Catalytic conversion of xylose to furfural by *p*-toluenesulfonic acid

(pTSA) and chlorides: Process optimization and kinetic modeling

Muhammad Sajid^{1,2,3,*}, Muhammad Rizwan Dilshad⁴, Muhammad Saif Ur Rehman⁵, Dehua

Liu², Xuebing Zhao ^{2,*}

¹ Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, Sichuan China; ²Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

³Department of Chemical Engineering, University of Gujrat, Gujrat 50700 Pakistan;

⁴Institute of Chemical Engineering and Technology, University of the Punjab, Lahore, Pakistan ⁵Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Abu Dhabi Road, Rahim Yar Khan, Pakistan

* Corresponding author: MS engr.sajid80@gmail.com Tel: +86 17810264474 ORCID: 0000-0001-9471-8395;

XZ zhaoxb@mail.tsinghua.edu.cn

Scheme S1. Reaction mechanism of acid catalyzed dehydration of xylose to furfural[1,2]

Oursenie esid	Xylose conversion	Furfural yield	
Organic acid	(%)	(%)	
pTSA	24.2±2.1	2.91	
Oxalic acid	20.5±2.0	<1	
Maleic acid	12.7±1.5	<1	
Malonic acid	11.7±3.0	<1	
Succinic acid	6.4±3.5	<1	

Table S1. Xylose transformation into furfural. Reaction conditions: 1.0 M xylose with 1.0 M

 organic acid in 50 ml water solvent medium heated in an oil bath at 100 °C and stirred at 200

rpm for 8 hours.

Table S2. Fitted kinetic constants of organic acid catalyzed conversion of xylose into furfural in
the water medium. Reaction conditions: 0.5 M Xylose with 1.0 M p TSA and 0.1 M Lewis acid
catalyst in 50 ml water heated in an oil bath at 100 °C with a stirring rate of 200 rpm for 8 hours.

	Rate	e constant (n	nin ⁻¹)	Goodi	ness of Fit	Max
Lewis acid					(\mathbb{R}^2)	yield
	k _{lobs}	k_{2obs}	k _{3obs}	Xylose	Furfural	Y _{max}
No Lewis acid	6.08×10 ⁻⁵	7.17×10 ⁻⁴	1.02×10 ⁻¹¹	0.8505	0.9091	2.61±2.5
(only <i>p</i> TSA)						
NH4Cl	2.01×10 ⁻⁴	5.12×10 ⁻⁴	2.22×10 ⁻¹⁴	0.955	0.9926	8.3±2.5
CrCl3.6H2O	5.58×10 ⁻⁴	1.18×10 ⁻³	1.16×10 ⁻⁹	0.950	0.9905	17.6±2.4
AlCl ₃	2.20×10 ⁻⁴	4.88×10 ⁻⁴	2.22×10 ⁻¹⁴	0.8476	0.9947	8.8±2.2

Figure S1. Kinetic plots of *p*TSA-catalyzed conversion of xylose into furfural in the water medium. Reaction conditions: 0.5 M xylose with 1.0 M *p*TSA and 0.1 M Lewis acid catalyst in 50 ml deionized water heated in oil bath at 100 °C for 8 h with a stirring speed of 200 rpm; (A) No Lewis acid addition (only *p*TSA); (B) NH₄Cl; (C) CrCl₃.6H₂O; (D) AlCl₃. Lines are for model-predicted data, and symbols are for experiment-determined data.

X: xylose; FF: furfural; HUM; humin

Table S3. Fitted kinetic constants of organic acid catalyzed conversion of xylose into furfural in the water medium. Reaction conditions: 0.5 M Xylose with 1.0 M *p*TSA and 0.1 - 0.6 M CrCl₃.6H₂O catalyst in 50 ml water at 100 °C with a stirring rate of 200 rpm for 8 h.

	D (• -1)	Goodn	ess of Fit	Max
CrCl3.6H2O Conc. (M)	Kat	e constant (n	11n ⁻ ')	(R ²)	yield
	k _{1obs}	k _{2obs}	k _{3obs}	Xylose	Furfural	Ymax
0.1	5.58×10 ⁻⁴	1.18×10 ⁻³	1.16×10 ⁻⁹	0.95	0.9905	17.6±1.2
0.2	7.98×10 ⁻⁴	1.35×10 ⁻³	2.76×10 ⁻¹⁰	0.9874	0.9922	23.4±1.1
0.3	1.23×10 ⁻³	2.17×10 ⁻³	4.79×10 ⁻¹²	0.9755	0.9755	26.6±1.5
0.4	1.16×10 ⁻³	1.98×10 ⁻³	1.14×10 ⁻⁴	0.9744	0.981	26.8±1.4
0.5	1.70×10 ⁻³	2.97×10 ⁻³	5.21×10 ⁻¹¹	0.9744	0.9855	30.1±0.9
0.6	2.02×10 ⁻³	3.24×10 ⁻³	4.28×10 ⁻⁴	0.9659	0.9769	29.5±1.1

Figure S2. Kinetic plots of *p*TSA-catalyzed conversion of xylose into furfural in water solvent medium. Reaction conditions: 0.5 M xylose with 1.0 M *p*TSA and 0.1 – 0.6 M CrCl₃.6H₂O catalyst in 50 ml water heated in oil bath at 100 °C for 8 h with a stirring speed of 200 rpm; (A) 0.1 M CrCl₃.6H₂O; (B) 0.2 M CrCl₃.6H₂O; (C) 0.3 M CrCl₃.6H₂O; (D) 0.4 M CrCl₃.6H₂O; (E) 0.5 M CrCl₃.6H₂O; (F) 0.6 M CrCl₃. Lines are for model-predicted data, and symbols are for experiment-determined data. X: xylose; FF: furfural; HUM; humin

Figure S3. Kinetic plots of *p*TSA-catalyzed conversion of xylose into furfural in the DMSO solvent medium. Reaction conditions: 0.5 M xylose with 1.0 M *p*TSA and 0.5 M CrCl₃.6H₂O catalysts in 50 ml DMSO heated in oil bath for 5 h with a stirring speed of 200 rpm; the flask was heated at; (A) 110 °C; (B) 120 °C; (C) 130 °C; (D) 140 °C; (E) 150 °C; (F) 160 °C. Lines are for model-predicted data, and symbols are for experiment-determined data. X: xylose; FF: furfural; HUM; humin

Figure S4. Kinetic plots of *p*TSA-catalyzed conversion of xylose into furfural in the DMSO solvent medium. Reaction conditions: 0.5 M xylose with 1.0 M *p*TSA and CrCl₃.6H₂O catalysts in 50 ml DMSO heated in oil bath for 5 h with a stirring speed of 200 rpm; the flask was heated in oil bath at 120 °C using different concentrations of CrCl₃.6H₂O; (A) 0.1 M; (B) 0.2 M; (C) 0.3 M; (D) 0.4 M; (E) 0.5 M. Lines are for model-predicted data, and symbols are for experiment-determined data. X: xylose; FF: furfural; HUM; humin

Table S4. Fitted kinetic constants of organic acid catalyzed conversion of xylose into furfural in DMSO solvent medium. Reaction conditions: 0.25 - 1.0 M Xylose with 1.0 M *p*TSA and 0.1 M CrCl₃.6H₂O catalysts in 50 ml DMSO with a stirring rate of 200 rpm heated in an oil bath at 120 °C for 5 h.

Xylose	Rat	e constant	t (min -1)	Goodness of Fit (<i>R</i> ²)			Max vield	<i>t</i> _{Ymax}
(M)	k _{1obs}	k _{2obs}	k _{3obs}	Xylose	Furfural	Humin	Y _{max}	(h)
0.25	0.0473	0.0471	7.76×10 ⁻⁴	0.9999	0.956	0.9641	53.1±1.9	1
0.5	0.0508	0.0542	5.49×10 ⁻⁴	0.9990	0.9543	0.9538	52.60±1.1	1
1.0	0.0312	0.0434	6.89×10 ⁻⁴	0.9990	0.9327	0.9551	42.4±2.0	1.5

Figure S5. Kinetic plots of organic acid-catalyzed conversion of xylose into furfural in the DMSO solvent medium. Reaction conditions: 0.25 – 0.5 M xylose with 1.0 M organic acid and 0.1 M CrCl₃.6H₂O catalysts in 50 ml DMSO heated in an oil bath at 120 °C for 5 h with a stirring speed of 200 rpm; (A) 0.25 M; (B) 0.5 M ; (C) 1.0 M. Lines are for model-predicted data, and symbols are for experiment-determined data. X: xylose; FF: furfural; HUM; humin

		T (Activatio			
Catalyst	Solvent	I emperature	(kJ/mol)		Ref.,	
		(0)	k _{1obs}	k _{2obs}	-	
pTSA-CrCl ₃ .6H ₂ O	DMSO	110 - 160	81.8	66.5	This study	
Formic acid	Water	130 - 200	152	161	[2]	
Acetic acid	Water	170 - 210	108.6	105	[3]	
ZSM-5 zeolite	N 7 (140 - 220	124.2	F 43		
	Water	10 MPa	134.2	-	[4]	
non-catalyzed	Water	180 - 220	111.5 143.1	[6]		
	(HTLW)	10 MPa		143.1	[5]	
. 1 1	Water	140 - 240	153.8/	F (1)		
non-catalyzed	(HTLW)	3 MPa	/6.6	58.8 ^a	[6]	
H ₂ SO ₄	Water	155 - 185	82.8		[7]	
HCl	MIBK-water	140 -170	123.9	72.5	[8]	
HCl-NaCl	Water	160 - 200	133.3	125.8	[9]	
H_2SO_4	Water	145 - 175	145	-	51.03	
H_2SO_4	GVL	145 - 175	114	-	[10]	

Table S5. Comparison of the activation energy for acid-catalyzed conversion of xylose to furfural

 in different solvent systems

^a The two values represent a combined first- and second-order reaction, respectively.

Bibliography

- Gupta, N.K.; Fukuoka, A.; Nakajima, K. Amorphous Nb2O5 as a Selective and Reusable Catalyst for Furfural Production from Xylose in Biphasic Water and Toluene. *ACS Catal.* 2017, 7, 2430–2436, doi:10.1021/acscatal.6b03682.
- Lamminpää, K.; Ahola, J.; Tanskanen, J.; Lamminpä, K.; Ahola, J.; Tanskanen, J. Kinetics of Xylose Dehydration into Furfural in Formic Acid. *I EC Res.* 2012, *51*, 6297–6303, doi:10.1021/ie2018367.
- Chen, Z.; Zhang, W.; Xu, J.; Li, P. Kinetics of xylose dehydration into furfural in acetic acid. *Chinese J. Chem. Eng.* 2015, 23, 659–666, doi:10.1016/j.cjche.2013.08.003.
- O'Neil, R.; Ahmad, M.N.; Vanoye, L.; Aiouache, F. Kinetics of aqueous phase dehydration of xylose into furfural catalyzed by ZSM-5 zeolite. *Ind. Eng. Chem. Res.* 2009, 48, 4300– 4306, doi:10.1021/ie801599k.
- Jing, Q.; Lu, X.; Yuan, L. Kinetics of non-catalyzed decomposition of xylose in high temperature liquid water. *Huaxue Fanying Gongcheng Yu Gongyi/Chemical React. Eng. Technol.* 2006, 22, 472–475, doi:10.1016/s1004-9541(07)60143-8.
- Kim, S.B.; Lee, M.R.; Park, E.D.; Lee, S.M.; Lee, H.; Park, K.H.; Park, M.J. Kinetic study of the dehydration of d-xylose in high temperature water. *React. Kinet. Mech. Catal.* 2011, 103, 267–277, doi:10.1007/s11144-011-0320-5.
- Shi, S.; Guan, W.; Kang, L.; Lee, Y.Y. Reaction kinetic model of dilute acid-catalyzed hemicellulose hydrolysis of corn stover under high-solid conditions. *Ind. Eng. Chem. Res.* 2017, 56, 10990–10997, doi:10.1021/acs.iecr.7b01768.

- Weingarten, R.; Cho, J.; Conner, Jr., W.C.; Huber, G.W.; Conner, W.C.; Huber, G.W. Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating. *Green Chem.* 2010, *12*, 1423–1429, doi:10.1039/c003459b.
- 9. Danon, B.; Hongsiri, W.; van der Aa, L.; de Jong, W. Kinetic study on homogeneously catalyzed xylose dehydration to furfural in the presence of arabinose and glucose. *Biomass and Bioenergy* **2014**, *66*, 364–370, doi:10.1016/j.biombioe.2014.04.007.
- Mellmer, M.A.; Sener, C.; Gallo, J.M.R.; Luterbacher, J.S.; Alonso, D.M.; Dumesic, J.A. Solvent effects in acid-catalyzed biomass conversion reactions. *Angew. Chemie - Int. Ed.* 2014, *53*, 11872–11875, doi:10.1002/anie.201408359.