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Figure 524. The X-ray crystal structure of 3 showing the diverse guest orientations in the inclusion complexes. The
guests are presented as a space-filling model. The hydrogen atoms are omitted for clarity. Color codes: O (brown-red),
N (blue), C (black).

Figure S25. The crystal packing diagram of 6 (along ¢ direction). Color codes: O (red) and C (gray).
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Table S1. Chemical shifts of adamantane derivative 1 with/without complexation with 3-CD (recorded in DMSO-ds
with TMS as the internal standard) for comparison.

Adamantane Derivative 1

Hydrogen Ofree state Ocomplexed state Ad? Remark
H-a 1.5739 1.5796 0.0057
H-b 2.0296 2.0442 0.0146
H-c 1.5394 1.5406 0.0012 no split
-OH 4.3049 4.2786 -0.0263

a.Ado= 6complexed state — Offree state.

Table S2. Chemical shifts of adamantane derivative 2 with/without complexation with 3-CD (recorded in DMSO-ds
with TMS as the internal standard) for comparison.

Adamantane Derivative 2 Hydrogen  Ofree state Ocomplexed state Ad? Remark
H-a 3.6495 3.6019 -0.0476
H-b 2.0549 2.0561 0.0012
H-c 1.6889 1.6905 0.0016
H-d 1.7029 Merge with peak of 1.7381 0.0352
H-e 1.3723 1.3818 0.0095
-OH 4.5192 4.4843 -0.0349

a.Ado= 6complexed state — Ofree state.

Table S3. Chemical shifts of adamantane derivative 3 with/without complexation with 3-CD (recorded in DMSO-ds
with TMS as the internal standard) for comparison.

Adamantane Derivative 3

Hydrogen Ofree state Ocomplexed state Ad? Remark
Mz H-a 1.4813 1.4983 0.017
a a H-b 1.9655 1.9987 0.0332
H-c 1.5492 1.5573 0.0081
b b -NH: broad disappear

a.Ad>= 6complexed state — Ofree state.

Table S4. Chemical shifts of adamantane derivative 4 with/without complexation with (3-CD (recorded in DMSO-ds
with TMS as the internal standard) for comparison.

Adamantane Derivative 4 Hydrogen Ofree state Ocomplexed state Ad? Remark
GOOH H-a 1.7836 1.7874 0.0038
a a H-b 1.9526 1.9688 0.0162

H-c 1.6588 1.6624 0.0036 no split
y b -COOH 11.9616 11.9389 -0.0227

a. Ad> = 6complexed state — Ofree state.

Table S5. Chemical shifts of adamantane derivative 5 with/without complexation with 3-CD (recorded in DMSO-ds
with TMS as the internal standard) for comparison.

Adamantane Derivative 5 Hydrogen Ofree state Ocomplexed state Ad? Remark
OOH H-a 1.8453 1.8439 -0.0014
H-b 1.7361 1.7343 -0.0018
H-c 2.0573 2.0570 -0.0003
H-d 1.6132 1.6119 -0.0013
-COOH 12.1117 12.1087 -0.0030
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a. Ad= 6complexed state — Ofree state.

Table S6. Chemical shifts of adamantane derivative 6 with/without complexation with (3-CD (recorded in DMSO-ds
with TMS as the internal standard) for comparison.

Adamantane Derivative 6 Hydrogen  Oreestate Ocomplexed state Ad? Remark
€ cyco0H H-a 1.5392 1.5396 0.0004 Merge with peak H-b
H-b 1.5011 1.5003 -0.0008
H-c 1.9866 1.9873 0.0007
H-d 1.4352 1.4311 -0.0041
H-e 1.9692 1.9674 -0.0018
-COOH 11.8876 11.8325 —0.0551

a.Ad= 6c0mplexed state — Ofree state

Table S7. Chemical shifts of 3-CD in 1 with/without complexation with adamantane derivative (recorded in DMSO-ds
with TMS as the internal standard) for comparison.

Complex 1 Hydrogen Ofree state Ocomplexed state Ad? Remark
H-1 4.8270 4.8231 -0.0039
OoH H-2 / /
H-3 3.6117 3.6161 0.0044
H-4 / /
H-5 3.5581 3.5614 0.0033
H-6 / /
2-OH 5.7392 5.7189 -0.0203
3-OH 5.6841 5.6632 -0.0209
6-OH 4.4690 4.4511 -0.0179

a.Ad>= 6complexed state — Ofree state.

Table S8. Chemical shifts of 3-CD in 2 with/without complexation with adamantane derivative (recorded in DMSO-ds
with TMS as the internal standard) for comparison.

Complex 2 Hydrogen Ofreestate  Ocomplexed state Ad? Remark
H-1 4.8270 4.8231 -0.0039
H-2 / /
H-3 3.6117 3.6196 0.0079
H-4 / /
H-5 3.5581 3.5597 0.0016
H-6 / /
2-OH 5.7392 5.7165 -0.0227
3-OH 5.6841 5.6616 -0.0225 Doblet to siglet
6-OH 4.4690 4.4497 -0.0193  Triplet to pro-siglet peak

a. Ad> = 6complexed state — Ofree state.
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Table S9. Chemical shifts of 3-CD in 3 with/without complexation with adamantane derivative (recorded in DMSO-ds
with TMS as the internal standard) for comparison.

Complex 3 Hydrogen Ofeestate  Ocomplexed state Ad? Remark
H-1 4.8270 4.8168 -0.0102
OH H-2 / /
H-3 3.6117 3.6220 0.0103
H-4 / /
H-5 3.5581 3.5598 0.0017
H-6 / /
2-OH 5.7392 5.7116 -0.0276 Fused into one peak
3-OH 5.6841 5.7116 0.0275
6-OH 4.4690 4.4829 0.0139 Doublet to  singlet

a.Ado= 6complexed state — Offree state.

Table S10. Chemical shifts of 3-CD in 4 with/without complexation with adamantane derivative (recorded in DMSO-
ds with TMS as the internal standard) for comparison.

Complex 4 Hydrogen Ofreestate  Ocomplexed state Ad? Remark
H-1 4.8270 4.8237 -0.0033
H-2 / /
H-3 3.6117 3.6145 0.0028
H-4 / /
H-5 3.5581 3.5689 0.0108
H-6 / /
2-OH 5.7392 5.7214 -0.0178
3-OH 5.6841 5.6677 -0.0164 Doublet peak to singlet
6-OH 4.4690 4.4445 -0.0245

a. Ao = bcomplexed state — Ofree state.

Table S11. Chemical shifts of 3-CD in 5 with/without complexation with adamantane derivative (recorded in DMSO-
ds with TMS as the internal standard) for comparison.

Complex 5 Hydrogen Ofreestate  Ocomplexed state Ad? Remark
H-1 4.8270 4.8272 0.0002
H-2 / /
H-3 3.6117 3.6134 0.0017
H-4 / /
H-5 3.5581 3.5597 0.0016
H-6 / /
2-OH 5.7392 5.7283 -0.0109
3-OH 5.6841 5.6759 -0.0082 No peak shape change
6-OH 4.4690 4.4559 -0.0131

a. Ao = 6complexed state — Ofree state.
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Table S12. Chemical shifts of 3-CD in 6 with/without complexation with adamantane derivative (recorded in DMSO-
ds with TMS as the internal standard) for comparison.

Complex 6 Hydrogen Ofeestate  Ocomplexed state Ad? Remark
H-1 4.8270 4.8272 0.0002
OH H-2 / /
H-3 3.6117 3.6168 0.0051
H-4 / /
H-5 3.5581 3.5616 0.0035
H-6 / /
2-OH 5.7392 5.6927 -0.0465 Fused into one peak
3-OH 5.6841 5.6927 0.0086
6-OH 4.4690 vanish 0.0002

a.Ado= 6complexed state — Offree state.
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