
molecules

Review

Algae-Derived Bioactive Molecules for the Potential Treatment
of SARS-CoV-2

Md. Asraful Alam 1 , Roberto Parra-Saldivar 2 , Muhammad Bilal 3 , Chowdhury Alfi Afroze 4,
Md. Nasir Ahmed 5 , Hafiz M.N. Iqbal 2,* and Jingliang Xu 1,*

����������
�������

Citation: Alam, M..A.;

Parra-Saldivar, R.; Bilal, M.; Afroze,

C.A.; Ahmed, M..N.; Iqbal, H.M.N.;

Xu, J. Algae-Derived Bioactive

Molecules for the Potential Treatment

of SARS-CoV-2. Molecules 2021, 26,

2134. https://doi.org/10.3390/

molecules26082134

Academic Editors: Maria José

Rodríguez-LagunasMalen Massot-

Cladera and

Jesus Simal-Gandara

Received: 3 February 2021

Accepted: 24 March 2021

Published: 8 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; alam@zzu.edu.cn
2 Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; r.parra@tec.mx
3 School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;

bilaluaf@hyit.edu.cn
4 Department of Biotechnology & Genetic Engineering, University of Development Alternative,

Dhaka 1209, Bangladesh; chowdhuryalfiafrose@gmail.com
5 Biotechnology & Natural Medicine Division, TechB Nutrigenomics, Dhaka 1209, Bangladesh;

nasir.ahmedbd@hotmail.com
* Correspondence: hafiz.iqbal@tec.mx (H.M.N.I.); xujl@zzu.edu.cn (J.X.)

Abstract: The recently emerged COVID-19 disease caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) has adversely affected the whole world. As a significant public health
threat, it has spread worldwide. Scientists and global health experts are collaborating to find and
execute speedy diagnostics, robust and highly effective vaccines, and therapeutic techniques to
tackle COVID-19. The ocean is an immense source of biologically active molecules and/or com-
pounds with antiviral-associated biopharmaceutical and immunostimulatory attributes. Some spe-
cific algae-derived molecules can be used to produce antibodies and vaccines to treat the COVID-19
disease. Algae have successfully synthesized several metabolites as natural defense compounds
that enable them to survive under extreme environments. Several algae-derived bioactive molecules
and/or compounds can be used against many diseases, including microbial and viral infections.
Moreover, some algae species can also improve immunity and suppress human viral activity.
Therefore, they may be recommended for use as a preventive remedy against COVID-19. Considering
the above critiques and unique attributes, herein, we aimed to systematically assess algae-derived,
biologically active molecules that could be used against this disease by looking at their natural
sources, mechanisms of action, and prior pharmacological uses. This review also serves as a starting
point for this research area to accelerate the establishment of anti-SARS-CoV-2 bioproducts.

Keywords: antiviral agent; algae compounds; bioactive entities; COVID-19 treatment; immunomod-
ulatory; therapeutic aspects; pharmacological uses

1. Introduction—Pandemic Problem and Opportunities

Algae biotechnology has been a great source of therapeutically useful molecules of
supreme interests (e.g., proteins, peptides, amino acids, fatty acids, sterols, polysaccharides,
oligosaccharides, phenolic compounds, photosynthetic pigments, vitamins, and miner-
als) [1,2]. Moreover, algae-derived bioactive molecules and/or compounds offer potential
health benefits and diverse applications, such as antibacterial applications, antiviral applications,
antifungal applications, anticancer applications, antidiabetic applications, anti-inflammatory
applications, antioxidant applications, anti-obesity applications, neuroprotective applica-
tions, crop protection applications, and biofertilizer applications. This broad spectrum of
the potential bioactivities of algae-derived bioactive molecules and/or compounds also
offers great commercial possibilities in numerous industrial and biomedical sectors (such
as pharmaceuticals, nutraceuticals, cosmeceuticals, etc.) [3,4]. Along with this, microalgae
and their extracted multifunctional entities have been widely used as food in Asia, Africa,
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and South America for hundreds of years [5–7]. In Asia, marine microalgae have been
used as a source for traditional food and folk medicine, such as in traditional Chinese
and Indian medicine [8]. For instance, Aphanizomenon flos-aquae (AFA), a brackish and
freshwater cyanobacterial species, is characterized by a drying quality and an ability to
counteract an internal form of dampness in traditional Chinese medicine. It works on
the kidney for diuretic or cleansing action. It also increases the production and release of
natural killer (NK) cells against viruses and cancer cells. The consumption of AFA increases
immune surveillance without directly stimulating the immune system [8,9]. The aqueous
extracts of 10 marine algae (i.e., Asparagopsis armata, Ceramium rubrum, Gelidium pulchel-
lum, Gelidium spinulosum, Halopitys incurvus, Hypnea musciformis, Plocamium cartilagineum,
Boergeseniella thuyoides, Pterosiphonia complanate, and Sphaerococcus coronopifolius species of
Rhodophyta from the coast of Morocco) were capable of inhibiting the replication of herpes
simplex virus type 1 (HSV-1) in vitro at EC50 ranging from <2.5 µg mL−1 to 75.9 µg mL−1

without causing cytotoxic effects on the Vero cells [10].
Algae-derived bioactive compounds can be considered robust candidates for antiviral

therapeutics. By taking into consideration the requisite therapeutic attributes, an array
of microalgae strains has been screened to extract or isolate and purify new bioactive
molecules [11,12]. To date, thousands of compounds derived from marine organisms
have been screened and used for various therapeutic purposes. Among these, from the
antiviral perspective, 21 have demonstrated antiviral activities against human enterovirus
71, human cytomegalovirus, human immunodeficiency virus type-1 (HIV-1), HSV, the in-
fluenza virus, the hepatitis B virus, murine norovirus, and respiratory syncytial virus
(RSV), along with their modes of action [13]. Different crude extracts from Brazilian marine
algae have also shown a high level of antiherpetic activity. In addition, the percentage of
its antiviral activity against HSV-1 (86.1%) is higher than that against HSV-2 (55.5%) [14].
The aqueous extract of the red alga Laurencia obtusa has displayed an in vitro antiviral
activity by inhibiting the replication of influenza B, A (H3N2), and A (H1N1) viruses [15].
Egyptian seaweed extracts of Cystoseira myrica and Ulva lactuca possess remarkable in vitro
antiviral activities against a different virus-like hepatitis A virus, Coxsackie B4 virus,
HSV-1, and HSV-2 [16]. The roles of several marine organisms and their metabolites in
antiviral efficacy have been studied and reviewed [17–22]. However, limited literature is
available on the COVID-19 related therapeutic usage of algae-derived, biologically active
molecules. Thus, in aiming to present this unique and considerable pharmaceutical use of
algae-derived biologically active molecules, an effort has been made herein to cover this
gap in the literature concerning the antiviral activities and mechanisms of the actions of
algae-derived bioactive molecules and/or compounds. Finally, an overview of the usage
of algae-derived metabolites as biotherapeutics against SARS-CoV-2 causing COVID-19 is
presented with suitable examples.

2. The Antiviral Activities of Algae-Derived Molecules

Marine-based molecules, such as carrageenan, agar, fucoidan, laminaran, and navicu-
lan, have a high potential for use against viral infectivity. Furthermore, marine seaweeds
and microalgae are high in amino acids and vitamins that can improve the immune sys-
tem to fight against viral and bacterial diseases [23–26]. Marine algae contain sulfated
polysaccharides that have been shown to inhibit the replication of enveloped viruses.
Some other compounds (such as lectin, carrageenan, ulvans, and fucoidans from red,
green, and brown algae) can act as biotherapeutic agents to prevent and cure COVID-19 [5].
The alga (e.g., Cryptosiphonia woodii) has a clinical efficiency against the herpes simplex
virus [3]. A study on 39 marine red algae species has highlighted their potential usage as an-
tiviral agents [27]. The method for using sulfated polysaccharides and carrageenan against
retroviral infections, including HIV, has been reported in the literature. Carrageenan and
iota-carrageenan are effective against enveloped and nonenveloped viruses and act as
inhibitory agents to prevent the viruses from binding to host cells at the initial stages of
infection to block HPV and HRV [28]. Along with this, carrageenan is the most commonly
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tested polysaccharide used against virus infectivity [29]. Carrageenan is generally recog-
nized as safe (GRAS) and is approved as a food additive by experts from the US Food and
Drug Administration [30]. Fucoidan, a potent natural sulfated polysaccharide extracted
from two different macroalgae (Dictyota bartayesiana and Turbinaria decurrens), shows an in-
hibitory activity against HIV [31]. Table 1 represents a list of various marine algae-derived
bioactive molecules and/or compounds (including their mechanisms of action) that exhibit
potential antiviral properties against many human pathogenic viruses [32].

Table 1. The antiviral activities and mechanisms of actions of algae-derived bioactive molecules and/or compounds.

Algae Spp. Antiviral Bioactive
Compounds Structures Active against Viruses Mechanism of Actions

Gigartina skottsbergii Carrageenan
Influenza virus, DENV,

HSV-1, HSV-2, HPV,
HRV, HIV

Inhibition of the
binding or the

internalization of
viruses into host cells

(Stage I, II, III) *

Callophyllis variegata,
Agardhiella tenera,

Schizymenia binderi,
Cryptonemia crenulata

Galactan HSV-1, HSV-2, HIV-1,
HIV-2, DENV, HAV

Blockage of virus
adhesion and

replication into host
cells (Stage I, III)

Laminaria hyperborea,
Laminaria digitata,
Laminaria japonica,

Alginate HIV IAV, HBV

Inhibition of the
inverse transcriptase in

the RNA virus
(Stage III)

Adenocytis utricularis,
Undaria pinnatifida,

Stoechospermum
marginatum, Cystoseira

indica, Cladosiphon
okamuranus,

Fucus vesiculosus

Fucan
HSV-1, HSV-2, HCMV,

VSV, Sindbis virus,
HIV-1

Inhibition of cell
adhesion (Stage I);
blockage of reverse

transcriptase (Stage III)

Fucus vesiculosus,
Saccharina longicruris,
Ascophyllum nodosum

Laminaran HIV Blockage of reverse
transcriptase (Stage III)

Chlorella
vulgaris,Cochlodinium

polykrikoides,
Porphyridium sp.

Sulfated
polysaccharides (e.g.,

Agar)

Influenza A and B
viruses, RSV-A, RSV-B,

parainfluenza-2

Inhibition of the
cytopathic effect (Stage
II); inhibition of PMN

migration toward
chemoattractant

molecules; partial
blocking of the

adhesion to
endothelial cells
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Table 1. Cont.

Algae Spp. Antiviral Bioactive
Compounds Structures Active against Viruses Mechanism of Actions

Dunaliella primolecta α- and β-Pheophorbide HSV-1
Inhibition of

adsorption and
invasion (Stage I, II)

* Stage I = virus adhesion, adsorption, entry, and invasion of cells; stage II = the cell is forced to replicate multiple copies of the virus
genome; stage III = maturity and release of the virus particles (virions).

3. Algae-Derived Antiviral Polysaccharides and Mechanisms of Action

Marine organisms are rich sources of polysaccharides, and their antiviral activities
were first reported over 50 years ago. Modified chitosan is a polysaccharide that signifi-
cantly inhibits the human coronaviruses HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-
HKU1. Chitosan is an effective inhibitor of all low-pathogenic human coronaviruses [5,33].
Seaweed polysaccharides (SP) can inhibit the life cycle of a virus at different stages via
direct inactivating virions before viral infection. Antiviral studies on polysaccharides such
as carrageenan and chitosan have exhibited direct virucidal actions on some enveloped
viruses to block viral infection [33]. The antiviral mechanisms of these polysaccharides
underlie several processes, including the inhibition of viral absorption, the inhibition of
virus internalization and uncoating, the inhibition of virus transcription and replication,
and the improvement of host antiviral immune responses [33]. Figure 1 illustrates SP to be
notable biotherapeutic agents against SARS-CoV-2. Dieckol is a phlorotannin that has been
extracted from a brown alga Ecklonia cava and is reported as the most potent SARS-CoV
3CLpro trans-/cis-cleavage inhibitory activity in a dose-dependent and competitive man-
ner with no toxicity [34]. Sulfated polysaccharides (such as fucoidan and sulfated rhamnan)
can interfere or inhibit the expression and activation of the epidermal growth factor recep-
tor pathway, which may suppress coronavirus [35]. Sulfated polysaccharides have unique
antiviral mechanisms that function as direct inhibitors of retroviruses (including HIV) and
are considered a “new generation antiretroviral drug” [31].

Figure 1. A schematic of seaweed polysaccharides (SP) used as notable biotherapeutic agents against
SARS-CoV-2. The figure was created with the “BioRender.com” template and exported under the
terms of premium subscription.
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4. Potential of Algae-Derived Antiviral Metabolites against SARS-CoV-2

The marine alga Halimeda tuna-derived halitunal, a novel diterpene aldehyde, shows an-
tiviral effects against murine coronavirus A59 in vitro [36]. Red alga-derived Griffithsin
has antiviral effects that bind to oligosaccharides on the surfaces of various viral spike
glycoproteins, including SARS-CoV [37] and MERS-CoV [38]. Griffithsin inhibits a broad
range of CoVs, including HCoV-229E, HCoV-OC43, and HCoV-NL63 in vitro and SARS-
CoV-infected mice [39]. Therefore, Griffithsin may be effective against SARS-CoV-2 because
it can inhibit virus entry, reverse transcriptase activity, integrase activity, and protease
activity [40]. Other sulfated polysaccharides, such as ulvans (derived from green algae)
and fucoidans (derived from brown algae), are also considered to be potential biothera-
peutic agents useful against SARS-CoV-2 [5]. An in silico study on the antiviral potential of
Arthrospira-derived metabolites against SARS-CoV-2 was performed with three identified
molecules (i.e., phycocyanobilin, phycoerythrobilin, and folic acid) that show the binding
capability required to compete with SARS-CoV-2 [41]. Another in silico experiment was
performed on eight algae-derived compounds obtained from three different red macroalgae
(namely, Laurencia papillosa, Gracilaria corticata, and Grateloupia filicina) to screen therapeutic
SARS-CoV targets, and these compounds can also be used for further in vitro and in vivo
studies to search for antiviral agents that inhibit SARS-CoV-2 [42].

Spirulina, a type of nutritious blue–green algae rich in phenolic acids, essential fatty
acids, sulfated polysaccharides, and vitamin B12, is a commercially available food supple-
ment. It shows effective antiviral activities against pseudo-type coronaviruses by binding
to the S1 domain of 36 spikes and blocking the interaction of spikes with its receptor [43].
Sulfated polysaccharides derived from red algae Porphyridium sp. are promising antiviral
agents that can be used as a coating material on sanitary items for COVID-19 prevention [44].
Another study [45] has suggested the use of the microalga Haematococcus pluvialis-derived
natural astaxanthin (nASX) as adjunctive in combination with primary antiviral drugs
that will largely benefit patients with COVID-19 by improving their health and reducing
their recovery time. Astaxanthin is considered GRAS and is approved by the United States
Food and Drug Administration for human consumption [45]. A review study has also
been performed to provide a novel idea for the development of anti-SARS-CoV-2 drugs
and vaccines by using a combination of polysaccharides and nanotechnology [35]. Table 2
summarizes marine algae-derived metabolites with potential against 2019-nCoV.

Table 2. Marine algae metabolites against novel human coronavirus (2019-nCoV).

Name of Algae-Derived Metabolites Source Organisms

Griffithsin Red algae, Griffithsia
Ulvans Green algae, Ulva sp.

Fucoidans Brown algae
Phycocyanobilin, phycoerythrobilin, and folic acid Arthrospira

Sulfated polysaccharides Red algae Porphyridium sp.
Astaxanthin (nASX) Haematococcus pluvialis

Spirulina Arthrospira platensis
Halitunal Halimeda tuna
Dieckol Ecklonia cava

n-Hexadecanoic acid, hexadecenoic acid,
methyl ester, n-decanoic acid, and 9-dodecenoic acid

Laurencia papillosa, Gracilaria corticata,
and Grateloupia filicina

5. Algae-Derived Metabolites for Microbiota-Based Therapy and Immunomodulatory
Activity against SARS-CoV-2

The catastrophic effects of SARS-CoV-2 include gastrointestinal (GI) symptoms.
Approximately 20% of patients with SARS-CoV-2 exhibit GI problems, as reported by
a Hong Kong cohort study [46]. Another study analyzed 95 patients with this virus [47].
Effenberger et al. [48] found that fecal calprotein is higher in SARS-CoV-2-infected patients,
and 61% of them suffered from GI issues such as diarrhea and nausea. A recent pilot
study involving shotgun metagenomic sequencing has been performed to investigate the
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microbiome composition of stool samples from 15 hospitalized patients with COVID-19
and compared it with those of healthy noninfected individuals; this study demonstrated
the association between poor gut health and the severity of SARS-CoV-2 infectivity [49].
This study also found that patients with COVID-19 have higher levels of the harmful
microbes Actinomyces viscosus, Bacteroides nordii, and Clostridium hathewayi and lower levels
of the friendly microbes Faecalibacterium prausnitzii, Lachnospiraceae bacterium, Eubacterium
rectale, Ruminococcus obeum, and Dorea formicigenerans (some of which have immunomodu-
latory and anti-inflammatory properties) [49].

Nevertheless, a healthy gut microbiome is crucial for its supportive role in antiviral
immunity [50], and improving gut flora by maintaining a nutritional diet is essential
for strengthening the gut microbiota to attenuate the effect of novel SARS-CoV-2 [51].
Gut microbiome dysbiosis, which is known for the resultant alterations of gut microbiota,
has also been shown as related to several diseases and disorders, such as depression [52],
obesity [53], IBS [54], and type-2 diabetes [55]. Gut microbiota dysbiosis may be associated
with abnormal angiotensin-converting enzyme 2 (ACE2) functions that play a critical role
in patients with COVID-19 and pre-existing age-related comorbidities [56]. The putative
association between ACE2 shedding after SARS-CoV-2 infection is shown in Figure 2 [56].
By contrast, healthy gut microbiota-derived metabolites improve antiviral immunity by
stimulating interferon production, decreasing immunopathology, and increasing natural
killer (NK) cytotoxicity [57]. Figure 3 schematically shows the viral immune responses to
COVID-19 and targets common dermatologic immunomodulators.

Figure 2. The putative association between ACE2 shedding after SARS-CoV-2 infection. Reprinted from
Viana et al. [56] with permission from Elsevier. Copyright 2021, Elsevier. License Number: 4993920853888.
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Figure 3. A schematic of the COVID-19 viral immune response and the targets of common dermatologic immunomodulators.
The SARS-CoV-2 virus attacks host cells by binding to their receptors present in the cell membrane. Upon the first infection,
lung epithelial cells become the primary target, where the receptor-binding domain of the virus spikes binds to ACE2
receptors. SARS-CoV-2 infects the human lung epithelium via the receptor ACE2. Viral RNA activates endosomal and
cytoplasmic sensors (TLR3/7 and MAVS, respectively). These receptors activate interferon regulatory factors (IRFs) and
NFkB to induce inflammatory cytokines, including interferons (IFN). CD8 T cells induce apoptosis after the recognition of
antigens on infected cells. Conversely, activated B cells differentiate into plasma cells that produce antibodies important
for neutralizing viruses. This figure was created with the “BioRender.com” template and exported under the terms of
premium subscription.

Marine algae-derived bioactive compounds, such as alginates, fucoidans, luminaries,
polyphenols, carrageenans, carotenoids, fatty acids, and phlorotannins, offer benefits to
human gut microbiota that maintain the host health by regulating the development and
function of metabolism, the epithelial barrier integrity, and the immune system [8,58]
as prebiotics or nutritional and functional food [59]. A diet containing a balance of vi-
tamins and minerals as immune nutrients can also be a considerable strategy to fight
against COVID-19 [60], and algal seaweed-based foods are rich in vitamins (Table 3),
useful for potential supplementation in consideration of hypervitaminosis risk factors.
Moreover, the immunological activity of phytosterols, carotenoids, vitamins, and fatty
acids extracted from different microalgae species has been demonstrated extensively [61].
Consuming the green alga Chlamydomonas reinhardtii can improve the human gastrointesti-
nal issues associated with irritable bowel syndrome (IBS) (such as diarrhea, gas, and bloat-
ing) and has shown no signs of causing dysbiosis or an adverse effect on microbiota com-
position [62]. Spirulina modulates several immune functions in the gut and upregulates the
expression of the toll-like receptors 2 and 4 (TLR2 and TLR4) in the ileum of aged mice [63].
Spirulina maxima-derived modified pectin modulates gut microbiota and triggers immune
responses in mice [64]. The supplementation of algae-derived β-glucan alleviates diarrhea
and enhances gut health in E. coli-infected weaned pigs [65]. Sulfated polysaccharides from
the brown seaweed Ascophyllum nodosum have uses as a functional food to modulate the
composition of gut microbiota and increase the abundance of beneficial Bacteroidetes and
Firmicutes [66]. Algae-derived undigested polysaccharides, alginate, agarose, and car-
rageenan have been shown to benefit the structure of human gut microbiota and gut
health [67]. Digested extracts from the seaweeds Sargassum muticum and Osmundea
have been used in novel functional foods and can possibly benefit the human gut mi-
crobiome [68]. Thus, improving the gut microbiome and its metabolites and implementing
a personalized diet can be a considerable strategy in preventing and treating the novel
coronavirus causing COVID-19 [69].
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Table 3. Algae-derived vitamins as sources of immune nutrition.

Vitamins Source Reference

Vitamin C
Porphyra umbilicalis, Himanthalia elongata,
Laminaria spp., Gracilaria changii, Palmaria

palmata Eisenia arborea J.E. Areschoug
[70–72]

Vitamin B1
Tetraselmis suecica, Isochrysis galbana,

Dunaliella tertiolecta, Chlorella stigmatophora,
Chondrus ocellatus

[73,74]

Vitamin B2 Tetraselmis suecica, Isochrysis galbana,
Dunaliella tertiolecta, Chlorella stigmatophora [73]

Vitamin B12 Tetraselmis suecica, Isochrysis galbana,
Dunaliella tertiolecta, Chlorella stigmatophora [73]

Vitamin E

Laminaria spp., Porphyra umbilicalis,
Himanthalia elongata, Palmaria palmata, Eisenia

arborea J.E. Areschoug, Tetraselmis suecica,
Isochrysis galbana, Dunaliella tertiolecta,

Chlorella stigmatophora

[70,71,73]

α-tocopherol (vitamin E) Macrocystis pyrifera, Gracilaria chilensis,
Codium fragile [75]

β-carotene

Gracilaria changgi, Laminaria spp., Porphyra
umbilicalis, Gracilaria chilensis, Codium fragile,

Tetraselmis suecica, Isochrysis galbana,
Dunaliella tertiolecta, Chlorella stigmatophora

[70,72,73,75]

6. Algae-Derived Glycan Therapeutics against SARS-CoV-2

Glycoproteins are oligosaccharide glycan chains containing glycoconjugates of pro-
teins with a sugar attached to them, and are covalently attached to amino acid chains
generated by glycosylation. Glycoproteins have an extensive range of biological activities,
including antiviral properties [76]. Glycotherapy has the potential to be a pioneering future
biotherapeutic breakthrough. Glycoprotein-based antiviral therapy is an emerging novel
research paradigm [77] precisely because an initial attachment between an enveloped
virus and a host cell occurs via the interaction between the spike (S) glycoproteins and the
glycans of the cell surface glycoproteins [78].

The glycosylation of the viral envelope proteins is essential for infectivity and can
affect immune recognition, and some clinical applications are developed through this
glycosylation process [79]. The glycosylation of epitope masking has been observed in
coronavirus spike proteins. These proteins are large glycoproteins with 23–38 N-linked
glycan sites per protomer [80]. Another study [81] has been performed to identify the
location of 22 glycosylation sites, where glycans are attached to the SARS-CoV-2 spike and
form sugar at each site. Wrapp et al. [82] reported that the S-glycoprotein of SARS-CoV-2
contains 66 glycosylation sites. TMPRSS2 (a human serine protease) is responsible for prim-
ing the S-glycoprotein of SARS-CoV-2, and the human angiotensin-converting enzyme 2
(hACE2) is engaged as a receptor for the entry of SARS-CoV-2 [83]. Lectins (hemaglutinins)
are a diverse group of unique carbohydrate-binding glycoproteins that bind reversibly to
monosaccharides and oligosaccharides with a high specificity [84], and various red algae
are reported to possess lectins that have high-mannose N-glycans [85]. Lectins inhibit
coronavirus infectivity [86,87] and are specific for the glycans present within the SARS-CoV
spike glycoprotein, which has N-glycosylation. Some particular plant lectins are reported
to be promising against SARS-CoV-2 [88]. The red algae-derived high-mannose-binding
lectin of 121 amino acids (namely, Griffithsin (GRFT)) is reported to inhibit SARS-CoV entry
by specifically binding to the spike glycoprotein [37,39]. GRFT has been considered as a
superior broad-spectrum antiviral therapeutic that demonstrates a potent antiviral action
with the least amount of host toxicity against various enveloped viruses [40]. Some reported
marine algae-derived antiviral lectins are summarized in Table 4.
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Table 4. List of some reported marine algae-derived antiviral lectins.

Lectin Designated Marine Algae Source Virus References

GRFT Griffithsia Sp. SARS-CoV, HIV, HCV [37,89,90]
Microvirin Microcystis aeruginosa HIV-1 [91]
Cyanovirin Nostoc ellipsosporum HIV [92]

AML, BSL, HML, MEL, Sfl
Amansia multifida, Bryothamnion

seaforthii, Hypnea musciformis, Meristiella
echinocarpa and Solieria filiformis

HIV and influenza [93]

ESA-2 Eucheuma serrai Influenza [94]
KAA-2 Kappaphycus alvarezii Influenza [95]

BCA Boodlea coacta Influenza, HIV [96]
HRL40 Halimeda renschii Influenza [97]
MVL Microcystis viridis HIV-1 [98]

Scytovirin Scytonema varium HCV, HIV, Ebola [99,100]

7. Algae-Derived Antioxidants against SARS-CoV-2

Antioxidants are compounds that can prevent oxidative stress (OS), which promotes
viral infections, and they, along with antiviral agents, have a role in treating viral diseases
(Figure 4) [101]. The oxidative stress that has been shown in HIV and influenza infections
in humans and reactive oxygen species (ROS) produced by free radical actions is believed
to activate viral replication [102]. OS is often defined as a disrupted balance of ROS
production, which plays a key role in the normal functionality of the immune system [103].
Therefore, the T cell response is ultimately induced, and an overall immunological defense
is enhanced [104].

Figure 4. An array of algae-based antioxidants. The inner circle shows the diversity of biologically
active antioxidants produced in a marine environment. The outer circle represents their novel
therapeutic and biomedical potentialities. Reprinted from Bilal and Iqbal [101] with permission from
Elsevier. Copyright 2021 Elsevier B.V. License Number: 4982940408845.
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Natural products derived from marine and freshwater organisms have been reported
to exhibit antioxidant activities against some respiratory viruses [105]. These viruses
enhance ROS production and effect cellular defense systems against ROS, which are im-
plicated in inflammation, lung and tissue damage, and epithelial dysfunction, and the
vital role of ROS exists in SARS-CoV [106]. In a review [107], oxidative stress (OS) is
the key player in SARS-CoV infection, and high ROS levels are related to oxidative cell
damage, which may be a result of increased inflammation at the location of viral infection
that disrupts antioxidant mechanisms, leading to an unbalanced oxidative–antioxidant
status, and subsequently triggering OS-causing cellular damage. SARS-CoV 3CLpro sig-
nificantly increases in ROS production in HL-CZ cells by activating the NF-kB-dependent
reporter gene, and the ROS-activated NF-kB signal transduction pathway can be con-
sidered a key player in SARS-CoV infectivity [107]. Other studies have suggested that
OS is a significant factor for increasing the severity of SARS-CoV-2 infection because
it triggers an inflammatory reaction and have recommended the use of antioxidants in
therapeutic strategies against COVID-19 [108,109]. Natural antioxidants from marine al-
gae derivatives are a rich source of ROS scavenger compounds belonging to vitamins,
active peptides, carotenoids, sulfated polysaccharides chito-oligosaccharides and their
representative derivatives, sterols, phlorotannins, phenolics, and flavones with unique
structural and functional attributes [110]. Table 5 represents a list of antioxidant compounds
derived from marine algae, and Table 6 shows a list of biologically active compounds with
antioxidant activities in algae extracts [111–116].

Table 5. The bioactive compounds extracted from marine algae with significant antioxidant potentialities.

Antioxidant Compound Microalgae Source References

Chlorophyll-a derivatives, pheophorbidea Enteromorpha prolifera
Fucoxanthin Undaria pinnatifida, Turbinaria ornata [111,112]

Phycoerythrobilin Porphyra sp.
β-carotene Dunaliella salina, Chondrus crispus, Mastocarpus stellatus

Astaxanthin, canthaxanthin, lutein Haematococcuspluvialis
Lutein, violaxanthin Chlorella pyrenoidosa [113,114]

Canthaxanthin, astaxanthin Chlorella vulgaris
Phenolic and flavonoids Nannochloropsis oculata, Gracilaria gracilis [115]

Phycoerythrin, phycocyanin Red algae
Terpenoids Cystoseira sp.

Sulfated polysaccharides (Fucoidan, alginic acid,
laminaran, sulfated galactans, galactans, sulfated

glycosaminoglycan, porphyran

Turbinaria conoides, Laminaria japonica, red algae,
Sargassum wightii, Porphyra sp.

Stypodiol, taondiol, isoepitaondiol Taonia atomaria [116]



Molecules 2021, 26, 2134 11 of 16

Table 6. Algae extract-derived compounds with antioxidant activities.

Vitamins
Ascorbate (vitamin C)

Tocopherol (vitamin E) α-, γ-, δ- tocopherol

Carotenoids
α-carotene and β-carotene

Fucoxanthin and astaxanthin

Polyphenols

Phlorotannin - Brown algae polyphenol

Fucol
Phlorethol

Fucophlorethol
Fuhalol

Isofuhalol
Eckol

Catechin
Catechin (3-hydroxyflavone)/catechin gallate

Epicatechin/epicatechin gallate
Epigallocatechin/epigallocatechin gallate

Phenolic acid

Flavonoids

Anthocyanins
Flavonols
Flavanols

Flavanones
Flavones

Isoflavones

Tannins

Lignans

Mycosporine-like amino acids Mycosporine–glycine

8. Conclusions

The pandemic caused by SARS-CoV-2 has resulted in severe devastation worldwide.
Scientists and global health experts have collaborated to find and execute speedy diag-
nostics, robust and highly effective vaccine development and deployment, and novel
therapeutic techniques to tackle COVID-19 disease. A large source of natural marine
compounds with biopharmaceutical activities associated with antiviral and immunos-
timulatory properties and some specific algae-derived antiviral metabolites is the ocean.
Marine-derived biologically active constituents can also be considered a unique source of
antibodies and vaccines against SARS-coV-2. Marine algae and seaweeds are the ancestors
of all plants. Algae-based biotechnology has provided many opportunities and highlighted
the potentiality of immense innovations with low-cost technologies for developing and
revolutionizing bio-based industries. Algae and other marine organisms produce varied
biometabolites that help them acclimatize and survive under harsh conditions. This review
reveals that these specialized natural metabolites can be a great source of antiviral agents.
These bioactive agents have been evaluated and exploited as microbiota-based therapeutic
agents, immunomodulators, glycan therapeutic agents, and antioxidants for their biother-
apeutics in preventing and treating SARS-CoV-2. Indeed, the above discussed literature
evidences prove that marine algae-derived metabolites have a high efficiency against SARS-
CoV-2. In this context, further research and clinical studies should be conducted to develop
the most effective natural biotherapeutics from marine algae-based sources.
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