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Abstract: Four new compounds of formulas [Cu(hfac)2(L)] (1), [Ni(hfac)2(L)] (2), [{Cu(hfac)2}2(µ-
L)]·2CH3OH (3) and [{Ni(hfac)2}2(µ-L)]·2CH3CN (4) [Hhfac = hexafluoroacetylacetone and
L = 3,6-bis(picolylamino)-1,2,4,5-tetrazine] have been prepared and their structures determined by X-
ray diffraction on single crystals. Compounds 1 and 2 are isostructural mononuclear complexes where
the metal ions [copper(II) (1) and nickel(II) (2)] are six-coordinated in distorted octahedral MN2O4

surroundings which are built by two bidentate hfac ligands plus another bidentate L molecule. This
last ligand coordinates to the metal ions through the nitrogen atoms of the picolylamine fragment.
Compounds 3 and 4 are centrosymmetric homodinuclear compounds where two bidentate hfac
units are the bidentate capping ligands at each metal center and a bis-bidentate L molecule acts
as a bridge. The values of the intramolecular metal···metal separation are 7.97 (3) and 7.82 Å (4).
Static (dc) magnetic susceptibility measurements were carried out for polycrystalline samples 1–4
in the temperature range 1.9–300 K. Curie law behaviors were observed for 1 and 2, the downturn
of χMT in the low temperature region for 2 being due to the zero-field splitting of the nickel(II)
ion. Very weak [J = −0.247(2) cm−1] and relatively weak intramolecular antiferromagnetic interac-
tions [J = −4.86(2) cm−1] occurred in 3 and 4, respectively (the spin Hamiltonian being defined as
H = −JS1·S2). Simple symmetry considerations about the overlap between the magnetic orbitals
across the extended bis-bidentate L bridge in 3 and 4 account for their magnetic properties.

Keywords: 1,2,4,5-tetrazine; nitrogen ligands; nickel; copper; crystal structure determination;
magnetic properties

1. Introduction

The 1,2,4,5-tetrazine (TTZ) ring [1,2], thanks to its substituent dependent fluorescent
properties [3–6], electron withdrawing character, allowing access to stable radical anion
species [7–9], and active role in the establishment of anion-π interactions [10–14], has been
considered as suitable platform for the attachment of coordinating groups towards multi-
functional ligands and corresponding metal complexes [15,16]. Besides the possibility to
access photoactive metal complexes [16], enhancement of the magnetic coupling between
metal centers thanks to the bridging tetrazine radical anion can be achieved as well [17].
Accordingly, functionalization of TTZ in the positions 3 and 6 of the ring with nitrogen con-
taining units allowed the preparation and use in various metal complexes of either ditopic
and tetratopic ligands such as 3,6-(2′-dipyridyl)-TTZ [18,19], 3,6-dipyrimidyl-TTZ [20–24]
and 3,6-(dipyrazolyl)-TTZ [25,26], or monotopic ligands, obtained from 3,6-dichloro-TTZ
by nucleophilic substitution, such as dipicolylamine-TTZ-Cl [27], dipicolylamine-TTZ-
tetrathiafulvalene [28] and dipicolylamine-TTZ-OMe [29]. Note that an interesting differ-
ence of the magnetic coupling between the metal centers in chloro-bridged dicobalt(II)
and dimanganese(II) complexes with the dipicolylamine-TTZ-Cl ligand has been observed.
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Accordingly, antiferromagnetic coupling occurs in the latter, while the coupling is ferromag-
netic in the cobalt(II) complex [27]. Although the magnetic interaction between the metal
centers was not mediated by the tetrazine ring, these results highlight the opportunities
arising from its use as a platform for functional ligands, affording complexes provided
with interesting magnetic properties. Besides functionalization with dipicolylamine, the
reaction of 3,6-dichloro-TTZ with 2-picolylamine (2-PyCH2NH2) in methyl-t-butylether
provided either mono(picolylamine)-TTZ-Cl (pica-TTZ-Cl) [30] or bis(picolylamine)-TTZ
(bis(pica)-TTZ L) [31] (Scheme 1) depending on the reaction time and temperature.
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Pica-TTZ-Cl proved its versatile coordination behavior as a neutral or monoanionic lig-
and in a series of copper(II) mononuclear and mixed-valence copper(II)/copper(I) binuclear
complexes [30], while with ligand L we have previously reported the cobalt(II) complexes
of the formula [Co(hfac)2(L)]·CH3CN and {[Co(hfac)2(µ-L)][Co(hfac)2(CH3OH)2]}n (hfac
= hexafluoroacetylacetonate), which have shown field-induced slow magnetic relaxation,
indicative of the so-called single-ion magnet (SIM) behavior [31].

In the continuation of our research on tetrazine-based ligands and complexes, we
report herein the synthesis, in-depth structural characterization and magnetic properties of
mono- and binuclear copper(II) and nickel(II) complexes with the bis(pica)-TTZ ligand L.

2. Results and Discussion
2.1. Synthesis and Characterization of TTZ-Based Complexes 1–4

Since L is a ditopic ligand containing two chelating units, its reaction with metal
centers could, in principle, lead to discrete mono- and binuclear metal complexes or
coordination polymers, depending on the number of available coordination sites on the
metal center. As mentioned above, in the course of a previous study [31] we indeed
obtained a mononuclear cobalt(II) complex [Co(hfac)2(L)], where L acts as a monotopic
chelating ligand, and a one-dimensional coordination polymer [Co(hfac)2(µ-L)]n, in which
L connects cobalt(II) centers through coordination of the pyridines only. We extend herein
our study towards the paramagnetic centers copper(II) and nickel(II) by the use of the
neutral [M(hfac)2] precursors. First, reaction of L with one equivalent of [M(hfac)2] afforded
the mononuclear complexes [Cu(hfac)2(L)] (1) and [Ni(hfac)2(L)] (2) (Scheme 2) where
L acts as a monotopic bidentate ligand thanks to its NPy and Namine atoms. In both
complexes, the ligand remains in its amino form and not amido, as already observed with
the pica-TTZ-Cl ligand and [Cu(hfac)2] fragment [30].

This can be very likely explained by the lower acidity of the amino groups in L than
in pica-TTZ-Cl, where the presence of the Cl substituent in the para position enhances the
acidity of the NH group in the latter. On the other hand, reaction of L with an excess of
[M(hfac)2] leads to the binuclear complexes [{Cu(hfac)2}2(µ-L)] (3) and [{Ni(hfac)2}2(µ-L)]
(4) (Scheme 2) in which both picolylamino groups chelate the metal centers in a bidentate
mode.

The mono- or binuclear nature of complexes 1–4 is definitely evidenced by single-
crystal X-ray diffraction analysis. The best quality crystals for the copper(II) complexes
1 and 3 were obtained from methanol, while acetonitrile was successfully used for the
nickel(II) complexes 2 and 4. Complexes 1 and 2 are isostructural and crystallize in the mon-
oclinic system, space group P21/n, with one molecule of complex in the asymmetric unit.
The ligand L coordinates to the metal ions through the nitrogen atoms of the picolylamine
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fragment, thus providing a slightly distorted MN2O4 octahedral environment (Figure 1,
see Tables S1–S4 for bond lengths, bond angles and intermolecular C–H···F distances).
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Figure 1. Crystal structures of 1 (left) and 2 (right) together with a partial atom numbering scheme. Some of the F atoms
are disordered. Hydrogen atoms were omitted for clarity.

The higher distortion of the octahedron at the copper(II) ion compared to nickel(II),
observed in the corresponding structures 1 and 2, is the consequence of the strong Jahn–
Teller effect in the former. The Cu–O(N) bond distances varied from 1.940(2) to 2.318(3) Å,
while for Ni–O(N) this range was much narrower, i.e., 2.016(2)–2.170(2) Å. The cis and
trans O–Cu–O(N) bond angles spanned from 85.64(10) to 95.63(12)◦ and from 173.26(10)
to 174.72(12)◦, respectively. The corresponding angles for 2, that is 85.53(8)–95.00(9)◦ and
174.78(8)–175.57(9)◦, were similar to those in 1. In the crystal packing, short intermolecular
anion–π distances between tetrazine units and fluorine/oxygen atoms of the hfac ligands
were observed (Figure 2).

Moreover, weak intermolecular C–H···F type interactions occurred between fluo-
rine atoms and CH2 and Py protons (Figures S1 and S2, Tables S2 and S4). The closest
metal···metal distances in the crystal packing amounted to 8.39 (1) and 8.55 Å (2).

Although compounds 3 and 4 are not isostructural, they both crystallized in the
triclinic system, space group P–1, with half a molecule of complex in the asymmetric unit,
since the TTZ bridge was located on an inversion center (Figure 3, Tables S5 and S6).
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Figure 3. Crystal structures of 3 (left) and 4 (right) together with a partial atom numbering scheme. Hydrogen atoms and
solvent molecules were omitted for clarity.

Two solvent molecules of crystallization per molecule of complex were present in both
crystal structures and therefore, the resulting formulas are [{Cu(hfac)2}2(µ-L)]·2CH3OH (3)
and [{Ni(hfac)2}2(µ-L)]·2CH3CN (4). The coordination environment at each copper(II) ion
in 3 is an elongated octahedron, due to the Jahn–Teller effect. The equatorial Cu–O(N) bond
lengths varied from 1.960(3) to 1.995(4) Å, while the axial Cu–O1 and Cu–N2 distances were
2.270(4) and 2.498(5) Å, respectively. The O–Cu–O(N)cis bond angles varied from 86.95(14)
to 92.29(14)◦, while the O–Cu–O(N)trans angles spanned from 165.82(14) to 176.42(14)◦. Each
nickel(II) ion in 4 exhibits a distorted octahedral geometry (5 + 1) with a much narrower
range of the equatorial Ni–O(N) bond lengths (2.0230(17)–2.0399(19) Å). The axial Ni–N2
distance was 2.1810(18) Å. The tight range of the values of the bond angles (the values
of cis- and trans-angles being in the ranges 86.40(7)–97.17(7)◦ and 175.10(7)–176.76(6)◦,
respectively) indicates the lower distortion of the coordination octahedron compared to
that at each copper center in 3. The values of the metal···metal separation across the
extended L bridge were 7.97 (3) and 7.82 Å (4). They were of the same order of magnitude
as the shortest intermolecular metal···metal distances, i.e., 7.47 (3) and 7.83 Å (4).

Intramolecular anion–π interactions between the tetrazine ring and oxygen atom
(3.325 Å) (Figure S3), and intermolecular π···π relatively short distances between the
pyridine rings (3.863 Å), were found in 3 (Figure 4), sustaining its supramolecular archi-
tecture. Similar intramolecular anion–π interactions (3.065 Å) existed in the structure of 4
(Figure S4).
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2.2. Magnetic Properties of Complexes 1–4

The magnetic properties of 1 and 2 under the form of χMT versus T plots [χM is
the magnetic susceptibility per one copper(II) (1) or one nickel(II) (2) ions] are shown in
Figure 5. The values of χMT at room temperature were 0.41 (1) and 1.21 cm3 mol−1 K
(2). They were as expected for one magnetically non-interacting doublet [χMT = 0.41 cm3

mol−1 K with SCu = 1
2 and gCu = 2.10] (1) or triplet [χMT = 1.21 cm3 mol−1 K with SNi = 1

and gNi = 2.20] (2) local spins. Upon cooling, these values remained constant until 22 (1)
and 11 K (2) and they further decreased to 0.397 (1) and 0.91 cm3 mol−1 K (2) at 1.9 K. The
small decrease of χMT at very low temperatures for both compounds is attributed to weak
intermolecular antiferromagnetic interactions (1 and 2) and/or zero-field splitting effects
(2).
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Let us analyze first the magnetic data of 1. Having in mind its mononuclear nature
and the above considerations, the magnetic data of this compound were treated through a
Curie law for a copper(II) ion Equation (1)

χM = Nß2g2S(S + 1)/3k(T − θ) (1)

where N, ß, and k have their usual meanings, S = 1
2 and θ is a Curie–Weiss term that was

introduced to take into account the intermolecular magnetic interactions. The least-squares
best-fit parameters are g = 2.09(1) and θ = −0.06(1) K. This very weak magnetic coupling is
in line with the great value of the shortest intermolecular copper(II)···copper(II) separation
in 1 (ca. 9.5 Å). This is also reflected by the M vs. H plot for 1 at 2.0 K (see inset of Figure 5a),
M tending to a quasi-saturation value close to 1.05 µB at 5 T (that is, the value calculated
through Msat = gCuSCu with gCu = 2.09).

Keeping these results for 1 in mind, and given that the shortest intermolecular
nickel···nickel separation in 2 is very large (ca. 9.4 Å), it is reasonable to assume that
the observed decrease of χMT for 2 at low temperatures was due to the zero-field splitting
of the six-coordinate nickel(II) ion. The fact that the quasi-saturation value of M at 5 T for 2
(ca. 2.0 µB) was somewhat below the expected value of MS = gNiSNi = 2.20 µB with SNi = 1
and gNi = 2.20) also supports the occurrence of a significant zfs (see inset of Figure 5b).
Then, the magnetic susceptibility data of 2 were treated through Equations (2)–(4) [32]:

χM = (χM|| + 2 χM⊥)/3 (2)

with
χM|| = (2Nß2g2

||/kT)[exp(−D/kT)/(1 + 2 exp(−D/kT] (3)

and
χM⊥ = (2Nß2g2

⊥/D){[1 − exp(−D/kT)]/[1 + 2 exp(−D/kT)]} (4)

where D is the zero-field splitting and all other parameters have their usual meanings.
Best-fit parameters are g|| = g⊥ = gNi = 2.20(1) and D = 4.48(2) cm−1. This value of D lies in
the range of those reported for other six-coordinate nickel(II) complexes [33]. No ac signals
were observed for 2, either under zero or non-zero applied dc fields. Alternatively, the
magnetic susceptibility data of 2 data were fitted by considering that only the intermolecular
antiferromagnetic interactions would be responsible for the observed downturn of χMT at
low temperatures. The too-large value obtained of the Weiss parameter Weiss (θ =−0.545(2)
K with D = 0 cm−1), and having in mind the above magneto-structural features, this last
approach has fewer arguments for its use.

The magnetic properties of 3 as χMT against T plot [χM is the magnetic suscepti-
bility per two copper(II) ions] are shown in Figure 6. At 300 K, χMT for 3 was equal
to 0.80 cm3 mol−1 K, a value which was as expected for two magnetically isolated spin
doublets (ca. 0.82 cm3 mol−1 K with gCu = 2.10). This value was kept upon cooling until
40 K and it further decreased to 0.77 cm3 mol−1 K at 1.9 K. This small decrease in the low
temperature region could be attributed to a very weak intramolecular antiferromagnetic
coupling across the bis-bidentate L ligand (copper···copper separation of 7.97 Å), although
the intermolecular contribution to the exchange coupling could be also envisaged because
the shortest intermolecular metal···metal separation (ca. 7.47 Å) is comparable to the
intramolecular one.
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The analysis of the magnetic susceptibility data of 3 through the expression for a
dicopper(II) complex is shown in Equation (5)

χM = (2Nß2g2/kT) [3 + exp(−J/kT)]−1 (5)

where J is the magnetic coupling after the spin Hamiltonian H = −JSCu1·SCu2 and g is the
average Landé factor. Best-fit parameters are J = −0.247(2) cm−1 and g = 2.07(1). This small
coupling could be considered as the upper limit because of the possibility of intermolecular
magnetic interactions. The relative orientation of the magnetic orbitals in 3 allow us to
account for this weak intramolecular magnetic coupling. However, the very large value of
the shortest intermolecular copper···copper separation in 2 (ca. 9.9 Å), allows us to rule
out any significant intermolecular magnetic interaction. In fact, the unpaired electron at
each copper(II) ion was mainly defined by a (dx2-y2)-type magnetic orbital which was
mainly delocalized in the equatorial plane (N1O2O3O4 set of atoms, the x and y axis being
roughly defined by the equatorial bonds). These magnetic orbitals were parallel to each
other in the dicopper(II) unit and they were not properly oriented to interact efficiently
in the region of the bridge. The spin density on the axial N2 and N2i atoms [symmetry
code: (i) = 1 − x, 2 − y, 1 − z] was predicted to be very small, and then, the overlap
between the magnetic orbitals of the copper(II) ions of 3 through the extended bis-bidentate
L ligand was expected to be very poor. According to the Kahn’s orbital model, the magnetic
interaction in dicopper(II) complexes is proportional to the square of the overlap integral
between the magnetic orbitals (the bielectronic exchange integrals being neglected) [34,35].
Then, a weak antiferromagnetic coupling was predicted for 3, as observed. This is in
agreement with the fact that M for 3 at 2.0 K tends to a value somewhat below 2.0 µB at 5 T
(see inset of Figure 6).

The magnetic properties of 4 in the form of both χMT and χM vs. T plots (χM is the
magnetic susceptibility per two nickel(II) ions) are shown in Figure 7. At 300 K, χMT was
equal to 2.28 cm3 mol−1 K, a value which is as expected for a pair of non-interacting spin
triplets (χMT = 2.28 cm3 mol−1 K with SNi = 1 and gNi = 2.15). This value continuously
decreased upon cooling to reach a minimum value of 0.13 cm3 mol−1 K at 2.0 K. The
magnetic susceptibility exhibited a maximum of 0.124 cm3 mol−1 K at 7.0 K. These features
are typical of an overall relatively weak antiferromagnetic behavior between the two
single-ion triplet states.
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Given that the ground state for a six-coordinate nickel(II) ion is non-degenerate, the
isotropic spin Hamiltonian H =−JSNi1·SNi2 might be appropriate to analyze the intradimer
magnetic coupling (J) of 4. Nevertheless, this approach, neglecting the zfs (D), works
well when a relatively strong antiferromagnetic coupling occurs. In the systems where a
weak antiferromagnetic coupling takes place (as in 4), or when the magnetic interaction is
ferromagnetic, the effect of the D parameter of the six-coordinate nickel(II) ion has to be
taken into account to describe properly the magnetic behavior at low temperatures [36].
This is why the magnetic susceptibility data of 4 were analyzed by the Hamiltonian of
Equation (6)

H = −JSNi1·SNi2 + D(S2
z,Ni1 + S2

z,Ni2) + ßH(gNi1SNi1 + gNi2SNi2) (6)

where the first term accounts for the intradimer exchange coupling, the second term
corresponds to the axial zfs and the third one is the Zeeman interaction with gNi1 = gNi2 =
gNi. The best-fit parameters were J = −4.86(2) cm−1, D = 5.17(2) cm−1 and gNi = 2.15(1).
The calculated χMT and χM curves (solid lines in Figure 7) reproduced well the magnetic
data in the whole temperature range explored.

Let us to finish with a brief comment about the intramolecular antiferromagnetic
coupling in 4, which was due to the spin polarization mechanism [37]. The two unpaired
electrons at each six-coordinate nickel(II) ion in this complex are defined by d(x2−y2)
and dz2 type orbitals, the former one being roughly localized in the equatorial plane
(N1O1O2O4 set of atoms), whereas the latter one lies along the O3-Ni-N2 axis. As observed
for 3, the two d(x2 − y2) magnetic orbitals were parallel to each other and their orientation
towards the bridge was not appropriate to delocalize any significant spin density on the
skeleton of the bridge. This was not the case for the two dz2 orbitals, the spin density
on the axial N2 site (and symmetry-related N2i atom) being large. As the angle between
the Ni–N2 vector and the mean plane of the tetrazine ring was close to 90◦ (ca. 109◦), a
significant π overlap between the two magnetic orbitals through the -N2-(CNNC)-N2i-
bridging fragment was predicted. Because of the even number of atoms in this bridging
skeleton, the alternating spin densities on it led to an antiferromagnetic coupling. An odd
number of atoms in the π-pathway would result in a parallel alignment of the spins of
the metal ions and then in a significant ferromagnetic interaction. The efficiency of this
mechanism was nicely shown by Iwamura et al., in the context of organic radicals [38],
and it was successfully extended to the domain of coordination chemistry with several
paramagnetic transition metal ions [39–56].

3. Materials and Methods

Reactions were carried out under air, and using HPLC solvents. The IR spectra
were recorded on ATR Bruker Vertex 70 spectrophotometer in the 4000−400 cm−1 range.
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MALDI-TOF MS spectra were recorded on Bruker Biflex-IIITM apparatus, equipped with
a 337nm N2 laser. ESI-MS spectra were achieved on a Bruker MicrO-Tof-Q 2 spectrometer.
Elemental analyses were recorded using a Flash 2000 Fisher Scientific Thermo Electron
analyzer. Copper(II) and nickel(II) hexafluoroacetylacetonate hydrates were purchased
from Sigma Aldrich and dehydrated under high vacuum prior to their use. The L ligand
was prepared as previously described [31].

[Cu(hfac)2(L)] 1: To a solution of L (0.02 g, 6.8× 10−5 mol) in 10 mL of dichloromethane
was added a solution of bis(hexafluoroacetylacetonato)copper(II)[Cu(hfac)2] (32.5 mg,
6.8 × 10−5 mol) in 10 mL of methanol. The mixture was stirred at room temperature for 1 h.
The color changed from red to brown during the reaction. The resulting solution was left
undisturbed for two days at room temperature. During this period, yellow-brown crystals
(0.025 g, 47%), suitable for single-crystal X-ray analysis, were obtained. MALDI-TOF MS:
m/z = 563.9 [Cu(hfac)(L)]+. ESI-MS: m/z = 563.9 [Cu(hfac)(L)]+. IR (ATR, cm−1): 3415 (w),
1643 (s), 1551 (m), 1252 (s), 1199 (s), 1135 (s), 928 (w), 793 (s), 669 (s), 583 (s), 516 (m).
Elemental analysis calcd for C24H16F12N8O4Cu: C, 37.34; H, 2.09; N, 14.54%. Found: C,
37.55; H, 2.36; N 14.78%.

[Ni(hfac)2(L)] 2: To a solution of L (0.02 g, 6.8× 10−5 mol) in 10 mL of dichloromethane
was added a solution of [Ni(hfac)2] (32.1 mg, 6.8 × 10−5 mol) in 10 mL of acetonitrile. The
mixture was stirred at room temperature for one hour. As in 1, the color of the solution
changed from red to brown, evidencing the complex formation. The resulting solution
was left undisturbed for one day at room temperature, yielding brown crystals (0.037 g,
70%) suitable for single-crystal X-ray analysis. ESI-MS: m/z = 766 [Ni(hfac)2(L)]+. IR (ATR,
cm−1): 3219 (w), 1642 (s), 1482 (s), 1253 (s), 1189 (s), 1139 (s), 945 (w), 792 (s), 671 (s), 585
(s), 529 (m). Elemental analysis calcd for C24H16F12N8O4Ni: C, 37.57; H, 2.10; N, 14.60%.
Found: C, 37.65; H, 2.44; N, 14.85%.

[{Cu(hfac)2}2(π-L)]·2CH3OH 3: To a solution of L (0.02 g, 6.8 × 10−5 mol) in 10 mL of
dichloromethane was added a solution of [Cu(hfac)2] (130 mg, 27.2 × 10−5 mol) in 20 mL
of methanol. The mixture was stirred at 70 ◦C for one hour. During the reaction, the color
changed from red to brown. The resulting solution was left undisturbed for one day at
room temperature, yielding yellow-brown crystals (0.051 g, 57%) suitable for single-crystal
X-ray analysis. MALDI-TOF MS: m/z = 1246 [{Cu(hfac)2}2(L)]+. IR (ATR, cm−1): 3415
(w), 1642 (s), 1552 (m), 1253 (s), 1199 (s), 1201 (s), 928 (w), 794 (s), 670 (s), 584 (s), 517 (m).
Elemental analysis calcd for C36H26F24N8O10Cu2: C, 32.91; H, 1.99; N, 8.52%. Found: C,
33.30; H, 2.12; N, 8.67%.

[{Ni(hfac)2}2(π-L)]·2CH3CN 4: To a solution of L (0.02 g, 6.8 × 10−5 mol) in 10 mL of
dichloromethane was added a solution of [Ni(hfac)2] (96.5 mg, 20.4 × 10−5 mol) in 20 mL
of acetonitrile. The mixture was stirred at 70 ◦C for one hour. During the reaction, the color
changed from red to red-brown. The resulting solution was left undisturbed for one day at
room temperature. Yellow-brown crystals (0.06 g, 67%) suitable for single-crystal X-ray
analysis were collected after this period. MALDI-TOF MS: m/z = 1238 [{Ni(hfac)2}2(L)]+.
IR (ATR, cm−1): 3418 (w), 1646 (s), 1548 (m), 1249 (s), 1203 (s), 1195 (s), 932 (w), 798 (s), 667
(s), 579 (s), 509 (m). Elemental analysis calcd for C38H24F24N10O8Ni2: C, 34.52; H, 1.83; N,
8.88%. Found: C, 34.89; H, 1.95; N 9.22%.

Variable temperature direct current (dc) magnetic susceptibility measurements
(1.9–300 K) under applied dc magnetic fields of 5000 G (T≥ 50 K) and 100 G (1.9 ≤ T < 50 K)
and variable-field (0–5 T) magnetization measurements (2.0 K) on crushed crystals of 1–4
were carried out with a Quantum Design SQUID magnetometer. Alternating current (ac)
magnetic susceptibility measurements at low temperatures (2.0–8.0 K) under different
applied dc magnetic fields in the range 0–2500 G were performed for 2 by using a Quantum
Design Physical Property Measurement System (PPMS). The magnetic susceptibility data
of these compounds were corrected for the diamagnetism of the constituent atoms and the
sample holder (a plastic bag).

X-ray single crystal diffraction data were collected on an Agilent Technologies Super-
Nova diffractometer equipped with AtlasCCD detector and micro-focus Cu-Kα radiation
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(λ = 1.54184 Å). The structures were solved by direct methods and refined on F2 by full
matrix least-squares techniques using the SHELX97 (G.M. Sheldrick, 1998) package. All
non-H atoms were refined anisotropically and multiscan empirical absorption was applied
using the CrysAlisPro program (CrysAlisPro, AgilentTechnologies, V1.171.38.41r, 2015).
The hydrogen atoms were included in the calculation without refinement. A summary of
the crystallographic data and the structure refinement for single crystals of compounds 1–4
is given in Table 1.

Table 1. Crystallographic data, details of data collection and structure refinement parameters for compounds 1–4.

1 2 3 4

Formula C24H16F12N8O4Cu C24H16F12N8O4Ni C36H26F24N8O10Cu2 C38H24F24N10O8Ni2

M [g·mol−1] 771.99 767.16 1313.75 1322.05

T [K] 89.9(3) 150.00(10) 150.00(10) 149.56(10)

Crystal system monoclinic monoclinic triclinic triclinic

Space group P21/n P21/n P-1 P-1

a [Å] 9.479(3) 9.4370(10) 9.901(7) 9.2160(2)

b [Å] 14.191(5) 14.299(2) 11.416(7) 10.5636(3)

c [Å] 22.002(6) 22.162(4) 11.823(3) 13.4199(3)

α [◦] 90 90 91.277(4) 89.369(2)

β [◦] 98.581(2) 99.569(15) 96.619(5) 77.005(2)

γ [◦] 90 90 100.342(5) 73.297(2)

V [Å3] 2926.5(16) 2948.9(7) 1304.6(13) 1217.30(5)

Z 4 4 1 1

ρcalcd [g cm−3] 1.752 1.728 1.672 1.803

µ [mm−1] 2.216 2.103 2.343 2.388

Goodness-of-fit on F2 1.027 1.041 1.080 1.055

Final R1
a/wR2

b [I > 2σ(I)] 0.0632/0.1576 0.0555/0.1457 0.0881/0.2453 0.0573/0.1524

R1
a/wR2

b (all data) 0.0698/0.1635 0.0600/0.1498 0.0931/0.2525 0.0625/0.1589
a R1 = ∑||Fo|–|Fc||/∑|Fo|. b wR2 = [∑w(Fo

2 − Fc
2)2/∑w(Fo

2)2]1/2; w = 1/[σ2(F0
2) + (aP)2 + bP] where P = [max(F0

2, 0) + 2Fc
2]/3.

Crystallographic data for the four structures have been deposited with the Cambridge
Crystallographic Data Centre, deposition numbers CCDC 2070.862 (1), CCDC 2070.863
(2), CCDC 2070.864 (3), CCDC 2070.865 (4). These data can be obtained free of charge
from CCDC, 12 Union road, Cambridge CB2 1EZ, UK (e-mail: deposit@ccdc.cam.ac.uk or
http://www.ccdc.cam.ac.uk).

4. Conclusions

The versatility of 3,6-bis(picolylamino)-1,2,4,5-tetrazine (L) as a potentially monotopic
and ditopic ligand has been exploited in this work through the preparation of mono- and
binuclear copper(II) and nickel(II) complexes where the picolylamine fragments coordinate
the metal centers in bidentate fashion. Their coordination sphere is completed by two
hfac ligands, thus providing distorted octahedral MN2O4 coordination geometries in
complexes 1–4. The supramolecular solid state architecture of the complexes is sustained
by intramolecular and intermolecular anion–π interactions between the tetrazine ring and
oxygen and fluorine atoms, together with intermolecular π–π stacking. The magnetic
properties of the four complexes have been investigated through static (dc) magnetic
susceptibility measurements. Interestingly, the weak intramolecular antiferromagnetic
interactions occurring in the binuclear Ni(II) complex 4 can be explained thanks to a
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spin polarization mechanism mediated by the tetrazine bridge. The involvement of the
tetrazine (TTZ) ring in the magnetic coupling pathway is very interesting in view of the
possibility to access the radical anion species of TTZ, which should strongly enhance the
coupling between the two metal centers [17]. Besides, the selective preparation of mono-
and binuclear species opens the way towards the controlled synthesis of heterobimetallic
complexes.

Supplementary Materials: The following are available online, Figure S1: Intermolecular C–H·F
hydrogen bonds in 1, Figure S2: Intermolecular C–H F hydrogen bonds in 2, Figure S3: Intermolecular
anion-π interactions between TTZ and oxygen atoms (red line) in 3. Hydrogen atoms and solvent
molecules were omitted for clarity. Figure S4: Intermolecular anion-π interactions between TTZ and
oxygen atoms (red line) in 4. Hydrogen atoms and solvent molecules were omitted for clarity, Table
S1: Bond lengths (Å) and bond angles (◦) for 1, Table S2: Hydrogen bonds parameters for 1, Table S3:
Bond lengths (Å) and bond angles (◦) for 2, Table S4: Hydrogen bonds parameters for 2, Table S5:
Bond lengths (Å) and bond angles (◦) for 3, Table S6: Bond lengths (Å) and bond angles (◦) for 4.
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