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Abstract: Returning biochar to farmland has become one of the nationally promoted technologies for
soil remediation and improvement in China. Rapid detection of heavy metals in biochar derived
from varied materials can provide a guarantee for contaminated soil, avoiding secondary pollution.
This work aims first to apply laser-induced breakdown spectroscopy (LIBS) for the quantitative
detection of Cr in biochar. Learning from the principles of traditional matrix effect correction
methods, calibration samples were divided into 1–3 classifications by an unsupervised hierarchical
clustering method based on the main elemental LIBS data in biochar. The prediction samples
were then divided into diverse classifications of calibration samples by a supervised K-nearest
neighbor (KNN) algorithm. By comparing the effects of multiple partial least squares regression
(PLSR) models, the results show that larger numbered classifications have a lower averaged relative
standard deviations of cross-validation (ARSDCV) value, signifying a better calibration performance.
Therefore, the 3 classification regression model was employed in this study, which had a better
prediction performance with a lower averaged relative standard deviations of prediction (ARSDP)
value of 8.13%, in comparison with our previous research and related literature results. The LIBS
technology combined with matrix effect classification regression model can weaken the influence of
the complex matrix effect of biochar and achieve accurate quantification of contaminated metal Cr
in biochar.

Keywords: biochar; matrix effect; unsupervised/supervised classification; classification regression
model; LIBS

1. Introduction

Returning biochar to farmland has become a research hotspot in China, since it can
improve the quality of cultivated land [1]. Because of the enrichment effect of heavy
metals during crop growth and crop-straw pyrolysis, the heavy metals in crop straw-based
biochar may exceed the carrying capacity of farmland soil, resulting in secondary pollution.
Therefore, the International Biochar Initiative (IBI) specifically highlights the importance of
the analytical characteristics and producer’s certification of biochar as a soil remediation
agent [2]. However, there are only a small number of reports about the production quality
standards of biochar, and it is necessary to quantitatively and qualitatively analyze heavy
metals in biochar with reference to soil pollution risk control standards.

Several rapid detection methods, such as biochemical sensors [3,4], test paper detec-
tion [5,6], the indicator biological method [7], enzyme-linked immunosorbent assay [8,9]
and spectral analysis [10–12], have been widely used for metal detection in the fields of
industrial analysis [13,14], biomedical engineering [15], food safety [16–18] and environ-
mental ecological pollution assessment [19]. This can not only reduce the limit of detection
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(LOD), but can also improve the sensitivity and detection efficiency. In comparison with the
other methods, spectral analysis has the advantages of multi-elemental high-throughput
rapid detection when it is integrated with multiple chemo-metrics or even artificial intelli-
gence algorithms. However, it is urgent to develop a simpler spectral analysis instrument
with little sample pretreatment to avoid the complex sample pretreatment of traditional
analysis instruments [20–22].

Laser-induced breakdown spectroscopy (LIBS) is a new elemental analytical technol-
ogy that uses the atomic or ionic spectra emitted when laser ablates the sample surface
in the focal plane. However, it still faces challenges in the accurate quantitative analysis
of complex matrixes such as those in agricultural and food samples. The matrix effect
mainly affects the plasma parameters (temperature, electron number density, etc.) and
the ablation amount of the samples. The matrix characteristics of complex samples have a
great influence on the total ablation amount of laser-excited samples. The larger the con-
centration difference between the matrix (main elements) and the analytical element, the
more serious the interference effects will be. Generally, the standard addition method [23],
the matrix matching method [24] and the pre-separation/enrichment method [25] are used
for matrix effect correction. The standard addition method is mainly implemented to add
pure substances with a certain quality as internal standards to the mixture of analyzed
samples, and calculate the content of the tested components according to the mass ratio,
the spectral peak areas ratio and relative correction factors. However, the matrix matching
method has similar interference to the analysis elements because of the similar principal
components, and the interference of matrix or principal components can be deducted by
matching method. It can be seen that the main components in complex matrix have a great
influence on the spectrum of LIBS of the analytical element, and the matrix effect of the
analytical element has a similar regularity because of the similar concentration and existing
form of the main components.

To remove the cumbersome process of traditional matrix matching or standard adding,
a more efficient method of matrix effect classification is proposed. It uses an unsuper-
vised hierarchical clustering method [26] to classify calibration samples based on the main
elemental LIBS data, and develops multiple regression models for different matrix classifi-
cations. Then, the prediction samples are divided into diverse classifications of calibration
samples by supervised KNN algorithm [27], and a quantitative prediction is made based
on the best matrix classification regression model.

2. Results and Discussion
2.1. Matrix Elemental Analysis

Figure 1 shows that the carbonized straw fiber still maintains the graphite flake
morphology, indicating the existence of a large amount of carbon. The statistical analysis
of energy dispersive spectrometer (EDS) shows that the main elements in biochar are
carbon (C), oxygen (O) and potassium (K), and their contents are about 59.36%, 17.49% and
9.99%, respectively. These results show high consistency with the relevant literature [28,29].
However, the Cr content is difficult to semi-quantitatively characterize and analyze, since
its trace concentration exceeds the detection limit of EDS. Therefore, the matrix effect of the
three elements is studied and applied for the classification of biochar samples.

2.2. Spectral Classification of Matrix Effect

The spectra of C, O, K and Cr in three biochar samples derived from rice husk (3#), rice
straw (54#) and corn stalk (18#) were in the range of 192–846 nm, as presented in Figure 2.
Two biochar samples (3#, 54#) should have a similar analytical spectral intensity of Cr
on account of their similar concentration. In addition, the analytical spectral intensity of
sample 18# should be higher than that of biochar samples (3#, 54#) because of its higher Cr
content. Conversely, this is not the case. Furthermore, there was an obvious difference in
the spectral intensities of main elements (C193.03 nm, C247.84 nm, O777.1 nm, O777.29 nm,
O844.64 nm, K 766.29 nm and K 769.79 nm) in these three samples. The reason for this may
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be that the analytical spectra of Cr were interfered with by the matrix effect of the main
elements of C, O and K in biochar.
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However, the main elements suffered from few matrix effects due to their insignificant
relative deviations of concentration; it was attempted to use their LIBS spectra to divide
the biochar samples into diverse classifications. As for the K element, its analytical spectra
of K 766.29 nm and K 769.79 nm were easily affected by the self-absorption effect [30].
Therefore, spectra of C193.03 nm, C247.84 nm, O777.1 nm, O777.29 nm and O844.64
nm were employed for classifying biochar samples, since these were the two elements
with the highest concentration. Here, the calibration samples were divided into 1–3
classifications using hierarchical clustering method, and the supervised classification of
prediction samples was carried out by KNN algorithm based on the classified calibration
samples. The results of 2 and 3 classifications are shown in Figure 3.
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As for the 2 classifications of the biochar matrix, it can be observed from Figure 3
that samples 1–25 and 26–46 of the calibration set in the 1 classification were divided
unsupervised into the first (C1) and second (C2) classification, respectively, while samples
47–53 and 54–60 of the prediction set in the 1 classification were divided supervised into C1
and C2, respectively, as shown in Table 1. As for the 3 classifications of the biochar matrix,
similar results were obtained from Figure 3b, whereby samples 1–25, 26–39 and 40–46 were
divided unsupervised into the first (c1), second (c2) and third (c3) classification, while
47–53, 54–58 and 59–60 samples were divided supervised into c1, c2 and c3, respectively.
Moreover, the two supervised models of KNN both have a robust performance due to
their classification accuracies of cross-validation (CACV), which are higher than 90%. This
indicates that the unsupervised 2 and 3 classification of calibration samples can be used for
supervised classification of prediction samples Table 1.

Table 1. Classification results of biochar samples.

Main Matrix 2 classifications 3 Classifications

C+O (76.85%)

C1: 1–25 (calibration), 47–53
(prediction)

C2: 26–46 (calibration),
54–60(prediction)

c1: 1–25 (calibration), 47–53
(prediction)

c2: 26–39 (calibration), 54–58
(prediction)

c3: 40–46 (calibration), 59–60
(prediction)

2.3. Classification Regression Model

The peak broadening wavebands of Cr 357.83 nm, Cr 359.38 nm, Cr 360.5 nm,
Cr 425.43 nm, Cr 427.48 nm, Cr 428.26 nm, Cr 428.95 nm, Cr 520.42 nm, Cr 520.56 nm
and Cr 520.86 nm as shown in Figure 2 were employed to develop multivariate classifi-
cation regression model of PLSR. The results of classification regression models in 1–3
classifications are shown in Table 2. Prior to developing calibration model, the LIBS data of
Cr were preprocessed using the same algorithm in order to evaluate the model effect fairly.

Table 2. Results of classification regression model.

Classifications Classification RMSECV (mg/kg) RSDCV (%) ARSDCV (%)

1 None 2.38 18.53% 18.53%

2
C1 1.99 12.70%

18.11%C2 2.23 23.51%

3
c1 1.99 12.70%

12.32%c2 1.38 11.02%
c3 0.45 13.24%

The 1 classification regression model of PLSR was initially developed using the calibra-
tion set of 1–46 samples, resulting in the RSDCV value of 18.53%, while the 2 classification
regression models were developed using two calibration sets of samples 1–25 and 26–46,
yielding the RSDCV values of 12.70% and 23.51%. The results show that the 1 classification
regression model effect is more robust than that of the second model in the 2 classification
regression model, but is inferior to that of the first model. This indicates that the concen-
tration and occurrence form of C and O in samples 1–25 are more similar, and the matrix
effect is weak, which may not need to be subdivided again; meanwhile, some samples
with a greater degree of matrix effect still exist in samples 26–46, which may need a second
division. It was verified that samples 1–25 were divided into both the first classification
in the 2- and 3 classifications, and the second classification samples in the 2 classifications
were subdivided into the second and third classification samples in the 3 classifications,
as shown in Table 1. The subdivided samples were used to develop PLSR models, yield-
ing a lower RSDCV values of 11.02% and 13.24% than that of the second model in the
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2 classifications. The results show that 3 classifications can further weaken the matrix
effect of 2 classifications. The averaged relative standard deviations of cross-validation set
(ARSDCV) of classification regression models in 1–3 classifications were 18.53%, 18.11%
and 12.32%, respectively. This indicates that a classifications with a larger number have
a better calibration performance, and the 3 classification regression model has the best
modeling effect. This verifies that matrix effect of samples with similar concentrations and
occurrence forms of main elements may be consistent, which leads to regular changes in the
analytical spectra of Cr, and thus the matrix noise can be removed by normal preprocessing
algorithms and the model performance can be improved. Thus, the 3 classification regres-
sion model of matrix effect classification partial least squares (MEC-PLS) was employed
to quantitatively predict Cr content in biochar, resulting in the averaged relative standard
deviations of prediction set (ARSDP) value of 8.13% as shown in Table 3.

Table 3. Cr detection in biochar and soil in related literature.

Particle Element Range (mg/kg) RSDP/ARSDP (%) Remarks Ref.

Biochar Cr 2.92–25.38 8.13% MEC-PLS 1 In this work
Soil Cr 48–410 23.019 MIPW-PLS 2 Fu et al. 2017 [31]
Soil Cr 48–410 17.673 FSC-MIPW-PLS 3 Duan et al. 2018 [32]
Soil Cr 18.29–164.06 11.460 Lasso 4 Wang et al. 2018 [33]

Biochar Cr 5.05–19.15 17.41% PLS Duan et al. 2019 [34]
1 MEC-PLS: matrix effect classification partial least squares; 2 MIPW-PLS: modified iterative predictor weighting–partial least squares;
3 FSC-MIPW-PLS: full spectrum correction and modified iterative predictor weighting–partial least squares. 4 Lasso: least absolute
shrinkage and selection operator.

The performance in this work was superior to that of Fu et al. [31] and Duan et al. [32],
and was comparable to that of Wang et al. [33]. This may be explained on the basis that, on
the one hand, sensitive variables were all extracted from the full spectrum by the modified
iterative predictor weighting (MIPW), full spectrum correction and modified iterative
predictor weighting (FSC-MIPW) and Lasso algorithms in the related literature. However,
the emission lines of multiple elements were all employed to develop the calibration models
for predicting the Cr content, but the sensitive variables with large weight coefficients
varied in these three reports. This means that the prediction ability of these models may be
poor since their sensitive variables may not be suitable for soils in different habitats. One
the other hand, the related literature should have a more robust performance than this work
since a larger concentration of Cr signifies a stronger signal and a larger signal-to-noise
ratio. However, the complex matrix effect present in these samples cannot be reduced by
these sensitive variable extraction algorithms, resulting in the high degree of noise in the
LIBS analytical spectra of Cr. Moreover, the ARSDP value of the developed 3 classification
regression model decreased by 9.28% in comparison with our previous work [34] at similar
concentrations. The reason for this may be that the unsupervised/supervised classification
methods can successfully divide the tested samples into different classifications, which can
obviously weaken the influence of matrix effect on the analytical spectra of Cr. In addition,
the predicted values of Cr content in biochar were all below the risk value of 150 mg/kg
according to “the soil environmental quality control standard for agricultural land soil
pollution risk (Trial)” (GB15618–2018). The performance of the 3 classification regression
model in terms of measured vs. predicted values of Cr in biochar are plotted in Figure 4.
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3. Experimental Design and Methods
3.1. LIBS Device

The Benchtop LIBS (TSI, Minnesota, USA) apparatus is equipped with a Q-switched
Nd:YAG laser emitting at 1064 nm and operating at a maximum frequency and energy of
2 Hz and 100 mJ, with a pulse width of 10 ns. The detector is a seven-channel spectrometer
charge coupled device (CCD) array, with a wavelength range of 187.78–982.29 nm and a
spectral resolution of λ/∆λ = 12,291.

To reduce the influence of laser pulse energy fluctuation on spectral intensity, the laser
energy and spot size is set to 30 mJ and 200 µm, the number of single-point laser repeated
ablations is 3. To avoid bremsstrahlung, the delay time of detector relative to laser pulse is
set to 0.7 µs. After spectral collection of multiple spots on the sample surface, the averaged
spectrum was taken as the final spectrum of each sample.

3.2. Sample Preparation

Sixty biochar samples derived from varied materials of rice husk, rice straw and corn
straw were collected from Nanjing Zhironglian Technology Co., Ltd. (Nanjing, China).
These samples were crushed using a pulverizer (WKF-130 type, Weifang, China) and
screened with a 75 µm sieve, the resulting samples were placed in valve bags for use. Prior
to spectral acquisition, each crushed sample was fixed on an aluminum substrate using the
double-sided tape tableting method [35] to avoid the problems of poor molding effect and
laser ablation splash caused by traditional tableting method.

Semi-quantitative analysis was primarily implemented to determine the main elements
in biochar by using the scanning technology of EDS (SDD3310, IXRF Systems, Austin, TX,
USA) attached to SEM (SU3500, Hitachi, City Tokyo, Japan) [36]. Each sample was determined
three times. Furthermore, the Cr content in samples was determined by ICP-MS (PE NexION
300, Waltham, MA, USA) [37], as shown in Table 4. It was observed that the Cr content
in derivations of rice straw and rice husk was similar, but it was lower than that in corn
straw-based biochar. This may be attributed to the fact that corn straw has a better enrichment
power of Cr than that of rice straw and rice husk. According to the “soil environmental
quality-agricultural land soil pollution risk control standard (trial)” (GB15618–2018) in China,
the Cr content in biochar derived from the three materials is lower than the farmland soil
pollution risk control value of 150 mg/kg.
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Table 4. Statistical results of Cr (mg/kg) content.

Derivation
(#1~#15) Content Derivation

(#16~#30) Content Derivation
(#31~#45) Content Derivation

(#46~#60) Content

rice husk 7.37 corn stalk 18.21 rice straw 10.67 rice husk 4.5
rice husk 7.47 corn stalk 18.63 rice straw 11.47 rice husk 7.42
rice husk 7.83 corn stalk 18.88 rice husk 11.73 rice husk 8.15
rice husk 8.11 corn stalk 18.9 rice straw 12.81 rice husk 11.51
rice husk 8.22 corn stalk 18.98 rice husk 13.75 corn stalk 17.59
rice husk 8.53 corn stalk 19.15 rice husk 15.15 corn stalk 18.55
rice husk 10.59 rice husk 19.56 rice straw 16.47 corn stalk 18.91
rice husk 11.54 corn stalk 26.15 corn stalk 17.08 corn stalk 25.39
rice husk 12.11 corn stalk 26.34 corn stalk 20.15 rice straw 7.99
rice husk 12.52 corn stalk 28.51 rice straw 2.79 rice straw 10.36
corn stalk 15.27 rice straw 7.9 rice straw 2.9 rice straw 11.5
corn stalk 15.61 rice straw 8.37 rice straw 3.04 rice straw 13.81
rice husk 17.28 rice straw 9.32 rice straw 3.28 corn stalk 18.22
corn stalk 17.94 rice straw 9.9 rice straw 3.3 rice straw 2.92
corn stalk 18.03 rice straw 10.6 rice straw 3.98 rice straw 3.32

3.3. Matrix Effect Classification Regression Modeling and Evaluation Criteria

Matrix effects can be divided into physical effects, chemical effects and absorption en-
hancement effects between elements [38,39]. Physical effects are mainly caused by particle
size and inhomogeneity, which can be weaken by crushing and tableting. Chemical effects
are mainly due to the crystal structure of the analytical element, which is weak for LIBS
technology, since the high-energy laser could instantly transform the crystalline state into
a high-temperature plasma state. However, the absorption enhancement effects between
elements refer to the phenomenon whereby the analytical elemental spectrum depends
not only on its own concentration, but also on the properties and concentration of main
elements in samples. Fortunately, it can be understood from principles of matrix matching
method and the standard addition method that the main elements in a complex matrix
have a great influence on the analytical elemental LIBS spectra. Moreover, a more similar
concentration and occurrence form of the main elements may signify a more similar matrix
effect on the analytical element. Therefore, a new matrix effect classification regression
model is proposed in this study. The main elements of collected biochar samples were
firstly determined by X-ray energy dispersive spectrometer, the LIBS data of which were
employed to classify the calibration samples using the unsupervised hierarchical clustering
method [26]. Similarly, the prediction samples were divided into various classifications of
calibration samples on the basis of a supervised KNN algorithm [27]. Multiple classification
regression models of PLSR [40] were developed and compared, of which the model with
the best calibration performance was employed for quantitative prediction.

The performance of PLSR models was evaluated by the root mean square errors of
cross-validation (RMSECV) and prediction (RMSEP) sets, relative standard deviations
of cross-validation (RSDCV) and prediction (RSDP) sets [40]. The formulas of RMSECV,
RMSEP, RSDCV and RSDP are, respectively:

RMSECV =

√√√√∑m
1

(
yi,actual − yi,predicted

)2

m − 1
(1)

RMSEP =

√√√√∑n
1

(
yi,actual − yi,predicted

)2

n − 1
(2)

RSDCV(%) =
RMSECV

y
=

√
∑n

1(yi,actual−yi,predicted)
2

n−1

y
× 100% (3)
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RSDP(%) =
RMSEP

y
=

√
∑n

1(yi,actual−yi,predicted)
2

n−1

y
× 100% (4)

where m and n are the sample numbers of calibration and prediction sets, respectively;
and are the measured and predicted values, respectively; and is the averaged value of
prediction set. A lower value of RSDCV (or a lower value of RMSECV) signifies a better
modeling effect, while a lower value of RSDP (or a lower value of RMSEP) signifies a better
prediction accuracy [40].

4. Conclusions

In this study, we investigated the feasibility of applying LIBS technology for the quan-
titative analysis of heavy metal Cr in biochar. To reduce the influence of complex matrix
effects, calibration samples of biochar were divided unsupervised into 1–3 classifications
using the main elemental LIBS data by hierarchical classification method. The prediction
samples were divided supervised into diverse classifications of calibration samples by
the KNN algorithm. In comparison with the other two classification regression models,
the 3 classification regression model showed a more robust performance in modeling,
which was finally employed for quantitative analysis of prediction set. Furthermore, the
developed MEC-PLS models had a better prediction performance, with a lower ARSDP
value of 8.13%, in comparison with our previous research and related literature results.
The predicted values of Cr content in biochar were all below the risk value of 150 mg/kg
(GB15618-2018). The results imply that the element of Cr in the produced biochar are
within the carrying capacity of farmland soil, which will not trigger a secondary pollu-
tion. The results show that LIBS technology combined with matrix effect classification
regression model was able to realize accurate and quantitative detection of Cr in biochar,
providing a technical reference for the development of related portable or online LIBS
detection equipment.
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