

Supporting Information

Cu₂O-Ag Tandem Catalysts for Selective Electrochemical Reduction of CO₂ to C₂ Products

Di Niu ¹, Cong Wei ¹, Zheng Lu ¹, Yanyan Fang ¹, Bo Liu ¹, Da Sun ¹, Xiaobin Hao ^{1,*}, Hongge Pan ^{2,3} and Gongming Wang ^{1,*}

- ¹ Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China; niudi@mail.ustc.edu.cn (D.N.); weicong@mail.ustc.edu.cn (C.W.); luzh2018@mail.ustc.edu.cn (Z.L.); fr1478@mail.ustc.edu.cn (Y.F.); liubo123@mail.ustc.edu.cn (B.L.); sunda727@mail.ustc.edu.cn (D.S.)
- ² Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an 710021, China; honggepan@zju.edu.cn (H.P.)
- ³ School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
- * Correspondence: haoxb@ustc.edu.cn (X.H.); wanggm@ustc.edu.cn (G.W.); Tel: +86-551-63601051 (G.W.)

Figure S1. (**a**) TEM image and (**b**) size distribution of Cu₂O-Ag nanocubes. (**c**) TEM image and (**d**) size distribution of Cu₂O nanocubes.

Figure S2. (a) SEM image of Cu₂O nanocubes. (b) TEM image of Cu₂O nanocubes. (c) HRTEM image of Cu₂O nanocubes. (d) XRD pattern of Cu₂O nanocubes.

Figure S3. (**a**–**c**) SEM-EDS elemental mapping of Cu₂O-Ag nanocubes, showing the distribution of elemental (**b**) Cu and (**c**) Ag within the particles.

Figure S4. The SEM images of the Cu₂O-Ag during CO₂RR. (**a**) 0 min, (**b**) 5 min, (**c**) 10 min, (**d**) 15 min, (**e**) 20 min, (**f**) 25 min, (**g**) 30 min, (**h**) 35 min, (**i**) 40 min. Scale bar=500 nm.

Figure S5. The XRD patterns of the Cu₂O-Ag during CO₂RR.

Figure S6. SEM images of (a) Cu₂O-Ag nanocubes and (b) Cu₂O nanocubes after CO₂RR.

Figure S7. XRD patterns of (a) Cu₂O-Ag nanocubes and (b) Cu₂O nanocubes after CO₂RR.

Figure S8. (a-c) SEM-EDS elemental mapping of Cu₂O-Ag nanocubes of (b) Cu and (c) Ag after CO₂RR.

Element Content	Cu	Ag
Before CO ₂ RR	90.28%	9.72%
After CO ₂ RR	92.61%	7.39%

Table S1. Cu and Ag contents of Cu₂O-Ag nanocubes before and after CO₂RR.

Figure S9. XPS spectra for (a) Cu and (b) Ag of Cu₂O-Ag nanocubes after CO₂RR.

Figure S10. XPS spectra for Cu of Cu₂O nanocubes after CO₂RR.

Figure S11. Faradaic efficiency of acetate of the different mass ratios of Ag in the Cu₂O-Ag nanocubes.

Figure S12. Adsorption energy and corresponding configuration of CO at three type sites on Cu(100) surface.

Figure S13. (a) Reaction energy barrier diagram of the C-C coupling step on the Cu₂O(100) surface with the (b)corresponding configurations of two *CO forming an *OCCO. Light red, copper; grey, carbon; red, oxygen; TS, transition state.