
molecules

Article

LC-HRMS Profiling and Antidiabetic, Anticholinergic, and
Antioxidant Activities of Aerial Parts of Kınkor
(Ferulago stellata)
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Abstract: Kınkor (Ferulago stellata) is Turkish medicinal plant species and used in folk medicine
against some diseases. As far as we know, the data are not available on the biological activities
and chemical composition of this medicinal plant. In this study, the phytochemical composition;
some metabolic enzyme inhibition; and antidiabetic, anticholinergic, and antioxidant activities of
this plant were assessed. In order to evaluate the antioxidant activity of evaporated ethanolic
extract (EEFS) and lyophilized water extract (WEFS) of kınkor (Ferulago stellata), some putative
antioxidant methods such as DPPH· scavenging activity, ABTS•+ scavenging activity, ferric ions
(Fe3+) reduction method, cupric ions (Cu2+) reducing capacity, and ferrous ions (Fe2+)-binding
activities were separately performed. Furthermore, ascorbic acid, BHT, and α-tocopherol were used
as the standard compounds. Additionally, the main phenolic compounds that are responsible for
antioxidant abilities of ethanol and water extracts of kınkor (Ferulago stellata) were determined by
liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Ethanol and water extracts
of kınkor (Ferulago stellata) demonstrated effective antioxidant abilities when compared to standards.
Moreover, ethanol extract of kınkor (Ferulago stellata) demonstrated IC50 values of 1.772 µg/mL
against acetylcholinesterase (AChE), 33.56 ± 2.96 µg/mL against α-glycosidase, and 0.639 µg/mL
against α-amylase enzyme respectively.

Keywords: Ferulago stellata; kınkor; acetylcholinesterase; antioxidant activity; α-glycosidase; α-
amylase; polyphenol content; LC-HRMS

1. Introduction

The plant kingdom is well known as a prolific and productive haven of phytochem-
icals with unmatched therapeutic potential. Moreover, 28,000 known plant taxa have
been reported worldwide to have medicinal values. It has been reported that more than
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3000 species have ethnomedical usage and applications against many diseases including
cancer and diabetes mellitus [1]. However, herbal and medicinal plants play crucial role in
the development of modern medicine and healthcare because they cause milder adverse
health effects than conventional medicines and drugs [2]. According to international stud-
ies, the use of endemic and medicinal plants in the pharmaceutical, food, and cosmetic
industries is constantly increasing. Meanwhile, the majority of the world’s population
uses herbal medicine for basic and daily health care [3]. Medicinal plants are an important
source of nutrients and secondary metabolites to protect human health. They are com-
monly used in developing countries and around the world, to treat some diseases especially
in metabolic syndrome and diabetes mellitus [4]. It was reported that medicinal plants
have many important pharmacological effects including antioxidant, anti-inflammatory,
anticancer, and others. It is known that these plants have antioxidant effects and serve as
sources of phenolic compounds [5,6].

Reactive oxygen species (ROS) such as singlet oxygen (1O2), hydrogen peroxide
(H2O2), hydroxyl radicals (·OH), and superoxide anion radicals (O2·−) can easily oc-
cur as a result of normal aerobic metabolism, toxic agents, drugs, smoking, and burnt
food [7,8]. The presence of ROS in the human body is very harmful due to their damage
to structure and function of many biomolecules like DNA, lipid, nucleic acid, protein,
and carbohydrates [9,10]. Antioxidants can easily react with free radicals or ROS and
minimize damages. In addition, by slowing down or preventing its oxidation completely,
they terminate radical chain reactions and minimize their harmful effects on the body
metabolism [11,12]. They are synthetic or natural substances that inhibit oxidation proce-
dure, which produce free radicals and ROS [13,14]. They can preserve the human body from
these undesired effects of ROS and oxidative stress [15,16]. Antioxidants have beneficial ef-
fects in preventing chronic diseases like cancer, cardiovascular diseases, and diabetes. They
prevent the occurrence of oxidative stress in humans. They can easily terminate the radical
chain reactions and neutralize free radicals, which attack cells or biomolecules [17,18].
Moreover, antioxidants are additives used to protect food and pharmaceutical products
against rancidity, unfavorable changes in color and structure, and extend shelf life by
preventing unwanted odors. Additionally, some studies have demonstrated that synthetic
antioxidants used in the foods and pharmaceuticals are toxic and may act as carcinogenic
agents [19]. On the other hand, vegetables and fruits have a wide range of antioxidants and
are a rich source of healthy food. In this regard, most antioxidant molecules obtained from
natural sources such as plants have been found to be ROS or free radical scavengers [20,21].
For this reason, alternative, natural, and reliable plant-derived antioxidants are preferred
as natural antioxidants [22,23].

Antioxidants delay or avoid the onset of major degenerative diseases including di-
abetes mellitus and Alzheimer’s disease (AD) [24–26]. One of the main targets in the
treatment of diabetes is α-glycosidase whose activity is fundamental to the degradation
of dietary polysaccharides. α-glycosidase inhibitors prevent the breakdown of polysac-
charides into monosaccharide units and thus block the absorption of monomeric sugar
units in the intestinal tract. In this way, it limits the postprandial plasma glucose level. α-
glycosidase inhibitors can be used in the treatment of diabetes and as well as obesity [27,28].

AD is the most typical and common form of dementia among the older people that
negatively affects the ability to perform personal daily activities. It is also well known
that cholinergic conduction loss is one of the main causes of AD [29]. Therefore, acetyl-
cholinesterase inhibitors (AChEIs) that enhance cholinergic transmission can be used for
treatment of AD. Among them, tacrine is currently used in the palliative treatment for mild
to moderate AD as AChEI. It is known that most of these drugs used today have undesired
side effects including nausea, headache, vomiting, and diarrhea [30,31]. These clinical
AChE inhibitors can exhibit undesired side effects including hepatotoxicity and gastroin-
testinal anomalies such as nausea and diarrhea [32,33]. Therefore, there is a great demand
to develop and use AChEIs that are new and known for their antioxidant properties. With
all this, phenolic compounds also have anti-AD properties and α-glycosidase inhibition
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profiles. Therefore, one of the most important approaches for treatment of neurodegenera-
tive diseases and diabetes mellitus is natural antioxidant compounds and products [34–37].
However, current evidence suggests that patients with type-2 diabetes mellitus (T2DM)
have an increased risk of developing AD. In addition, these evidences also show that
hyperinsulinemia and insulin resistance-T2DM are distinguishing features [38,39].

Turkey has a rich plant biodiversity, and 11.6% of these plants are reported to be used
for medicinal purposes to treat different diseases. Recently, there has been increasing focus
and studies on endemic and medicinal plants for potential drug development and food
preservative properties [40]. Additionally, it was reported that endemic plants of Turkey
have shown a large spectrum of bioactivities [41]. The assessment of the bioactivity of
kınkor (Ferulago stellata), an endemic plant of Turkey, has not been reported up to now.
Therefore, the objective of this study was to evaluate the biological properties of different
extracts (lyophilized water and evaporated ethanol extracts) of kınkor (Ferulago stellata).
Moreover, biological properties of kınkor (Ferulago stellata) were determined by multiple
bioanalytical antioxidant methods including Cu2+ reducing, Fe3+ reducing, and FRAP
reducing abilities; DPPH˙ and ABTS˙+ scavenging activity; and Fe2+ chelating activity. In
addition, another goal of the study was to determine its inhibition effect against some
metabolic enzymes including α-glycosidase, α-amylase, and acetylcholinesterase, which
are associated with Alzheimer’s disease and diabetes. In addition, characterization of
chemical profile of both kınkor (Ferulago stellata) extracts was done by LC-HRMS.

2. Results and Discussion

Antioxidant properties of ethanol and water extracts of kınkor (Ferulago stellata) have
been carried out in different bioanalytical methods such as Fe2+ chelating activity, Fe3+ re-
ducing activity, Fe3+-TPTZ reduction capacity, Cu2+ reduction ability, and ABTS and DPPH
radicals scavenging activities. For comparison of antioxidant effects, putative standard com-
pounds of α-tocopherol, ascorbic acid, and BHT were used for comparison. It was found
that the antioxidant activities of ethanol and water extracts of kınkor (Ferulago stellata) are
similar or close to used standard antioxidants. It was shown that the antioxidant activity of
ethanol and water extracts of kınkor (Ferulago stellata) enhanced with increasing concentra-
tion (10–30 µg/mL). In some cases, the antioxidant ability of ethanol and water extracts
of kınkor (Ferulago stellata) was observed to be higher than some standard antioxidants
at the same concentration. In this context, reduction ability of ethanol and water extracts
of kınkor (Ferulago stellata) enhanced with increasing concentration studied methods. It
is well known that the reduction ability is one of the most significant factors in its total
antioxidant effectiveness. The antioxidant activity of a molecule or extract can occur using
different mechanisms [42,43]. Antioxidants may be in the form of stabilizing oxidants in
redox reactions. The reduction capacity can be recorded by diverse bioanalytical methods.
In the presence of reducing compounds, the reduction of (Fe[(CN)6]3−) to (Fe[(CN)6]4−)
can easily occur. The addition of Fe3+ to the reduced product by addition of ethanol and
water extracts of kınkor (Ferulago stellata) forms Fe4[Fe(CN)6], a complex in the Prussian
blue color with sharp absorbance at 700 nm [44]. The enhanced absorbance shows the
increased reduction capacity. The reducing capacity of ethanol and water extracts of kınkor
(Ferulago stellata), BHT, α-tocopherol, and ascorbic acid increased constantly when the con-
centration of sample was increased. Fe3+ reducing capacity of ethanol and water extracts
of kınkor (Ferulago stellata) and standards exhibited the following order: ascorbic acid (λ700:
1.520 ± 0.028, r2: 0.9970) > BHT (λ700: 1.269 ± 0.005, r2: 0.9880) > water extracts of kınkor
(Ferulago stellata) (λ700: 1.058 ± 0.021, r2: 0.9973) > ethanol extracts of kınkor (Ferulago
stellata) (λ700: 0.985 ± 0.013, r2: 0.9199) > α-tocopherol (λ700: 0.990 ± 0.007, r2: 0.9942) at
30 µg/mL. The results showed that ethanol and water extracts of kınkor (Ferulago stellata)
had marked and powerful Fe3+ reducing effect (Figure 1A and Table 1).
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Figure 1. Fe3+ reducing (A), Cu2+ reducing (B), and Fe3+-TPTZ reducing (C); ABTS (E) and DPPH scavenging (D); and Fe2+ 
chelating (F) activities of EEFS and WEFS ((EEFS: evaporated ethanolic extract of aerial parts kınkor (Ferulago stellata); 
WEFS: lyophilized water extract of aerial parts of kınkor (Ferulago stellata) TPTZ: 2,4,6-tris(2-pyridyl)-s-triazine; DPPH: 
1,1-diphenyl-2-picrylhydrazyl; ABTS: 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)). 
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Figure 1. Fe3+ reducing (A), Cu2+ reducing (B), and Fe3+-TPTZ reducing (C); ABTS (E) and DPPH scavenging (D); and
Fe2+ chelating (F) activities of EEFS and WEFS ((EEFS: evaporated ethanolic extract of aerial parts kınkor (Ferulago stellata);
WEFS: lyophilized water extract of aerial parts of kınkor (Ferulago stellata) TPTZ: 2,4,6-tris(2-pyridyl)-s-triazine; DPPH:
1,1-diphenyl-2-picrylhydrazyl; ABTS: 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)).

Another putative and commonly used method is Fe3+-TPTZ reduction assay [45]. The
FRAP assay activity of ethanol and water extracts of kınkor (Ferulago stellata) declined in
the following order (Figure 1C and Table 2): ascorbic acid (λ593: 1.624 ± 0.015, r2: 0.9930)
> BHT (λ593: 0.909 ± 0.006, r2: 0.9874) > ethanol extract of kınkor (Ferulago stellata) (λ593:
0.873 ± 0.012, r2: 0.9553) > α-tocopherol (λ593: 0.755 ± 0.075, r2: 0.9867) > water extract of
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kınkor (Ferulago stellata) (λ593: 0.424 ± 0.016, r2: 0.9510) at 50 µg/mL. The FRAP method is
carried out in an acidic environment to maintain iron solubility [46].

Table 1. The reducing power of the EEFS and WEFS and standards antioxidants by Fe3+ reducing (120 µg/mL), Cu2+

reducing (30 µg/mL), and Fe3+-TPTZ reducing (150 µg/mL) methods ((EEFS: evaporated ethanolic extract of aerial parts
kınkor (Ferulago stellata); WEFS: lyophilized water extract of aerial parts of kınkor (Ferulago stellata); TPTZ: 2,4,6-tris(2-
pyridyl)-s-triazine).

Antioxidants Fe3+ Reducing Cu2+ Reducing Fe3+-TPTZ Reducing

λ700 r2 λ450 r2 λ593 r2

α-tocopherol 0.990 ± 0.007 0.9942 0.785 ± 0.061 0.9986 0.755 ± 0.075 0.9867
Ascorbic acid 1.520 ± 0.028 0.9970 1.069 ± 0.007 0.9722 1.624 ± 0.015 0.9930

BHT 1.269 ± 0.005 0.9880 1.561 ± 0.089 0.9978 0.909 ± 0.006 0.9874
EEFS 0.985 ± 0.013 0.9199 0.830 ± 0.022 0.9869 0.873 ± 0.012 0.9553
WEFS 1.058 ± 0.021 0.9973 0.456 ± 0.034 0.9742 0.424 ± 0.016 0.9510

Table 2. The half maximum concentration (IC50, µg/mL) of EEFS, WEFS, and standards for the DPPH and ABTS radicals
scavenging activities and ferrous ion chelating ability (EEFS: evaporated ethanolic extract of aerial parts kınkor (Ferulago
stellata); WEFS: lyophilized water extract of aerial parts of kınkor (Ferulago stellata)).

Compounds
DPPH• Scavenging ABTS•+ Scavenging Fe2+ Chelating

IC50 * r2 IC50 * r2 IC50 * r2

α-tocopherol 23.1 ± 0.032 0.9825 15.4 ± 0.03 0.9866 33.0 ± 0.17 0.9109
Ascorbic acid 16.1 ± 0.03 0.9566 23.1 ± 0.01 0.9998 99.0 ± 0.36 0.9985

BHT 31.5 ± 0.01 0.9754 26.7 ± 0.08 0.9717 14.8 ± 0.56 0.9646
EEFS 34.7 ± 0.22 0.9965 7.8 ± 0.01 0.9844 31.5 ± 0.13 0.903
WEFS 57.8 ± 0.07 0.9993 19.3 ± 0.04 0.9419 - * - *

* They were not determined.

Copper is an important element in metallic form that can be found and used directly
in nature. It is a very important cofactor for some endogenous and important metabolic
enzymes including cytochrome c oxidase [47]. In addition, this chromogenic redox reaction
is used to determine the potential of antioxidants containing non-protein thiols and thiols
such as glutathione. Cupric ions (Cu2+) reducing power of same concentration (30 µg/mL)
of ethanol and water extracts of kınkor (Ferulago stellata) and standards is shown in Table 1.
A positive correlation was found between the Cu2+ reducing ability and different concen-
tration of the ethanol and water extracts of kınkor (Ferulago stellata) (Figure 1B and Table 1).
It was observed that Cu2+-reducing effect of ethanol and water extracts of kınkor (Ferulago
stellata) increased with increasing concentrations (10–30 µg/mL). Cu2+-reducing ability
of standards and both extracts at the same concentration (30 µg/mL) demonstrated the
following order: BHT (λ450: 1.561 ± 0.089, r2: 0.9978) > ascorbic acid (λ450: 1.069 ± 0.007, r2:
0.9722) > α-tocopherol (λ450: 0.785 ± 0.061, r2: 0.9986) > ethanol extract of kınkor (Ferulago
stellata) (λ450: 0.830 ± 0.022, r2: 0.9869) and water extract of kınkor (Ferulago stellata) (λ450:
0.456 ± 0.034, r2: 0.9742).

In the presence of O2 and transition metal ions, H2O2 can generate OH• via the Fenton
reaction. In this way H2O2 is converted to a more reactive HO• by the Fenton reaction,
which requires reduced iron ions (Fe2+), which had more reactivity than Fe3+ ions [48,49].
In this way, the formed OH radicals are more reactive than the end-peroxides. Metal
binding effect of ethanol and water extracts of kınkor (Ferulago stellata) was evaluated using
by two distinct metal chelator agents including ferrozine reagent. When the IC50 values
of the binding effect of ethanol and water extracts of kınkor (Ferulago stellata) in the study
were compared with the IC50 of the ethanol extract of kınkor (Ferulago stellata) and standard
antioxidants, it was found to be as effective metal chelator with IC50: 31.5 ± 0.13 µg/mL
(r2: 0.9030) (Figure 1F and Table 1) using ferrozine reagent, however, this value could not
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be detected for water extract of kınkor (Ferulago stellata). Additionally, relatively higher
IC50 values were found for α-tocopherol (IC50: 33.0 ± 0.17 µg/mL, r2: 0.9109), ascorbic
acid (IC50: 99.0 ± 0.36 µg/mL, r2: 0.9985), and BHT (IC50: 14.7 ± 0.56 µg/mL, r2: 0.9647).

The spectrophotometric methods based on the radical scavenging are frequently
used to determine antioxidant abilities of pure substances, beverages, food, and herbal
extracts. In addition, ABTS·+ and DPPH· scavenging methods are fast, simple, selective
and repeatable procedures. So, they are widely used to define the radical elimination
abilities. It is easy to use the violet DPPH· and green-blue ABTS·+ chromogens that have
high sensitivity [50,51]. DPPH· scavenging method is mainly based on reduction of DPPH·
that produces an easily identifiable strong violet color. The reduction of DPPH induces
the radical to change violet to yellow color and this change is 517 nm [48,52]. As seen
in Table 2, within the scope of DPPH· scavenging studies, IC50 values for ethanol and
water extracts of kınkor (Ferulago stellata) had less effective DPPH· scavenging effect and
were found to be 34.7 ± 0.22 µg/mL (r2: 0.9965) and 57.8 ± 0.07 µg/mL (r2: 0.9993),
respectively when compared to α-tocopherol (23.1 ± 0.032 µg/mL, r2: 0.9825), ascorbic
acid (16.1 ± 0.03 µg/mL, r2: 0.9566), and BHT (31.5 ± 0.01 µg/mL, r2: 0.9754), which are
food additives used as preservative ingredients in some foods (Table 3 and Figure 1D).
DPPH· scavenging assay is frequently used for detection of the antioxidant ability of pure
compounds and plant extracts [53].

Table 3. Liquid chromatography-high-resolution mass spectrometry (LC-HRMS) analysis of EEFS and WEFS (EEFS:
evaporated ethanolic extract of aerial parts kınkor (Ferulago stellata); WEFS: lyophilized water extract of aerial parts of
kınkor (Ferulago stellata)).

No Compounds WEFS EEFS U (%)

1 Ascorbic acid 47.41 172.44 3.94
2 (−)-Epigallocatechin <LOD <LOD 3.09
3 (−)-Epigallocatechin gallate 1.59 <LOD 3.76
4 Chlorogenic acid 10103.18 44642.39 3.58
5 Fumaric acid <LOD 3109.11 2.88
6 Verbascoside 6.59 225.72 2.93
7 Orientin 491.59 15329.03 3.67
8 Caffeic acid 24.41 126.39 3.74
9 (+)-trans taxifolin <LOD 2.10 3.35
10 Luteolin-7-rutinoside <LOD <LOD 3.06
11 Naringin <LOD <LOD 4.20
12 Luteolin 7-glucoside <LOD <LOD 4.14
13 Rutin 14013.35 156907.40 3.07
14 Rosmarinic acid 26.88 134.22 3.77
15 Hyperoside 105.94 2633.75 3.46
16 Dihydrokaempferol <LOD 2.33 2.86
17 Quercitrin 3.82 105.78 3.78
18 Myricetin <LOD 0.47 4.18
19 Quercetin 30.82 197.18 2.95
20 Salicylic acid 27.53 130.76 1.89
21 Naringenin <LOD 23.12 4.20
22 Luteolin <LOD 11.06 3.42
23 Nepetin <LOD <LOD 2.19
24 Apigenin <LOD 8.60 2.87
25 Hispidulin <LOD 66.12 3.41
26 Isosakuranetin <LOD <LOD 3.98
27 Caffeic acid phenethyl ester <LOD 0.23 3.13
28 Chrysin 6.47 1.38 3.24
29 Acacetin 5.53 9.92 3.98
30 Emodin <LOD 1.56 4.27

The formation of excessive free radicals in metabolism is one of the important factors
that lead to the emergence of many chronic diseases [54]. As with DPPH radical scav-
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enging ability, ABTS·+ scavenging ability is extensively used for determination of radical
scavenging activities of beverages, extracts, and pure substances [55]. ABTS·+ is more
reactive radical than DPPH radicals. As shown in Table 2, it was observed that ethanol and
water extracts of kınkor (Ferulago stellata) had effective ABTS radical removing effects. The
IC50 value of ABTS·+ scavenging activity for ethanol and water extracts of kınkor (Ferulago
stellata) was calculated as 7.8 ± 0.01 µg/mL (r2: 0.9844) and 19.3 ± 0.04 µg/mL (r2: 0.9419),
respectively. Furthermore, this value was calculated as 26.7 ± 0.08 µg/mL (r2: 0.9717) for
BHT, 15.4 ± 0.03 µg/mL (r2: 0.9825) for α-tocopherol, and 23.1 ± 0.01 µg/mL (r2: 0.9998)
for ascorbic acid. The results clearly demonstrated that the ethanol and water extracts of
kınkor (Ferulago stellata) have effective ABTS·+ scavenging ability when compared to all
standard antioxidants (Figure 1E and Table 2).

An important metabolic enzyme is acetylcholinesterase (AChE), which had been
associated in some neurodegenerative diseases including AD [56]. The AChE inhibition
had positive effect on the long-term progression of AD. In this context, there are many
published studies on the inhibition potential of compounds and crude extracts. One such
compound is galantamine and used to treat mild AD to moderate AD [57]. It is well known
that natural products provide abundant and effective small molecule drug targets for the
treatment of human diseases [58]. It is well known that phenolic antioxidants play an
important role in avoiding or delaying the onset of major degenerative diseases, such
as AD and T2DM [59]. In our study, we demonstrate that ethanol and water extracts of
kınkor (Ferulago stellata) have a rich content of small molecules such as chlorogenic acid,
rutin, and orientin. Additionally, ethanol extract of kınkor (Ferulago stellata) effectively
inhibited AChE with IC50 values of 1.772 µg/mL (r2: 0.9831) for AChE. On the other hand,
tacrine was used as positive control for AChE inhibition and had Ki value of 0.124 µM
(r2: 0.9804) against AChE. AChE is the primary cholinesterase at mainly neuromuscular
junctions and in chemical synapses in the body. However, it was observed that water
extract of kınkor (Ferulago stellata) does not have any modulatory effects against the used
metabolic enzymes.

Scientists have been extensively investigating the potential of medicinal plants to
inhibit certain metabolic enzymes associated with some global diseases due to the various
undesirable side effects of synthetic drugs. In this study, the ability of ethanol and water
extracts of kınkor (Ferulago stellata) to modulate the activity of enzymes related to AD
(AChE) and diabetes (α-glucosidase and α-amylase) was also investigated. Recently,
diabetes is one of the fastest growing, serious, and costly health problems worldwide.
A complete form of treatment and effective drugs for diabetes are still not found [60].
Plant extracts and their compounds have received great attention as antioxidants and
potential inhibitors of key and metabolic enzymes, used in clinical conditions. For example,
α-glycosidase and α-amylase enzymes, which serve as essential digestive enzymes in
carbohydrate metabolism in the small intestine, have been considered targets and keys
to reduce postprandial hyperglycemia (PPG) in diabetic patients [61]. In this context,
important biologically active compounds such as acarbose, voglibose, and miglitol have
been reported to reduce PPG by inhibiting α-glycosidase and α-amylase enzymes that
perform carbohydrate digestion, thereby delaying or partially inhibiting glucose absorption
from small intestines. Human saliva α-amylase is the most plentiful digestive enzyme
in human saliva that hydrolyses polysaccharides such as starch to oligosaccharides [62].
Ethanol extract of kınkor (Ferulago stellata) had IC50 values of 0.826 µg/mL (r2: 0.9491)
toward α-glycosidase and 0.639 µg/mL against α-amylase enzyme (r2: 0.9580). The results
show that ethanol extract of kınkor (Ferulago stellata) as a crude extract exhibited efficient
α-glycosidase and α-amylase inhibition effect when compared to acarbose as a starch
blocker, which had IC50 of 10.00 µM for α-amylase and 22.80 µM for α-glycosidase [63].

The amount of total phenolic and flavonoids in medicinal plant extracts has been
associated with their antioxidant capacity. Total phenolic compounds in ethanol and water
extracts of kınkor (Ferulago stellata) were determined using the Folin-Ciocalteu reagent.
Gallic acid, which is easily obtained in large amounts by acid or alkaline hydrolysis
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of tannin, was used for a standard graph (r2: 0.9840). Plants, vegetables, and fruits,
which include polyphenols, are important sources of phenolic compounds in human diet.
Accordingly, the consumption of foods containing phenolics, especially polyphenols, is
of great importance in terms of natural antioxidants [64]. The quantity of phenolics in
ethanol and water extracts of kınkor (Ferulago stellata) was determined using the equation
taken from standard gallic acid graph and found as 31.36 and 56.36 gallic acid equivalents
(GAE/mg extract), respectively. On the other hand, for determination of total flavonoids
content of ethanol and water extracts of kınkor (Ferulago stellata), a standard gallic acid
graphs was used. The flavonoids quantity in both extracts was determined as 35.98 and
28.50 µg quercetin equivalent (QE), respectively. The most favorable structural properties
characterizing the antioxidative potential of phenolic compounds are the presence of
hydrogen-donating substituents and the ability for delocalization of the resulting free
electron for stability. The most active form of antioxidant molecules is the one that has
more than one active group (e.g., -OH) in the ortho-position, which plays an important
role in the structure-activity relationship of antioxidants [65]. It has been reported that the
ortho-position is more active due to its ability to form intramolecular H-bonds, followed
by the para-position and followed by then meta-position of the compounds. The H atom
not involved in the intramolecular H-bond is then abstracted by free radicals, resulting in
the formation of a stable molecule [66]. Plants rich in the specified compounds, therefore
become a promising source of natural antioxidants. They are commercially grown and used
in the pharmaceutical, food, and cosmetic industries. In addition, they are used not only as
antioxidants but also as plants rich in many biological and biochemical applications [67].

Based on LC-HRMS analysis method, the most found phenolics identified in 1 mg of
water extract of kınkor (Ferulago stellata) are rutin (14013.35 mg/kg), which is a naturally
occurring flavonol glycoside in fruits, leafy vegetables, and several grains; chlorogenic
acid as a polyphenolic compound that exhibits antioxidant, antibacterial, and antitumor
activities (10103.18 mg/kg); and orientin that is a flavonoid from plant, derived often
to use in various bioactivity studies (491.59 mg/kg). On the other hand, rutin that has
wide variety of medicinal applications (156907.40 mg/kg); orientin (15329.03 mg/kg);
and chlorogenic acid, as one of the natural products readily found in food, medicines,
and cosmetics (44642.39 mg/kg), are the most plentiful phenolic compounds in 1 mg
of ethanol extract of kınkor (Ferulago stellata) (Table 3). Different plant organs including
fruits, vegetables, seeds, nuts, bark, and flowers are the main source of common natural
phenolic compounds [68,69]. The antioxidant property of polyphenols from plants is
well established. Phenolic compounds have biological functions including free radical
scavenging and metal chelation, which prevent autoxidation. In plants, the antioxidant
effects of phenolics are mainly due to redox effects. For this reason, hydrogen donors,
reducing agents, singlet oxygen inhibitors, and metal chelates act as builders [70].

3. Materials and Methods
3.1. Chemicals and Plant Materials

α-tocopherol, neocuproine, DPPH radical, ABTS, DMPD, and α-tocopherol were ob-
tained from Sigma-Aldrich (Stenheim, Germany). The sources and purity of the standard
compounds for LC-HRMS are given as follows: ascorbic acid (≥99%, Sigma-Aldrich),
(-)-epigallocatechin (>97%, TRC Canada, Toronto, Canada), (−)-epigallocatechin gal-
late (>97% TRC Canada), chlorogenic acid (≥95% Sigma-Aldrich), fumaric acid (≥99%
Sigma-Aldrich), verbascoside (86.31%, HWI Analytik Gmbh, Rulzheim, Germany), ori-
entin (>97%, TRC Canada), caffeic acid (≥98%, Sigma-Aldrich), (+)-trans taxifolin (>97%,
TRC Canada), luteolin-7-rutinoside (>97%, Carbosynth limited, West Berkshire, UK),
naringin (≥90%, Sigma-Aldrich), luteolin 7-glucoside (>97%, TRC Canada), rutin (≥94%,
Sigma-Aldrich), rosmarinic acid (≥96%, Sigma-Aldrich), hyperoside (>97%, TRC Canada),
dihydrokaempferol (>97%, Phytolab, Vestenbergsgreuth, Germany), quercitrin (>97%,
TRC Canada), myricetin (>95%, Carl Roth GmbH + Co, Karlshue, Germany), quercetin
(≥95%, Sigma-Aldrich), salicylic acid (≥98%, Sigma-Aldrich), naringenin (≥95%, Sigma-
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Aldrich), luteolin (95%, Sigma-Aldrich), nepetin (98%, Sigma-Aldrich), apigenin (>97%,
TRC Canada), hispidulin (>97%, TRC Canada), isosakuranetin (>97%, Phytolab), CAPE
(caffeic acid phenethyl ester) (≥97%, European Pharmacopoeia reference standard, Stras-
bourg, France), chrysin (≥96%, Sigma-Aldrich), acacetin (>97%, TRC Canada), and emodin
(90%, Sigma-Aldrich). The other solvents used were of analytical grade and purchased
from either Merck or Sigma-Aldrich. Kınkor (Ferulago stellata) was collected from B9 Van:
Çatak, Bilgi village, surroundings of Üçüzler district, 2200 m, in August 2019 (location:
38◦06′58.8′′ N, 43◦17′16.3′′ E).

3.2. Preparation of the Water and Ethanol Extracts

The used water and ethanol extractions methods were previously described [71]. For
determination of the ethanolic extract of aerial parts of kınkor (Ferulago stellata), a 50 g
plant sample was cut into small pieces, ground into a fine powder using a mill and mixed
with 0.5 L of ethyl alcohol, and then evaporated [72]. This process was repeated until the
extraction solution turned colorless. The combined extracts were filtered through over
Whatman paper and evaporated (Heidolph Hei-VAP HL, Germany). Dry ethanol extract of
kınkor (Ferulago stellata) was transferred to an appropriate plastic bottle and kept at −20 ◦C
until used in experiments.

For lyophilized water extraction shade-dried kınkor (Ferulago stellata), 50 g plant
samples powdered and mixed with 500 mL water, boiled, and stirred for 20 min. Then
extract was filtered and frozen at−87 ◦C in an ultra-low temperature freezer. Frozen extract
was lyophilized at −50 ◦C at a pressure of 5 mm-Hg in a lyophilizator [73]. Prepared fresh
lyophilized ethanolic extract of kınkor (Ferulago stellata) was kept in a plastic bottle and
stored at −20 ◦C until used in experimental.

3.3. Reducing Ability Assays

The ferric ions (Fe3+) reducing ability of ethanol and water extracts of kınkor (Ferulago
stellata) were realized according to Oyaizu [74] as given in previous literature [75,76].
Briefly, different concentrations of ethanol and water extracts of kınkor (Ferulago stellata) in
distilled water or ethanol (10–50 µg/mL) were added to the same volume of phosphate
buffers (1.25 mL, pH 6.6, 0.2 M) and K3Fe(CN)6 solution (1%, 1.25 mL). The mixtures were
kept at 50 ◦C during 20 min and then, acidified with TCA (10%, 1.25 mL). Finally, a portion
of FeCl3 (0.1%, 0.5 mL) was transferred and their absorbances were spectrophotometrically
measured at 700 nm.

The Cu2+ ions reducing effects of ethanol and water extracts of kınkor (Ferulago stellata)
were made according to spectrophotometric assay [77] as described in details [54]. For this
aim, the same volumes of 250 µL of CuCl2 solution (10 mM, 0.25 mL), neocuproine solution
(7.5 mM), and acetate buffer (0.25 mL, 1.0 M) were added to different concentrations of
ethanol and water extracts of kınkor (Ferulago stellata) solutions (10–50 µg/mL) in test tubes.
The volume of total mixture was adjusted to 2 mL with deionized water. Then, the tubes
were closed and retained at 25 ◦C. Finally, their absorbances were spectrophotometrically
recorded at 450 nm.

FRAP reduction ability was realized according to our previous study [78]. First,
ethanol and water extracts of kınkor (Ferulago stellata) and standard solutions were trans-
ferred to the test tubes, which included several concentrations. A portion (2.25 mL) of
TPTZ solution (10 mM TPTZ in 40 mM HCl) was freshly prepared and then transferred
to 2.5 mL acetate buffer (0.3 M, pH 3.6) and 2.25 mL of FeCl3 solution (20 mM) in water.
Then, different concentrations of ethanol and water extracts of kınkor (Ferulago stellata)
(10–30 µg/mL) were dissolved in 5 mL of appropriate buffer solvent, stirred, and incu-
bated at 37 ◦C for 30 min. Finally, the absorbance of mixture was spectrophotometrically
measured at 593 nm.
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3.4. Radical Scavenging Activities

DPPH·scavenging ability of ethanol and water extracts of kınkor (Ferulago stellata) was
performed according to Blois method [79] as given prior studies [80–82]. DPPH radicals
were used for the estimation of the radical scavenging capacity of plant extracts. In brief,
an aliquot of DPPH radicals (0.5 mL, 0.1 mM) was added to ethanol and water extracts of
kınkor (Ferulago stellata) solution (1.5 mL) in ethanol or water (10–50 µg/mL) and incubated
for 30 min in the dark. Finally, the absorbance of the mixtures was spectrophotometrically
recorded at 517 nm.

ABTS·+ scavenging ability of ethanol and water extracts of kınkor (Ferulago stellata) was
realized according to the previous study [83,84]. Primarily an ABTS cation radical solution
(7.0 mM) was produced by adding K2S2O8 to an ABTS solution and their absorbances was
set to 0.750 ± 0.025 nm diluted by buffer solution at 734 nm. Finally, 3.0 mL of ethanol and
water extracts of kınkor (Ferulago stellata) at various concentrations (10–50 µg/mL) were
mixed with 1.0 mL of ABTS•+ and the remaining absorbance was spectrophotometrically
recorded at 734 nm.

The radical removing capacities (RRC) of ethanol and water extracts of kınkor (Ferulago
stellata) were found as millimolar in the reaction medium. Both radicals (DPPH• and
ABTS•+) scavenging effects were calculated as follows:

RRC (%) = (1 − ASample/AControl) × 100, (1)

where AControl and ASample are the absorbance values of the control and samples, re-
spectively. The half maximal inhibitory concentration (IC50) was estimated by plotting
percentages against the ethanol and water extracts of kınkor (Ferulago stellata) sample
concentrations (µg/mL) [85,86].

3.5. Anticholinergic Assay

AChE and BChE inhibitions of ethanol and water extracts of kınkor (Ferulago stellata)
are used within the scope of anticholinergic studies. The AChE inhibitory effect of
ethanol and water extracts of kınkor (Ferulago stellata) was realized according to Ellman’s
method [87] as given in previous studies [88,89]. AChE was obtained from electric eel
(Electrophorus electricus). For this, 5,5′-dithio-bis-(2-nitrobenzoic acid) (DTNB) and acetylth-
iocholine iodide (AChI) were used as substrate for cholinergic reaction [90]. Briefly, 100 µL
of Tris/HCl buffer (1.0 M, pH 8.0) and different concentrations of ethanol and water extracts
of kınkor (Ferulago stellata) solution were dissolved in ethanol and deionized water. Then,
50 µL of AChE (5.32 × 10−3 EU) solution was added and incubated for 10 min at 25 ◦C.
After a short incubation period, 50 µL of DTNB (0.5 mM) was added. Finally, the reaction
was started by the addition of 50 µL of acetylcholine iodate (AChI) (10 mM). The enzymatic
hydrolysis of these substrates was spectrophotometrically determined by the formation of
yellow 5-thio-2-nitrobenzoate anion as the result of the reaction of DTNB with thiocholine
at a wavelength of 412 nm.

3.6. Antidiabetic Assay

Two digestive enzyme inhibitions of ethanol and water extracts of kınkor (Ferulago
stellata) were studied within the scope of the antidiabetic study. α-glycosidase inhibition
efficacy of ethanol and water extracts of kınkor (Ferulago stellata) was performed according
to Tao et al. [91] using p-nitrophenyl-D-glycopyranoside (p-NPG) substrate as described
previously in details. The absorbances of samples were spectrophotometrically recorded at
405 nm [92]. First, 75 µL of phosphate buffer was mixed with 20 µL of the α-glycosidase
solution (0.15 U/mL) in phosphate buffer (0.15 U/mL) pH 7.4) and 5 µL of different
concentration ethanol and water extracts of kınkor (Ferulago stellata) sample dissolved in
ethanol and deionized water, respectively. Then, it was pre-incubated at 35 ◦C for 10 min
prior to the addition of p-NPG to the initiation of the reaction. In addition, 20 µL of p-NPG
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was added in phosphate buffer (5 mM, pH 7.4) after re-incubation at 35 ◦C. The absorbances
were spectrophotometrically measured at 405 nm.

α-Amylase activity, the second digestive enzyme, was determined according to the
Xiao’s procedure [93]. Starch was used as substrate and dissolved in 80 mL NaOH solution
(0.4 M, 30 min, 80 ◦C). For this, 35 µL of starch solution, 35 µL of phosphate buffer (pH 6.9),
and 10 µL of different concentrations of ethanol and water extracts of kınkor (Ferulago
stellata) sample dissolved in ethanol and deionized water were mixed and was preincubated
at 35 ◦C for 30 min. Then, 20 µL of α-amylase solution was added to it and incubated for
30 min. The reaction was finished by addition of 50 µL of HCl (0.1 M). The absorbances
were spectrophotometrically measured at 580 nm.

3.7. Determination of Inhibition Parameters

The IC50 was obtained from activity (%) versus ethanol and water extracts of kınkor
(Ferulago stellata) concentration plots. Furthermore, Lineweaver-Burk [94] graphs were
used for determination of Ki and other inhibition types [95].

3.8. Total Phenolic and Flavonoid Contents

Total phenolics in ethanol and water extracts of kınkor (Ferulago stellata) were calcu-
lated by Folin-Ciocalteu methods [96] as descried in prior studies [97]. The results were
calculated as µg of gallic acid equivalents (GAE) per g of extract (µg GAE/g). The amount
of total phenolics in ethanol and water extracts of kınkor (Ferulago stellata) were calcu-
lated from the calibration curve. Total flavonoids in ethanol and water extracts of kınkor
(Ferulago stellata) were determined according to our previous colorimetric method [98].
The aluminum chloride (AlCl3) colorimetric assay was used for the estimation of the total
flavonoid content. The standard quercetin curve (0–100 µg/mL) was used to determine
total flavonoids, and results are given as µg quercetin equivalents (QE) per g ethanol and
water extracts of kınkor (Ferulago stellata).

3.9. Preparation of Samples for LC-HRMS Analysis

The dried 100 mg of the ethanol and water extracts of kınkor (Ferulago stellata) were
dissolved in water in a 5 mL volumetric flask, which was kept in an ultrasonic bath until a
clear solution was obtained. Then, 0.1 mL of dihydrocapsaicin solution, used as an internal
standard, was added and diluted to the volume with mobile phase and stirred and heated
to get clear solution. Then, the solution was filtered (0.45 µm Millipore Millex-HV filter).
The concentration of final solution (1 mL) was added in a capped auto sampler vial, from
which 2 µL of sample was injected to LC for each run. The prepared samples in the auto
sampler were stored at 15 ◦C [99–101].

3.10. Instruments and Chromatographic Conditions of LC-HRMS

LC-HRMS experiments were performed on a Thermo ORBITRAP Q-EXACTIVE mass
spectrometry (Bremen, Germany) equipped with a Troyasil C18 column (150 mm × 3 mm
i.d., 3 µm particle size, Istanbul, Turkey). The mobile phases A and B were composed of 1%
formic acid–water and 1% formic acid–methanol, respectively. The gradient program of
which was 0–1.00 min 50% A and 50% B, 1.01–6.00 min 100% B, and finally 6.01–10 min 50%
A and 50% B. The flow rate of the mobile phase was 0.35 mL/min, and the column temper-
ature was set to 22 ◦C. Environmental conditions were set as temperature of 22.0 ± 5.0 ◦C
and relative humidity of (50 ± 15)% rh [102,103].

3.11. Optimization of LC-HRMS Procedure

The best mobile phase was found to be an acidified methanol and water gradient
in HPLC method. This mobile phase has also been found to be suitable for ionization
abundance and separation of compounds. The best ionization of small and relatively
polar compounds has been achieved with the ESI source. The ions between m/z 85–1500
were scanned in high-resolution mode of instrument [104,105]. Identification of the com-
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pounds was accomplished by comparing the retention times of the standard compounds
(in the purity range of 95–99%; see section chemicals) and HRMS data of Bezmialem Vakif
University, Drug Application and Research Center Library (ILMER). Dihydrocapsaicin
(purity 95%) was used as an internal standard in LC-HRMS measurements to reduce the
repeatability problem caused by external influences such as ionization repeatability in
mass spectrometry measurements. TIC chromatogram of EESF and WESF in negative and
positive ionization modes were given in Supplementary Materials (Figures S1–S4). The
detailed mass parameters of each target compounds are given in Figure 2 and Table 4.

Table 4. LC-HRMS method parameters of selected compounds in EEFS and WEFS (EEFS: evaporated ethanolic extract of
aerial parts kınkor (Ferulago stellata); WEFS: lyophilized water extract of aerial parts of kınkor (Ferulago stellata)).

Compounds RT m/z δ
ppm

Ionization
Mode

Linear
Range

Linear Regression
Equation LOD/LOQ R2 Recovery

Ascorbic acid 1.99 175.0248 −0.81 Negative 0.5–10 y = 0.00347x − 0.00137 0.39/1.29 0.9988 96.20
(−)-Epigallocatechin 2.15 307.0812 −1.07 Positive 0.3–5 y = 0.00317x + 0.000443 0.17/0.57 0.9947 102.22

Chlorogenic acid 2.21 353.0878 −0.91 Negative 0.05–10 y = 0.00817x + 0.000163 0.02/0.06 0.9994 96.68
Verbascoside 2.43 623.1981 −0.61 Negative 0.1–10 y = 0.00758x + 0.000563 0.03/0.1 0.9995 96.19

Orientin 2.45 447.0933 −0.45 Negative 0.1–10 y = 0.00757x + 0.000347 0.01/0.03 0.9993 96.22
Caffeic acid 2.89 179.0350 1.72 Negative 0.3–10 y = 0.0304x + 0.00366 0.08/0.27 0.9993 94.51

Luteolin-7-rutinoside 3.09 593.1512 −0.26 Negative 0.1–10 y = 0.00879x + 0.000739 0.01/0.03 0.9988 93.05
Naringin 3.17 579.1719 −0.07 Negative 0.05–10 y = 0.00576x − 0.000284 0.01/0.03 0.9991 101.91

Luteolin 7-glucoside 3.85 447.0933 −0.32 Negative 0.1–7 y = 0.0162x + 0.00226 0.01/0.03 0.9961 96.31
Hesperidin 3.85 609.1825 0.29 Negative 0.05–10 y = 0.00423x + 0.0000138 0.01/0.03 0.9994 96.14

Rutin 4.12 609.1461 0.12 Negative 0.05–10 y = 0.00329x − 0.00005576 0.01/0.03 0.999 96.97
Syringic acid 4.24 197.0456 −0.26 Negative 0.5–10 y = 0.0000831x + 0.000024 0.1/0.3 0.9991 97.29

Rosmarinic acid 4.48 359.0772 0.01 Negative 0.05–10 y = 0.00717x − 0.0003067 0.01/0.03 0.9992 99.85
Hyperoside 4.66 463.0882 −0.17 Negative 0.05–10 y = 0.0072x − 0.00003096 0.01/0.03 0.9995 96.62

Apigenin 7-glucoside 4.58 431.0984 −0.06 Negative 0.3–7 y = 0.0246x + 0.00306 0.01/0.03 0.9962 96.07
Quercitrin 4.88 447.0933 −0.18 Negative 0.05–10 y = 0.0179 + 0.0003331 0.01/0.03 0.999 97.00
Quercetin 5.13 301.0354 −0.32 Negative 0.1–10 y = 0.0509x + 0.00467 0.01/0.03 0.9978 96.41

Salicylic acid 5.15 137.0244 −0.44 Negative 0.3–10 y= 0.0361x + 0.00245 0.01/0.03 0.9982 92.88
Naringenin 5.68 271.0612 −0.12 Negative 0.1–10 y = 0.0281x + 0.00182 0.01/0.03 0.9995 86.65

Luteolin 5.72 285.0405 0.46 Negative 0.1–10 y = 0.117x + 0.00848 0.01/0.03 0.9981 96.98
Apigenin 5.74 269.0456 −0.25 Negative 0.3–10 y = 0.104x + 0.0199 0.01/0.03 0.9998 81.55

Hispidulin 5.84 301.0707 −0.18 Positive 0.05–10 y = 0.02614x + 0.0003114 0.01/0.03 0.9993 98.36
Isosakuranetin 5.86 285.0769 −0.21 Negative 0.05–10 y = 0.0235x + 0.000561 0.01/0.03 0.9992 96.56

Chrysin 6.20 253.0506 −0.29 Negative 0.05–7 y = 0.0964x − 0.0002622 0.01/0.03 0.999 87.92
Acacetin 6.24 283.0612 −1.08 Negative 0.05–7 y = 0.046x + 0.0001875 0.01/0.03 0.9995 87.52
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Figure 2. Liquid chromatography-high-resolution mass spectrometry (LC-HRMS) chromatogram of
WEFS measurements (WEFS: lyophilized water extract of aerial parts of kınkor (Ferulago stellata)). (A)
Total ion chromatogram (TIC) in negative ionization mode and (B) HRMS.

4. Conclusions

Data presented in this study demonstrated that kınkor (Ferulago stellata), an understud-
ied endemic plant to Turkey, possessed effective antioxidant and some metabolic enzymes
inhibitory properties. Evaluation of bioactivity and phytochemical screening of kınkor
(Ferulago stellata) had great importance. Ethanol and water extracts of kınkor (Ferulago
stellata) have been found to have efficient antioxidant properties when compared to BHA,
BHT and ascorbic acid in various bioanalytical tests, including Fe3+ and Cu2+ reduction
abilities, Fe2+ binding, as well as DPPH and ABTS radical scavenging activities. In addition,
ethanol extract possessed higher antioxidant activity, phenolic contents, and demonstrated
AChE, α-glycosidase and α-amylase inhibition effects. This study suggests that ethanol
and water extracts of kınkor (Ferulago stellata) could be a promising potential source of
beneficial phenolics.
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Supplementary Materials: The following are available online. Figure S1: TIC chromatogram of EESF
in negative ionization mode, Figure S2: TIC chromatogram of EESF in pozitive ionization mode,
Figure S3: TIC chromatogram of WESF in negative ionization mode, Figure S4: TIC chromatogram of
WESF in pozitive ionization mode.
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and acquisition, İ.G.; S.H.A. and H.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available in a publicly accessible repository.

Acknowledgments: S.H.A. would like to extend his sincere appreciation to the Researchers Support-
ing Project (RSP-2021/59), King Saud University, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the compounds are not available from the authors.

References
1. Rummun, N.; Rondeau, P.; Bourdon, E.; Pires, E.; McCullagh, J.; Claridge, T.D.W.; Bahorun, T.; Li, W.W.; Neergheen, V.S. Terminalia

bentzoe, a mascarene endemic plant, inhibits human hepatocellular carcinoma cells growth in vitro via G0/G1 phase cell cycle
arrest. Pharmaceuticals 2020, 13, 303. [CrossRef] [PubMed]

2. Choi, E.M.; Suh, K.S.; Park, S.Y.; Yun, S.; Chin, S.O.; Rhee, S.Y.; Chon, S. Orientin reduces the inhibitory effects of 2,3,7,8-
tetrachlorodibenzo-p-dioxin on adipogenic differentiation and insulin signaling pathway inmurine 3T3-L1 adipocytes. Chem.
Biol. Interact. 2020, 318, 108978. [CrossRef] [PubMed]

3. Zubay, P.; Kunzelmann, J.; Ittzes, A.; Zamborine, E.N.; Szabo, K. Allelopathic effects of leachates of Juglans regia L., Populus tremula
L. and juglone on germination of temperate zone cultivated medicinal and aromatic plants. Agroforest. Syst. 2021, 95, 431–442.
[CrossRef]

4. Chukwuma, C.I.; Matsabisa, M.G.; Ibrahim, M.A.; Erukainure, O.L.; Chabalala, M.H.; Islam, M.S. Medicinal plants with
concomitant anti-diabetic and anti-hypertensive effects as potential sources of dual acting therapies against diabetes and
hypertension: A review. J. Ethnopharmacol. 2019, 10, 329–360. [CrossRef] [PubMed]

5. Topal, M.; Gocer, H.; Topal, F.; Kalin, P.; Polat Köse, P.; Gülçin, İ.; Çakmak, K.C.; Küçük, M.; Durmaz, L.; Gören, A.C.; et al.
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