple independent and binary variables. We have used a binary cross-
entropy loss function that works best with a sigmoid activation function. For task
No. 1, we have chosen the sigmoid activation function because (1) it is the only
compatible function with binary cross-entropy loss function used for loss calculation
(2) sigmoid function’s returns values from the range [0–1]. Therefore, it is easier for
the network to classify each binary label. As for task No. 2 (which is used to predict
the ratio), the linear activation function is selected. This function is the most common
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activation function used for regression problems because it returns an unbounded
numerical value.

• Optimizers. Optimizer Adam is a popular algorithm due to its ability to adjust
learning rate according to circumstances in contrast to classical algorithms such as
stochastic gradient descent (SGD), maintaining a single learning rate during the whole
training process. In our experiments, Adam was selected due to these reasons: (1)
the convergence of the model is significantly faster compared to classical optimizers;
(2) the learning rate is controlled and does not lead to volatile training, especially at
the end.

• Batch size. The batch size is one more important hyperparameter that impacts training
stability and speed. Since the datasets (in Section 4) we are using in our research cover
chemical experimental data collected in a long period of time, the factor of the noise in
the data cannot completely be ruled out. Typically, to avoid a volatile learning process,
a larger batch size is chosen to smooth over noisy instances. On the other hand, larger
batch sizes require more V-RAM and slow down the learning process. Out of several
options, 256 was selected to be a good compromise for our case. as the most effective.

• Epochs. During one epoch, the entire training dataset is passed through the network
once. Since the learning process in DNNs is iterative, updating weights with only one
pass is not enough. To avoid the negative effect of overfitting, the training dataset was
split (90% training and 10% validation), and models were trained on 40 epochs: this
number allowed to equalize the performance of training and validation loss functions
during the model training process.

Optimization. Parameter (architecture and hyperparameter) optimization has been
done manually by testing different network topologies and hyperparameter values. Ac-
tivation functions (tanh, ReLU, SeLU), optimizers (Adam, SGD), batch size and training
epoch count was varied while layers of different sizes (16, 32, 64, 128, 256, 512) were added
or removed depending on whether it increased the model performance. The metrics of
the validation dataset were monitored to judge the model performance, accuracy was
monitored for task 1, R2 score for task 2.

Figures A5–A7 (Appendix A) illustrate topologies of DNNs used for the prediction of
solvent labels (task No. 1) and the ratio between solvents (task No. 2). Topologies have been
selected based on our own preliminary experiments, manual optimization, and guidelines
from other similar works. Due to differences in the input format (i.e., used LE and ECFP
vectorization), each figure illustrates two topologies for the same type of DNN. Various
FFNN topologies have been constructed by adding and removing layers of different sizes
(16, 32, 64, 128, 256, 512). 1D CNN has been tested by adding and removing convolutional
layers of sizes (8, 16, 32, 64, 128, 256) with kernel sizes (2 to 20) and pooling layers of
sizes (2, 3, 4, 5). LSTM neural network topology was developed by adding and removing
layers with different sizes (16, 32, 64, 128, 256, 512). Figures A5–A7 (Appendix A) illustrate
FFNN, CNN, and LSTM neural networks’ topologies. The neural network used with LE
vectorization is displayed on the left side, with ECFP vectorization on the right. For the
prediction of solvent labels (task No. 1) output layer’s size was set to 10 (variable denoted
as c), for the prediction of the ratio between solvents (task No. 2) output layer’s size was set
to 1 (variable c). Figure A5 (Appendix A) represents the topology of feed-forward neural
network. Figure A6 (Appendix A) represents 1D CNN neural network topology. The
determined optimal topology has three convolutional layers of sizes (64, 64, 64 in sequence
with kernel sizes of 12, 12, (5) and average pooling layers of sizes (3, 3, 3). The activation
function of all convolutional layers is ReLU. Figure A7 (Appendix A) represents LSTM
neural network topology.

6. Results

The following experiments were performed on the datasets described in Section 4, us-
ing vectorization in Section 5.1 and methods in Section 5.2. The method architectures were
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implemented using python programming language and TensorFlow Keras API library [59].
For the ECFP vectorization RDKit library [60] was used.

6.1. Task No. 1. Prediction of Solvents Used in Chromatographic Purification (Section 3)

To interpret and compare obtained results, we need to determine evaluation metrics.
For our multilabel classification task, accuracy (Equation (5)), precision (Equation (6)), recall
(Equation (7)), and f-score (Equation (8)) were selected, based on similar works [61,62].
Notation: TP (true positives) determine cases when Yi was predicted as Yi, where Yi − 1,
Yj − 0; TN (true negatives)—cases when Yj predicted as Yj (with Yj 6= Yi); FP (false
positives)—incorrect cases when Yi was predicted; FN (false negatives)—incorrect cases
when Yj was predicted.

Accuracy =
TP + TN

TP + FP + TN + FN
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 score =
2× precision× recall

precision + recall
(8)

Experiments were performed to test three vectorization methods (ECFP, LE, ECFP +
E (Section 5.1)) with three DNN types (FFNN, 1D CNN, LSTM (Section 5.1)) (see Table 5).
The evaluation of each combination was averaged in 3 runs (each time training and testing
on the corresponding training and testing datasets), and the confidence intervals were
calculated (with the confidence level = 95%). Figure 2 visually presents the obtained results
(accuracies).

Table 5. Evaluation results of task No. 1.

Vectorization Training Dataset FFNN 1D CNN LSTM

ECFP

Accuracy
Precision

Recall
F1-score

0.725 ± 0.002 0.423 ± 0.002 0.901 ± 0.001

0.899 ± 0.002 0.686 ± 0.004 0.960 ± 0.002

0.862 ± 0.003 0.709 ± 0.004 0.962 ± 0.001

0.697 ± 0.003 0.880 ± 0.004 0.961 ± 0.002

LE

Accuracy
Precision

Recall
F1-score

0.312 ± 0.005 0.412 ± 0.012 0.383 ± 0.019

0.605 ± 0.004 0.687 ± 0.004 0.628 ± 0.007

0.603 ± 0.006 0.708 ± 0.003 0.683 ± 0.004

0.654 ± 0.005 0.604 ± 0.004 0.654 ± 0.005

ECFP + E

Accuracy
Precision

Recall
F1-score

0.687 ± 0.002 0.283 ± 0.002 0.950 ± 0.001

0.845 ± 0.004 0.558 ± 0.004 0.977 ± 0.002

0.807 ± 0.006 0.591 ± 0.011 0.979 ± 0.002

0.574 ± 0.005 0.825 ± 0.007 0.978 ± 0.002
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6.2. Task No. 2: Prediction of Ratio between Solvents, When Their Number Is Two

The prediction of the ratio between solvents is a regression problem (Section 3).
Therefore, for neural networks that predict ratio, we used the default loss function—mean
squared error (MSE). MSE is superior since the result is positive regardless of the predicted
and true values. Moreover, because the difference between the predicted and true value
is squared, bigger prediction mistakes result in significantly higher loss and lead to more
stable model training and faster convergence.

For the regression results evaluation, multiple metrics were used R-squared (Equation (9)),
Pearson product-moment correlation (Equation (10)) and MSE (Equation (11)). Notation:
yi, ŷi—real and predicted values, y—mean of real values, x—mean of predicted values,
σy, σx—standard deviation of real and predicted values, n—object count.

R-squared = 1− ∑n
i=1 (yi − ŷ)2

∑n
i=1 (yi − y)2 (9)

Pearson R =
1
n

n

∑
i=1

(yi − y)
σy

× (ŷi − x)
σx

(10)

MSE =
1
n

n

∑
i=1

(yi − ŷ)2 (11)

Task No. 2 entails predicting a numeric value that represents the ratio in a two-solvent
system. Three vectorization methods (ECFP, LE, ECFP + E (Section 5.1)) and (FFNN, 1D
CNN, LSTM (Section 5.2)) were tested and evaluated. Table 6 presents metrics between
ground truth values and predicted values. Figure 3 visually displays the obtained results.
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Table 6. Evaluation results of task No. 2.

Vectorization Training Dataset FFNN 1D CNN LSTM

ECFP
R-squared
Pearson R

MSE

0.890 ± 0.001 0.568 ± 0.002 0.885 ± 0.001

0.941 ± 0.005 0.691 ± 0.001 0.941 ± 0.001

0.013 ± 0.001 0.040 ± 0.001 0.010 ± 0.001

LE
R-squared
Pearson R

MSE

0.200 ± 0.002 0.226 ± 0.004 0.143 ± 0.003

0.459 ± 0.001 0.475 ± 0.004 0.372 ± 0.002

0.080 ± 0.001 0.072 ± 0.001 0.084 ± 0.003

ECFP + E
R-squared
Pearson R

MSE

0.701 ± 0.003 0.847 ± 0.002 0.982 ± 0.001

0.831 ± 0.003 0.896 ± 0.007 0.984 ± 0.001

0.026 ± 0.002 0.013 ± 0.001 0.002 ± 0.001
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7. Discussion

Because the task is focused on a wide variety of molecules and solvent systems for
which we use a unique dataset, we are unfortunately unable to compare the results of this
paper to previous studies directly. To establish a baseline using traditional approaches, we
have performed tests using Naive Bayes classifier for task 1, resulting in an accuracy of
0.143 ± 0.09 and a Linear Regressor for task 2, which resulted in R2 score of 0.260 ± 0.07.

Zooming into the results in Table 5 and Figure 2 of task No. 1 allows us to make the
following statements. 2 of 9 tested methods (in particular, LE + FFNN and ECFP + E (CNN))
cannot exceed the majority baseline; therefore, they are considered unsuitable for our task.
The LE vectorization with FFNN is likely not complex enough to fully capture relations
between input and output data since FFNN does not have feedback loops. When looking
at ECFP + E (CNN) vectorization, poor results may arise from the fact that an auto-encoder
constructed with convolutional layers cannot learn meaningful patterns because input data
is too sparse. In general, CNNs perform poorly with other types of vectorization, and
ECFP + E (CNN) vectorization is not an exception.

As for vectorization types, learned embedding achieves the lowest accuracy scores
with all types of tested DNNs (0.412). The LE vectorization, in theory, should produce
similar results seen with an encoder; however, for learned embedding vectorization, the
primary input is a sequence of SMILES symbols denoting chemical compounds, which
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possibly are less informative than fingerprints. Learned embedding encodes each symbol
as a multi-dimensional vector; however, compared to ECFP it encodes individual symbols,
not groups, which might be the reason for low performance. The most significant feature for
the selection of solvents used for liquid chromatography is functional groups of molecules
that are composed of multiple atoms, for example –OH, -COH. Vectorization using ECFPs
provides a way to capture and encode such groups’ presence or absence. A reasonable
assumption would be that a machine-learning algorithm could model a solvent system for a
set of reactants when given molecules’ chemical features. The statement is supported by the
fact that the use of ECFPs results in higher accuracy when compared to learned embedding.

It is reasonable that Morgan Fingerprints and encoders produce similar results despite
the supervised machine-learning method. First, Morgan Fingerprints are calculated and
later compressed with an encoder (more details in Section 5.1). Based on experimental
results, it can be concluded that encoders compress Morgan Fingerprints in a meaningful
way to produce a less sparse representation of multiple compounds of a reaction. A
condensed representation allows neural networks to learn patterns easier when compared
to raw Morgan Fingerprints. Figure 4 presents vectorized inputs visually; input matrices
are reshaped for simpler visualization. Each square depicts a single number of the input;
lower values are black, higher are white. ECFPs (left) are quite sparse with a total size of
4096, and the encoder’s output (right) is a compressed version of ECFPs with a total size of
512. It is apparent why it is easier for a neural network to learn patterns when an encoder
is used since the compressed version does not have large non-zero segments.
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Excluding the results with Learned embedding (lowest performance with any super-
vised machine-learning approach), the worst machine-learning method is CNN. Theoreti-
cally, CNNs should cope with similar inputs as in our case. A reasonable guess would be
that the input data is too sparse; it prevents CNNs from learning meaningful patterns. It is
noticeable that certain types of neural networks only work well with certain types of vector-
ization. In particular, ECFP and ECFP + E with LSTM neural networks. The most accurate
predictions are produced by ECFP + E (LSTM) neural network type (0.950 ± 0.001), most
likely because it benefits from the input compression by an encoder and feedback loops
of the LSTM layer. The statement can be backed up by results of the 2nd most accurate
configuration (ECFP + LSTM (0.901± 0.001)), which also features the LSTM layer; however,
it works with uncompressed ECFPs as input and produces slightly lower scores.

Since in our experiments we have used the imbalanced dataset (Section 4), it was
important to zoom into the results for different classes (summarized in Table 7 of the
most accurate model (ECFP + E (LSTM))). Surprisingly, classes covered by fewer instances
appear to be similarly predicted as the larger ones. It allows us to believe that even rarer
classes have enough representative examples to be learned.
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Table 7. Results for separate classes with the best performing method ECFP + E (LSTM).

Class Label Precision Ratio F1-Score Number of Examples

Chloroform 0.976 0.955 0.966 3424

Dichloromethane 0.980 0.956 0.968 9626

Ethyl acetate 0.983 0.990 0.986 28,472

Diethyl ether 0.921 0.951 0.936 834

Hexane 0.969 0.979 0.974 17,216

Petroleum ether 0.956 0.947 0.952 1836

Acetone 0.964 0.939 0.951 680

Toluene 0.974 0.935 0.954 817

Methanol 0.979 0.964 0.972 9558

Ethanol 0.949 0.967 0.958 354

From task No. 2 experimental results in Table 6, it can be concluded that learned
embedding vectorization type results in the least accurate predictions (R2 < 0.226) for
all types of tested DNN types, compared to ECFP or ECFP + E vectorization. Similar
to task No. 1, learned embedding, in contrast to ECFP, encodes symbols separately and
results in less accurate predictions. In general, ECFP and ECFP + E vectorization performs
reasonably well (R2 > 0.568); however, ECFP + E (LSTM) produces the most accurate
predictions (R2 0.982 ± 0.001), similar to task No. 1, where the same type of encoding and
type of neural network produces most accurate predictions. It is reasonable that the same
configuration results in both tasks’ highest scores. Results of all models are better than
mean and median baseline metrics.

The best performing method is ECFP + E (LSTM); however, the gap between the
other approaches producing similar results (e.g., ECFP + FFNN, ECFP + LSTM) is not that
apparent as in the previous tasks. It is probably because task No. 2 is a less complex task
when compared to task No. 1 because in this case, only one number must be predicted and
different types of a neural network can deal reasonably with the task.

The idea behind those two separately solved tasks is to use them sequentially. The
first model is responsible for the prediction of solvents. In the case of two predicted
solvents, the second model predicting the ratio between solvents is activated. Based on
the obtained results, for both models (classification and regression) the same ECFP + E
(LSTM) method would be recommended. Also, a graph convolution neural network
(GCN) that accepts a graph as input, where vertices represent individual atoms and edges
represent bonds, has been tested for comparison. The modified neural networks have been
shown to match or beat standard fingerprints’ predictive performance on solubility, drug
efficacy datasets [63]. For our task, an accuracy score of 0.607 ± 0.04 has been reached
for task 1 (solvent prediction) and R2 score of 0.711 ± 0.04 for task 2 (ratio prediction).
However, both models underperform compared to models presented in this paper (ECFP
+ E (LSTM)). Despite the promising results are achieved in the artificial environment, it
opens the gate for further testing it in a real laboratory environment. It is important to
repeat these predictions in a real-life setting for several reasons. First, the data is collected
from patents that range from 1976 to 2010; procedures of how the reactions are performed
can influence what by-products could be contaminating the final mixtures that are purified.
Moreover, even if procedures are similar, the human factor can affect how syntheses
are performed and lead to additional deviation from the expected mixture composition.
Secondly, it is unclear how well the model that is not bounded to specific compound or
reaction types perform for a wide variety of possible combinations of molecules and target
products. Thirdly, our dataset’s chromatographic purification conditions are inherently
tied to the synthesis procedure because additional steps may be taken that precede the
chromatographic purification step, such as extraction or crystallization. However, our
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research models are promising due to several reasons. First, are not trained for specific
reaction type or a set of compounds and do could be used for various syntheses. Secondly,
do not require compound structural knowledge of by-products that are in the mixture for
the prediction of chromatographic purification. To make the argument more compelling, it
would be meaningful to compare models trained on examples with multiple main products;
however, only 1.86% of all reactions in the dataset result in two or more products, while
the rest use column chromatography to purify impurities. A subset of reactions with
multiple main products would be unreasonably small to compare with those presented in
the paper. The original dataset does not contain enough examples for such comparison, and
it would have to be expanded to include more examples with multiple reaction products. In
addition, a model trained just on products has been evaluated. An auto-encoder maps the
2D into 1D vector of size 1 × 512. To test the model’s accuracy with just products, the input
is already a 1D vector of size 1 × 512, and the most suitable type is ECFP vectorization.
Vectorized input was tested with all classification approaches and resulted in accuracy of
0.384 ± 0.04, 0.379 ± 0.04, 0.338 ± 0.05 for FFNN, CNN, LSTM, respectively. As we can see,
even the best model (with the highest achieved accuracy of 0.384 ± 0.04) underperforms
compared to models trained on reactants and products. Moreover, compared to retention
time modeling for chromatography, the solvent system is predicted directly and does not
require additional tuning.

The use of auto-encoders for the compression of fingerprints on its own is interest-
ing because similar setups could be used for other problems in chemical data modeling
since molecular representation is a challenging issue. Researchers have explored various
methods of vectorization, such as descriptors, graphs, SMILES vectorization, and other
hybrid methods that combine multiple methods into a single vector. Further options
for exploration of the developed auto-encoder may include the addition of descriptors,
different types of fingerprints, or parameters of Morgan Fingerprints, and all it is in our
future plans.

Solvents and temperature used in the synthesis reaction process may play a role in
selecting solvents. We have investigated the dataset; unfortunately, only around 20% of
reactions contain information about the solvent used in the primary stages of the procedure,
when products forms, and the solvent may influence the impurities. Additionally, temper-
ature and reactant solvent are both present in 7.3% of the data. It is very likely that the
accuracy of the model for prediction of the purification conditions would be significantly
lower because of a small dataset which would counteract benefits from additional features.
In addition, a less diverse dataset would negatively affect the versatility of the model.
Also, we have evaluated whether similar reactions in the dataset use different solvent
systems. This has been done by analyzing reactions with the same products. In the dataset,
3077 reactions have a duplicate regarding the product; however, they use different reac-
tants. To evaluate similarity, we have used Levenshtein’s distance to compare the SMILES
strings of compounds that denote these structures. Reactions with lesser Levenshtein’s
distance than 15 were considered similar, while others have been observed to contain sig-
nificantly different molecular structures. Out of all 3077 reactions, 174 (5.7%) used different
solvent systems. A probable cause for the difference between similar reactions may arise
from the fact that other solvents or temperature settings have been used during the process
of synthesis. Another important future direction could be an augmentation of models to
be able to predict more solvent labels. Unfortunately, it cannot be done straightforwardly
by including additional 8 labels from the source dataset. Those additional labels comprise
less than 8% of the entire source dataset and would highly imbalance the one we are
working with. Moreover, it is estimated that the dataset we are using for our experiments
contains 2–4% of noisy instances with incorrect labels for solvents used in chromatographic
purification. The manual correction would be a laborious task due to the dataset’s large
size. Perhaps the current model could help to semi-automate the correction process. Such
an idea is not without reason. We have noticed that some incorrect labels (considered to
be the gold standard in our testing dataset) were predicted correctly during the manual
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error analysis. Such an example raises a reasonable doubt that the achieved results are
even slightly higher than those reported in this paper.

8. Conclusions

In this research, we solve two novel tasks based on the prediction of chromatographic
purification conditions, i.e., solvents and the ratio between solvents. By tackling these tasks,
three vectorization types (Learned embedding, extended-connectivity fingerprints, ECFP
encoder + FFNN), three supervised machine-learning approaches (FFNN, LSTM, CNN),
various DNN architectures, and a set of hyperparameter values were investigated.

The best results on both prediction tasks (i.e., prediction of solvents used in chro-
matographic purification and prediction of the ratio between solvents) were achieved
with extended-connectivity fingerprint LSTM auto-encoder with FFNN as the supervised
machine-learning method. The first task reached an accuracy of 0.950; whereas the second
produced R2 of 0.982.

The best prediction accuracy of solvents used in chromatographic purification exceeds
random and majority baselines by a significant margin of 0.778 and 0.637, respectively.
The best Pearson R-value (which is >0.7) for the prediction of the ratio between solvents
indicates a strong linear relationship between predicted and real ratio values. These results
allow us to claim that the models can be used as a guidance instrument in laboratories to ac-
celerate scouting for suitable chromatography conditions. In the future we are planning: (1)
to continue working with the sequential models (LSTMs, BiLSTMS, transformers) that were
proved to be the most suitable for our solving tasks; (2) to expand the current dataset by
including more solvent labels for more complex purification solvent systems and to cover
an even larger variety of synthesis procedures; (3) to perform real-life laboratory testing to
explore our model’s ability to predict chromatographic purification conditions accurately
and assist researchers with suggestions. Unfortunately, they require a set of reagents, labo-
ratory time, and financial and human resources. Since purification is done towards the end
of reaction procedures, all necessary steps, such as preparation, synthesis, work-up must
also be done. To reasonably compare traditional and our purification condition scouting
method, a minimum of 150–250 reactions need to be done. This amounts to a considerable
length of time and therefore experiments are planned for further research work.

Author Contributions: Conceptualization, M.V.; methodology, M.V. and J.K.-D.; software, M.V.;
validation, M.V.; formal analysis, M.V.; investigation, M.V.; resources, M.V.; data curation, M.V.
and L.Š.; writing—original draft preparation, M.V.; writing—review and editing, M.V., J.K.-D., L.Š.;
visualization, M.V.; supervision, J.K.-D., L.Š.; project administration, J.K.-D.; funding acquisition, L.Š.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by JSC Synhet and Vytautas Magnus University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available original dataset can be found: https://figshare.
com/articles/dataset/Chemical_reactions_from_US_patents_1976-Sep2016_/5104873 (accessed on 5
December 2020). The extracted datasets and code used in this paper can be found: https://github.
com/Mantas-it/Chrom_cond_pred (accessed on 12 March 2021).

Conflicts of Interest: The authors declare no conflict of interest.

https://figshare.com/articles/dataset/Chemical_reactions_from_US_patents_1976-Sep2016_/5104873
https://figshare.com/articles/dataset/Chemical_reactions_from_US_patents_1976-Sep2016_/5104873
https://github.com/Mantas-it/Chrom_cond_pred
https://github.com/Mantas-it/Chrom_cond_pred


Molecules 2021, 26, 2474 19 of 24

Appendix A

Molecules 2021, 26, 2474 19 of 25 
 

 

Appendix A 

 
Figure A1. The feed-forward auto-encoder. 

 

 

 

(a) (b) 

Figure A2. The 1D CNN auto-encoder composed of encoder (a) and decoder (b). 

Figure A1. The feed-forward auto-encoder.

Molecules 2021, 26, 2474 19 of 25 
 

 

Appendix A 

 
Figure A1. The feed-forward auto-encoder. 

 

 

 

(a) (b) 

Figure A2. The 1D CNN auto-encoder composed of encoder (a) and decoder (b). Figure A2. The 1D CNN auto-encoder composed of encoder (a) and decoder (b).



Molecules 2021, 26, 2474 20 of 24
Molecules 2021, 26, 2474 20 of 25 
 

 

 
Figure A3. The LSTM auto-encoder. 

 
Figure A4. The optimal determined topology and hyper-parameters of a simple FFNN in combi-
nation with encoders. The notation c was set to 10 and 1 in tasks No. 1 and No. 2, respectively. 

  

Figure A3. The LSTM auto-encoder.

Molecules 2021, 26, 2474 20 of 25 
 

 

 
Figure A3. The LSTM auto-encoder. 

 
Figure A4. The optimal determined topology and hyper-parameters of a simple FFNN in combi-
nation with encoders. The notation c was set to 10 and 1 in tasks No. 1 and No. 2, respectively. 

  

Figure A4. The optimal determined topology and hyper-parameters of a simple FFNN in combination
with encoders. The notation c was set to 10 and 1 in tasks No. 1 and No. 2, respectively.

Molecules 2021, 26, 2474 21 of 25 
 

 

 

 

(a) (b) 

Figure A5. The topology of feed-forward neural network. Used with LE vectorization (a), with ECFP vectorization (b). Figure A5. The topology of feed-forward neural network. Used with LE vectorization (a), with ECFP
vectorization (b).



Molecules 2021, 26, 2474 21 of 24Molecules 2021, 26, 2474 22 of 25 
 

 

 

 

(a) (b) 

Figure A6. The 1D CNN neural network topology. Used with LE vectorization (a), with ECFP vectorization (b). Figure A6. The 1D CNN neural network topology. Used with LE vectorization (a), with ECFP
vectorization (b).

Molecules 2021, 26, 2474 23 of 25 

(a) (b) 

Figure A7. LSTM neural network topology. Used with LE vectorization (a), with ECFP vectorization (b). 

References 
1. Ojima, I. Great Challenges in Organic Chemistry. Front. Chem. 2017, 5, 52, doi:10.3389/fchem.2017.00052. 
2. Virshup, A.M.; Contreras-García, J.; Wipf, P.; Yang, W.; Beratan, D.N. Stochastic Voyages into Uncharted Chemical Space Pro-

duce a Representative Library of All Possible Drug-Like Compounds. J. Am. Chem. Soc. 2013, 135, 7296–7303, 
doi:10.1021/ja401184g. 

3. Reymond, J.-L. The Chemical Space Project. Acc. Chem. Res. 2015, 48, 722–730, doi:10.1021/ar500432k. 
4. Duch, W.; Setiono, R.; Zurada, J.M. Computational Intelligence Methods for Rule-Based Data Understanding. Proc. IEEE 2004, 

92, 771–805, doi:10.1109/jproc.2004.826605. 
5. Gani, R.; Jiménez-González, C.; Constable, D.J.C. Method for Selection of Solvents for Promotion of Organic Reactions. Comput. 

Chem. Eng. 2005, 29, 1661–1676, doi:10.1016/j.compchemeng.2005.02.021. 
6. Peiretti, F.; Brunel, J.M. Artificial Intelligence: The Future for Organic Chemistry? ACS Omega 2018, 3, 13263–13266, 

doi:10.1021/acsomega.8b01773. 
7. Korovina, K.; Xu, S.; Kandasamy, K.; Neiswanger, W.; Poczos, B.; Schneider, J.; Xing, E. ChemBO: Bayesian Optimization of 

Small Organic Molecules with Synthesizable Recommendations. In Proceedings of the Twenty Third International Conference 
on Artificial Intelligence and Statistics (PMLR), Online, 26–28 August 2020; Volume 108, pp. 3393–3403. 

8. Genheden, S.; Thakkar, A.; Chadimová, V.; Reymond, J.-L.; Engkvist, O.; Bjerrum, E. AiZynthFinder: A Fast, Robust and Flexible 
Open-Source Software for Retrosynthetic Planning. J. Cheminform. 2020, 12, 70, doi:10.1186/s13321-020-00472-1. 

9. Tetko, I.V.; Karpov, P.; Van Deursen, R.; Godin, G. State-of-the-Art Augmented NLP Transformer Models for Direct and Single-
Step Retrosynthesis. Nat. Commun. 2020, 11, 5575, doi:10.1038/s41467-020-19266-y. 

10. Brown, N.; Ertl, P.; Lewis, R.; Luksch, T.; Reker, D.; Schneider, N. Artificial Intelligence in Chemistry and Drug Design. J. Com-
put.-Aided Mol. Des. 2020, 34, 709–715, doi:10.1007/s10822-020-00317-x. 

11. Grygorenko, O.O.; Volochnyuk, D.M.; Ryabukhin, S.V.; Judd, D.B. The Symbiotic Relationship between Drug Discovery and
Organic Chemistry. Chem. Eur. J. 2019, 26, 1196–1237, doi:10.1002/chem.201903232. 

12. Patel, L.; Shukla, T.; Huang, X.; Ussery, D.W.; Wang, S. Machine Learning Methods in Drug Discovery. Molecules 2020, 25, 5277, 
doi:10.3390/molecules25225277. 

13. Ma, C.; Ren, Y.; Yang, J.; Ren, Z.; Yang, H.; Liu, S. Improved Peptide Retention Time Prediction in Liquid Chromatography 
through Deep Learning. Anal. Chem. 2018, 90, 10881–10888, doi:10.1021/acs.analchem.8b02386. 

14. Moruz, L.; Käll, L. Peptide Retention Time Prediction. Mass Spec. Rev. 2016, 36, 615–623, doi:10.1002/mas.21488. 
15. Hou, L.; Wang, L.; Wang, N.; Guo, F.; Liu, J.; Chen, Y.; Liu, J.; Zhao, Y.; Jiang, L. Separation of Organic Liquid Mixture by 

Flexible Nanofibrous Membranes with Precisely Tunable Wettability. NPG Asia Mater. 2016, 8, e334–e334, 
doi:10.1038/am.2016.179. 

16. Coskun, O. Separation Tecniques: CHROMATOGRAPHY. North Clin. Istanbul. 2016, 3, 156–160, doi:10.14744/nci.2016.32757. 

Figure A7. LSTM neural network topology. Used with LE vectorization (a), with ECFP vectorization (b).



Molecules 2021, 26, 2474 22 of 24

References
1. Ojima, I. Great Challenges in Organic Chemistry. Front. Chem. 2017, 5, 52. [CrossRef]
2. Virshup, A.M.; Contreras-García, J.; Wipf, P.; Yang, W.; Beratan, D.N. Stochastic Voyages into Uncharted Chemical Space Produce

a Representative Library of All Possible Drug-Like Compounds. J. Am. Chem. Soc. 2013, 135, 7296–7303. [CrossRef]
3. Reymond, J.-L. The Chemical Space Project. Acc. Chem. Res. 2015, 48, 722–730. [CrossRef]
4. Duch, W.; Setiono, R.; Zurada, J.M. Computational Intelligence Methods for Rule-Based Data Understanding. Proc. IEEE 2004, 92,

771–805. [CrossRef]
5. Gani, R.; Jiménez-González, C.; Constable, D.J.C. Method for Selection of Solvents for Promotion of Organic Reactions. Comput.

Chem. Eng. 2005, 29, 1661–1676. [CrossRef]
6. Peiretti, F.; Brunel, J.M. Artificial Intelligence: The Future for Organic Chemistry? ACS Omega 2018, 3, 13263–13266. [CrossRef]

[PubMed]
7. Korovina, K.; Xu, S.; Kandasamy, K.; Neiswanger, W.; Poczos, B.; Schneider, J.; Xing, E. ChemBO: Bayesian Optimization of

Small Organic Molecules with Synthesizable Recommendations. In Proceedings of the Twenty Third International Conference on
Artificial Intelligence and Statistics (PMLR), Online, 26–28 August 2020; Volume 108, pp. 3393–3403.

8. Genheden, S.; Thakkar, A.; Chadimová, V.; Reymond, J.-L.; Engkvist, O.; Bjerrum, E. AiZynthFinder: A Fast, Robust and Flexible
Open-Source Software for Retrosynthetic Planning. J. Cheminform. 2020, 12, 70. [CrossRef] [PubMed]

9. Tetko, I.V.; Karpov, P.; Van Deursen, R.; Godin, G. State-of-the-Art Augmented NLP Transformer Models for Direct and Single-Step
Retrosynthesis. Nat. Commun. 2020, 11, 5575. [CrossRef]

10. Brown, N.; Ertl, P.; Lewis, R.; Luksch, T.; Reker, D.; Schneider, N. Artificial Intelligence in Chemistry and Drug Design. J.
Comput.-Aided Mol. Des. 2020, 34, 709–715. [CrossRef] [PubMed]

11. Grygorenko, O.O.; Volochnyuk, D.M.; Ryabukhin, S.V.; Judd, D.B. The Symbiotic Relationship between Drug Discovery and
Organic Chemistry. Chem. Eur. J. 2019, 26, 1196–1237. [CrossRef] [PubMed]

12. Patel, L.; Shukla, T.; Huang, X.; Ussery, D.W.; Wang, S. Machine Learning Methods in Drug Discovery. Molecules 2020, 25, 5277.
[CrossRef]

13. Ma, C.; Ren, Y.; Yang, J.; Ren, Z.; Yang, H.; Liu, S. Improved Peptide Retention Time Prediction in Liquid Chromatography
through Deep Learning. Anal. Chem. 2018, 90, 10881–10888. [CrossRef] [PubMed]

14. Moruz, L.; Käll, L. Peptide Retention Time Prediction. Mass Spec. Rev. 2016, 36, 615–623. [CrossRef] [PubMed]
15. Hou, L.; Wang, L.; Wang, N.; Guo, F.; Liu, J.; Chen, Y.; Liu, J.; Zhao, Y.; Jiang, L. Separation of Organic Liquid Mixture by Flexible

Nanofibrous Membranes with Precisely Tunable Wettability. NPG Asia Mater. 2016, 8, e334. [CrossRef]
16. Coskun, O. Separation Tecniques: CHROMATOGRAPHY. North Clin. Istanbul. 2016, 3, 156–160. [CrossRef] [PubMed]
17. Chai, C.; Armarego, W.L.F. Purification of Laboratory Chemicals, 5th ed.; Butterworth-Heinemann Press: Woburn, MA, USA, 2014;

ISBN 9780080515465.
18. Bade, R.; Bijlsma, L.; Sancho, J.V.; Hernández, F. Critical Evaluation of a Simple Retention Time Predictor Based on LogKow as a

Complementary Tool in the Identification of Emerging Contaminants in Water. Talanta 2015, 139, 143–149. [CrossRef]
19. D’Archivio, A.A. Artificial Neural Network Prediction of Retention of Amino Acids in Reversed-Phase HPLC under Application

of Linear Organic Modifier Gradients and/or PH Gradients. Molecules 2019, 24, 632. [CrossRef]
20. Randazzo, G.M.; Tonoli, D.; Hambye, S.; Guillarme, D.; Jeanneret, F.; Nurisso, A.; Goracci, L.; Boccard, J.; Rudaz, S. Prediction of

Retention Time in Reversed-Phase Liquid Chromatography as a Tool for Steroid Identification. Anal. Chim. Acta 2016, 916, 8–16.
[CrossRef]

21. Zhang, X.; Li, J.; Wang, C.; Song, D.; Hu, C. Identification of Impurities in Macrolides by Liquid Chromatography–Mass
Spectrometric Detection and Prediction of Retention Times of Impurities by Constructing Quantitative Structure–Retention
Relationship (QSRR). J. Pharm. Biomed. Anal. 2017, 145, 262–272. [CrossRef]
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