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Abstract: A series of cycloplatinated(II) complexes with general formula of [PtMe(Vpy)(PR3)],
Vpy = 2-vinylpyridine and PR3 = PPh3 (1a); PPh2Me (1b); PPhMe2 (1c), were synthesized and char-
acterized by means of spectroscopic methods. These cycloplatinated(II) complexes were luminescent
at room temperature in the yellow–orange region’s structured bands. The PPhMe2 derivative was the
strongest emissive among the complexes, and the complex with PPh3 was the weakest one. Similar
to many luminescent cycloplatinated(II) complexes, the emission was mainly localized on the Vpy
cyclometalated ligand as the main chromophoric moiety. The present cycloplatinated(II) complexes
were oxidatively reacted with MeI to yield the corresponding cycloplatinated(IV) complexes. The
kinetic studies of the reaction point out to an SN2 mechanism. The complex with PPhMe2 ligand
exhibited the fastest oxidative addition reaction due to the most electron-rich Pt(II) center in its
structure, whereas the PPh3 derivative showed the slowest one. Interestingly, for the PPhMe2 analog,
the trans isomer was stable and could be isolated as both kinetic and thermodynamic product, while
the other two underwent trans to cis isomerization.

Keywords: 2-vinylpyridine; cycloplatinated(II); photophysics; kinetic; phosphine

1. Introduction

Luminescent cyclometalated platinum(II) complexes have been significantly studied
by many researchers in the last decades [1–11]; publications in this field of research are
increasing [12–15]. The light-emitting devices [16–18] dye-sensitized solar cell [19], photo-
switches [20,21], photocatalysts [22], and chemical or biochemical sensors [23] are various
applications related to the luminescent cycloplatinated complexes. The cyclometalated
ligand is the main chromophoric part in the creation of room-temperature phosphorescence.
In addition, heavy metal like Pt induces high spin–orbit coupling and allows singlet-triplet
intersystem crossing. In addition to the factors mentioned, the ancillary ligands play a
very important role in such complexes’ photophysical properties. These ligands control
the electron density at the metal center and consequently the degree of Metal to Ligand
Charge Transfer (MLCT) in the lowest energy transition. Some different arrangements
for the ancillary ligands are expected depending on the charge (neutral or anionic) or
binding mode (chelating and non-chelating) of the ancillary ligands, such as LˆX [24–26],
LˆL [6,27,28], L/X [2,29–32], L/L [33,34] and X/X [35,36].

Kinetic and mechanistic investigations of the oxidative addition reactions of organoplat-
inum(II) complexes have clearly proved that these reactions follow an SN2 mechanism [37–45]
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with the exception of a few cases [46,47]. The SN2 mechanism with a large negative ∆S 6=

value can be observed for the small organic molecules, such as alkyl halides [48–51]. In
these cases, theoretical approaches for mechanistic studies remarkably helped to certify the
obtained experimental data [52–55]. The cycloplatinated(II) complexes with monophos-
phine ligands are the appropriate complexes for the study of the oxidative addition of alkyl
halides on the Pt(II) center [56–62]. The phosphine ligands can affect electronically and
sterically the rate constants and activation parameters. Electron-withdrawing or -donating
properties of the substituents together with the Tolman cone angle significantly control
the properties of monophosphine ligand [56]. In a comparison between PPh2Me and PPh3
ligands, the rate constants attributed to the PPh2Me derivative are 3-5-fold more than those
for PPh3, indicating the electronic and steric differences [63]. In this manner, it is expected
that the PPhMe2 derivative reactions should be considerably faster than those of PPh2Me.

In the framework of our experiences on the photophysical [30,31,64–69] and the
kinetico-mechanistic studies [70–74] of cyclometalated platinum complexes, some cyclo-
platinated(II or IV) complexes with 2-vinylpyridine (Vpy) and phosphine ligands (PPh3 [75],
PPh2Me [76] and PPhMe2) were designed. The kinetic and photophysical properties of
the complex bearing PPh2Me were previously reported by us [76]. Therefore, herein, we
added the PPh3 and PPhMe2 derivatives to make a meaningful trend and have a complete
picture for comparison in terms of photophysical and kinetic studies. In addition, density
functional theory (DFT) calculations were performed for both investigations and support
the experimental data.

2. Result and Discussion
2.1. Synthesis and Characterization

All the synthetic steps are demonstrated in Scheme 1. In this scheme, the precursor
cycloplatinated(II) complex [PtMe(Vpy)(DMSO)], A, [75–77] Vpy = 2-vinylpyridine, re-
acted with several monophosphines to give the complexes [PtMe(Vpy)(PR3)], PR3 = PPh3
(1a) [75]; PPh2Me (1b) [76]; PPhMe2 (1c). These complexes treated with MeI to give the
corresponding cycloplatinated(IV) complexes of trans-[PtMe2I(Vpy)(PR3)], PR3 = PPh3
(2a); PPh2Me (2b) [76] PPhMe2 (2c), and then cis-[PtMe2I(Vpy)(PR3)], PR3 = PPh3 (3a);
PPh2Me (3b) [76]; PPhMe2 (3c). We have previously reported 1b and its reaction with MeI
(to form 2b and 3b) kinetically investigated [76]. The Pt(IV) complex 2b was not stable and
gradually converted to 3b isomer, and it was decomposed to the known Pt(II) complex and
an organic compound [76]. The same interconversion happened for 1a with this difference
that 2a (trans isomer) cannot be detected due to the very fast trans to cis isomerization.
The cis isomer 3a is similarly decomposed and forms the same products (Scheme 2; trans-
[PtMeI(PPh3)2], 4, [{PtMe2(Vpy)}2(µ-I)2], 5, and Z/E-[C8H9N], 6) [76]. On the other hand,
for 1c, the corresponding cycloplatinated(IV) 2c is stable and not converted to 3c, and
consequently, no decomposition process occurs (Scheme 2). The above-mentioned observa-
tions decisively point out the determining role of the phosphine ligand in determining the
stability of the complexes.
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The formation of the new complexes 1c, 2c and 3a confirmed by 1H- and 31P{1H}-
NMR spectroscopy and their spectra have all been shown in Figures S1–S8 from the
Supplementary Material. The structures of 1c and 2c were further characterized by X-ray
crystallography (Table S1 from the Supplementary Material), and their Oak Ridge Thermal
Ellipsoid Plot (ORTEP) plots are shown in Figure 1, while their selected geometrical
parameters are presented in its caption. The structure of 1c clearly confirms the proposed
structure, and as expected, the C ligating atom of Vpy is located trans to the P of PPhMe2.
The Vpy bite angle in 1c (N1-Pt1-C11) is 78.76◦, which is very close to those observed for
the other cyclometalated ligands in Pt(II) complexes [6]. Upon oxidative addition reaction,
this angle in 2c does not show a meaningful change (79.09◦). It can vividly be observed
that the trans isomer is stable for 2c [72].
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Pt1-C11 2.013(8); Pt1-C16 2.077(7); C11-Pt1-N1 78.8(3); N1-Pt1-P1 104.34(18); P1-Pt1-C16 87.4(2); C16-Pt1-C11 89.6(4);
C11-Pt1-P1 175.5(3); N1-Pt1-C16 168.2(3). (b) ORTEP plot of the structure of 2c. Selected geometrical parameters (Å, ◦):
Pt1-P1 2.395(6); Pt1-N1 2.142(19); Pt1-C11 1.98(2); Pt1-C16 2.01(3); Pt1-C17 2.19(2); Pt1-I1 2.7669(18); C11-Pt1-N1 79.1(9);
N1-Pt1-P1 105.4(6); P1-Pt1-C16 84.2(8); C16-Pt1-C11 91.3(11); C11-Pt1-P1 175.4(7); N1-Pt1-C16 170.0(10); C17-Pt1-I1 175.4(7).
Ellipsoids are drawn at the 50% probability level, and hydrogen atoms are omitted for clarity.

2.2. Photophysical Properties

The electronic transitions of the cycloplatinated(II) complexes 1a-c were initially in-
vestigated by the UV-vis spectroscopy, and their spectra were characterized in detail by the
help of density functional theory (DFT) and time dependence-DFT (TD–DFT) calculations.
In the first step, the ground states of all these three complexes were optimized with the
consideration of CH2Cl2 as the solvent (the same solvent for experimental absorption
spectra); the optimized structures are shown in Figure S9 from the Supplementary Material,
and the selected geometrical parameters are listed in Table S2 from the Supplementary
Material. Using the optimized structures in CH2Cl2, the frontier molecular orbitals (MO),
including “HOMO to HOMO−5” (Highest Occupied Molecular Orbital) and “LUMO to
LUMO+5,” (Lowest Unoccupied Molecular Orbital) were obtained for all the complexes.
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The compositions of the selected molecular orbitals in terms of Pt and ligands are listed
in Tables S3–S5 from the Supplementary Material, and the corresponding visual plots are
depicted in Figures S10–S12 from the Supplementary Material. For all the cases, HOMO is
predominantly localized on Pt and Vpy fragments, while in LUMO, Vpy is significantly
dominated over the other fragments. In addition, the contribution of phosphine ligand is
considerably increased in lower HOMOs and higher LUMOs.

As observed in Figure 2, although there is an acceptable agreement between the
experimental UV-vis spectra and corresponding TD–DFT bars, an overestimation for the
transition energies is observed in the visible region for all the cases. Table 1 indicates that
the low-energy bands (the wavelengths used for yielding the emission bands) in all the
complexes are attributed to the electronic transitions in the cyclometalated ligand and also
charge transfer from Pt to the cyclometalated ligand (mixed 1ILCT/1MLCT (Intra Ligand
Charge Transfer), L = Vpy). In other words, the first excited state (S1) is majorly related
to the HOMO → LUMO transitions, which are assigned as 1MLCT/1ILCT. However, in
higher energy bands (higher excited states) and the 1ILCT and 1MLCT, 1ML′CT (L′ = PR3)
and 1LL′CT (Ligand to Ligand Charge Transfer) electronic transitions are present, which
involve the transitions with the phosphine ligand as the target.
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Table 1. Wavelengths and nature of transitions of 1a–c (M = Pt, L = Vpy, L′ = PR3).

Complex Excited State Oscillator
Strength

Calculated λ

(nm)
Transitions

(Major Contribution) Assignment

1a S0 → S1 0.0569 372.78 HOMO→LUMO (89%) ILCT/MLCT
S0 → S2 0.0197 364.76 H-1→LUMO (99%) MLCT
S0 → S3 0.1341 326.71 H-2→LUMO (84%) MLCT
S0 → S4 0.0285 300.17 HOMO→L+1 (93%) ML′CT/LL′CT
S0 → S10 0.1398 285.59 HOMO→L+3 (86%) ILCT/ML′CT

1b S0 → S1 0.0465 373.00 HOMO→LUMO (86%) ILCT/MLCT
S0 → S2 0.0231 363.42 H-1→LUMO (95%) MLCT
S0 → S3 0.1182 329.57 H-2→LUMO (85%) MLCT
S0 → S8 0.1654 286.30 HOMO→L+2 (80%) ILCT/MLCT/ML′CT

1c S0 → S1 0.0436 374.56 HOMO→LUMO (90%) ILCT/MLCT
S0 →S2 0.0206 364.26 H-1→LUMO (99%) MLCT
S0 →S3 0.1151 330.04 H-2→LUMO (84%) MLCT

S0 → S5 0.1056 289.38 HOMO→L+1 (76%)
HOMO→L+2 (18%)

ML′CT/LL′CT
ILCT/MLCT/ML′CT

S0 → S6 0.0953 286.15 HOMO→L+2 (73%)
HOMO→L+1 (19%)

ILCT/MLCT/ML′CT
ML′CT/LL′CT

The photophysical properties of 1a–c were examined using photoluminescence spec-
troscopy. All three complexes are luminescent in solid state at room temperature and
low-temperature, having the bands in yellow-orange area (see Table 2 for the numerical
emission parameters and Figure 3 for the emission spectra). Expectedly, the complexes
exhibit brighter emissions at 77 K in relation to 298 K, which is due to the more rigidity
of the structures at low-temperature (see Table 2 for the quantum yield (QY) values). The
lifetime values measured for the complexes at both temperature conditions are in microsec-
ond scale, indicating phosphorescence character in the emissive states. The absolute QY
values of the complexes obey the trend 1c > 1b > 1a. This is probably related to the more
electron-donating character of PPhMe2 compared to PPh2Me and PPh3, which makes the
Pt(II) center and consequently the chromophoric ligand of Vpy to be more electron-rich. As
can be seen in Figure 3, the emission spectra for the entire cases exhibit structured emission
bands, which always point out that the emission is majorly localized on the cyclometalated
ligands (large amount of 3ILCT in the emissive state together with the small amount of
3MLCT) [6,30]. The mixed 3ILCT/3MLCT character for the emission bands reflects the
1ILCT/1MLCT character the in absorption spectra obtained by the TD–DFT calculations.
The wavelength of emissions, being 550 nm at 298 K for all the complexes, is another
evidence to confirm the identical emission nature in all the complexes (Vpy ligand). Upon
lowering the temperature, a marginal blue shift is observed for the low-temperature bands
in relation to their parents at room temperature, and also no tangible change is observed in
the color or character of emissions. It should be noted that this blue shift is slightly larger
for 1a compared to the other derivatives.

Table 2. Emission data for 1a–c a.

Complex State (Temp.) λem/nm τ/µs Φ

1a Solid (298 K)
Solid (77 K)

550, 581max

530max, 575
0.9
4.1

0.01
0.04

1b Solid (298 K)
Solid (77 K)

550, 579max

542max, 577
3.4
7.1

0.11
0.27

1c Solid (298 K)
Solid (77 K)

550, 585max

543, 585max
5.3

15.5
0.17
0.44

a The emissions were recorded upon excitation at 365 nm; lifetime values were measured at the peak maxima.
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2.3. Kinetic Studies

The oxidative addition of an excess amount of MeI on 1a and 1c in acetone solvent
was kinetically studied by following the disappearance of the 1MLCT band of the cyclo-
platinated(II) complexes in the absorption spectra (see Figure 4 for the changes in the
UV-vis spectra of 1a and 1c at room temperature). The parameter kobs (pseudo-first-order
rate constant) was calculated by the nonlinear least-squares fitting of the absorbance-time
curves to a first-order equation. The kobs/MeI concentration graphs were plotted for at
least five temperatures (Figure 4), giving desirable straight-line plots with no intercept
(no involvement of solvent or any dissociative pathway). The slope of the straight lines
gives the second-order rate constant (k2). To calculate the activation parameters, the Eyring
equation (Equation (1)) was employed at different temperatures (Figure 5). The large nega-
tive Entropy of Activation ∆S# values in Table 3 are normally indicative of second-order
kinetics (first-order for Pt(II) complex and MeI) and SN2 mechanism. We have previously
suggested an SN2 mechanism for 1b, and the present reactions for 1a and 1c obey the
previously reported mechanism.76 In this mechanism, the trans isomer is considered as the
kinetic product, while the thermodynamic product is attributed to the cis isomer. At all
the temperatures, the reaction of 1c (containing PPhMe2) with MeI is the fastest reaction,
and 1b and 1a are the lower ranks, respectively. Therefore, the Enthalpy of Activation
∆H# value for the reaction of 1c with MeI is the lowest value (the lowest energy barrier).
However, the ∆S# values are controlled by the steric hindrance induced by phosphine
ligands. The highest ∆S# value is attributed to the 1c having PPhMe2 with the lowest steric
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hindrance. This is due to the associative mechanism with a penta-coordinated intermediate
in which the lowest steric hindrance makes the highest ∆S# value.
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Table 3. Second-order rate constants a and activation parameters b for the reaction of 1 with MeI in acetone c.

Complex L
102 k2/L·mol−1·s−1 at Different Temperatures

∆H#/kJ·mol−1 ∆S#/J·K−1·mol−1

10 ◦C 15 ◦C 20 ◦C 25 ◦C 30 ◦C

1a PPh3 0.40 0.58 0.82 1.11 1.58 45.7 ± 0.1 −129 ± 1

1bc PPh2Me 2.80 3.63 4.38 5.57 7.16 30.5 ± 0.1 −166 ± 1

1c PPhMe2 24.4 28.6 34.0 39.1 44.3 19.1 ± 0.1 −189 ± 1
a Estimated errors in k2 values are ± 3%. b Activation parameters were calculated from the temperature dependence of the second-order
rate constant in the usual way using the Eyring equation. c From ref [76].

From Figure 5 and Table 3, it can be understood that the rate of the reactions obeys
the trend 1c (PPhMe2) > 1b (PPh2Me) > 1a (PPh3). For example, at 25 ◦C, the rate for 1b is
almost 5 times larger than that for 1a, while the reaction of 1c is 7 times faster than that of
1b. This is absolutely related to the electron-donating trend of the present monophosphine
ligands (PPhMe2 > PPh2Me > PPh3). The more electron-donating ability makes more
electron-rich Pt(II) center, which is favorable for oxidative addition reaction and makes it to
be faster. Therefore, in the formation of kinetic products, the electronic factors are effective.
However, in trans to cis isomerization (kinetic product to thermodynamic product), the
steric effects play a determining role. Additionally, the trans isomer can be stabilized
by the electron-donating phosphine ligands like PPhMe2 [78] For the reaction of 1a with
MeI, the kinetic product (2a) cannot be observed, and only the cis isomer (3a) as the
thermodynamic product can be isolated. This trans to cis isomerization is attributed to a
large steric hindrance and low electron-donating ability of the PPh3 ligand. In the case of
the reaction of 1b with MeI [76] having a phosphine (PPh2Me) with less steric hindrance
and more electron-donating ability compared with PPh3, the trans isomer can be isolated
and even completely characterized, but it will gradually be converted to the cis product
and eventually decomposed [74]. However, if PPh2Me is replaced by PPhMe2, due to the
smaller steric hindrance and large electron-donating ability imposed by PPhMe2, the trans
to cis isomerization is practically prohibited and trans isomer 2c as the kinetic product is
completely stable so that it can be crystallized and characterized by X-ray crystallography.

3. Experimental
3.1. General Procedures and Materials

1H-NMR (400 MHz) and 31P{1H}-NMR (162 MHz) spectra were recorded on a Bruker
Avance III instrument (Ettlingen, Germany) and are referenced to the external standards,
i.e., SiMe4 and 85% H3PO4, respectively. The chemical shifts (δ) being reported as ppm
and coupling constants (J) expressed in Hz. UV-vis absorption spectra and kinetic studies
were carried out by using an Ultrospec 4000 Pro, UV-vis spectrometer (Little Chalfont, UK)
with temperature control using a Pharmacia Biotech constant-temperature bath. Excitation
and emission spectra were obtained on a PerkinElmer LS45 fluorescence spectrometer
(Beaconsfield, UK) with the lifetimes measured in phosphorimeter mode, and the quantum
yields of the complexes were measured using an integrating sphere. 2-Vinylpyridine (Vpy),
triphenylphosphine (PPh3), dimethylphenylphosphine (PPhMe2) and the other chemicals
were purchased from Sigma Aldrich (St. Louis, MO, USA). All of the reactions were
carried out under an argon atmosphere, and all of the common solvents were purified
and dried according to standard procedures. The complexes [PtMe(Vpy)(DMSO)], A,
[PtMe(Vpy)(PPh3)], 1a, [PtMe(Vpy)(PPh2Me)], 1b, and [PtMe2I(Vpy)(PPh2Me)], 2b, were
prepared according to literature methods [75–77]. The NMR labeling for the Vpy ligand
for clarifying the chemical shift assignments is shown in Scheme 3. New NMR data for
1a, 1H-NMR (400 MHz, acetone-d6, 295 K): δ 0.69 (d, 3JPH = 8.1, 2JPtH = 84.2 Hz, 3H, PtMe),
6.57 (t, 3JHH = 6.3 Hz, 1H, H5), 7.25 (d, 3JHH = 7.8 Hz, 1H, H3), 7.33 (dd, 3JHH = 9.2 Hz,
4JPH = 15.2 Hz, 3JPtH = 94.3 Hz, 1H, Hα), 7.44–7.49 (m, 9H, Hm and Hp PPh3), 7.58 (d,
3JHH = 5.3 Hz, 3JPtH = 16.4 Hz, 1H, H6), 7.68–7.74 (m, 7H, H4 and Ho PPh3), 7.76 (dd,
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3JHH = 9.2 Hz, 3JPH = 7.8 Hz, 2JPtH = 163.4 Hz, 1H, Hβ); 31P{1H}-NMR (162 MHz, acetone-
d6, 295 K): δ 31.8 (s, 1JPtP = 2021 Hz, 1P).
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3.2. Synthesis of Complexes
3.2.1. [PtMe(Vpy)(PPhMe2)], 1c

To a solution of [PtMe(Vpy)(DMSO)], A, (150 mg, 0.382 mmol) in acetone (15 mL)
was added PPhMe2 ligand (60 µL, 0.420 mmol, 1.1 equivalent). The mixture was stirred
at room temperature for 2 h. The deep orange solution was concentrated to a small
volume (~2 mL), and n-hexane was added (3 mL) to give an orange solid identified
as 1c. Yield: 93%; Anal. Calcd for C16H20NPPt (452.39); C, 42.48; H, 4.46; N, 3.10.
Found: C, 42.91; H, 4.56; N, 3.17. 1H-NMR (400 MHz, acetone-d6, 295 K): δ 0.95 (d,
3JPH = 8.7, 2JPtH = 85.3 Hz, 3H, PtMe), 1.71 (d, 2JPH = 7.7, 3JPtH = 20.9 Hz, 6H, Me of
PPhMe2), 6.77 (td, 3JHH = 6.5 Hz, 4JHH = 1.4 Hz, 1H, H5), 7.20 (d, 3JHH = 7.9 Hz, 1H, H3),
7.24 (dd, 3JHH = 9.4 Hz, 4JPH = 15.7 Hz, 3JPtH = 87.1 Hz, 1H, Hα), 7.45–7.48 (m, 3H, H4 and
Hm PPhMe2), 7.72 (t, 3JHH = 8.2 Hz, 1H, Hp PPhMe2), 7.73 (t, 3JHH + 3JPH = 9.1 Hz, 7.8 Hz,
2JPtH = 149.1 Hz, 1H, Hβ), 7.89–7.95 (m, 3H, H6 and Ho PPh3); 31P{1H}-NMR (162 MHz,
acetone-d6, 295 K): δ −4.6 (s, 1JPtP = 1967 Hz, 1P).

3.2.2. cis-[PtMe2I(Vpy)(PPh3)], 3a

To solution of [PtMe(Vpy)(PPh3)], 1a, (100 mg, 0.173 mmol) in acetone (15 mL) were
added 250 µL (excess, 25-fold) of MeI. The solution was stirred for 3 h at room temperature,
then diethyl ether was added to give a precipitate, which was filtered, washed with diethyl
ether to give the product as a pale yellow solid identified as 3a. The product was dried
in vacuum. Yield: 79%; Anal. Calcd for C27H27INPPt (718.47); C, 45.14; H, 3.79; N, 1.95.
Found: C, 45.32; H, 3.87; N, 1.82. 1H-NMR (400 MHz, acetone-d6, 295 K): 1.04 (d, 3JPH = 7.8,
2JPtH = 60.7 Hz, 3H, Me ligand trans to PPh3, PtMe), 1.75 (d, 3JPH = 7.9, 2JPtH = 69.8 Hz, 3H,
Me ligand trans to N of Vpy, PtMe), 6.65 (dd, 3JHH = 6.9 Hz, 4JPH = 2.6 Hz, 3JPtH = 104.2 Hz,
1H, Hα), 6.95 (t, 3JHH = 6.7 Hz, 1H, H5), 7.31–7.45 (m, 9H, Hm and Hp PPh3), 7.51–7.96 (m,
9H, Hβ, H3, H4 and Ho PPh3), 9.07 (d, 3JHH = 5.1 Hz, 3JPtH = 13.3 Hz, 1H, H6); 31P{1H}-NMR
(162 MHz, acetone-d6, 295 K): δ −7.8 (s, 1JPtP = 1036 Hz, 1P).

3.2.3. trans-[PtMe2I(Vpy)(PPhMe2)], 2c

To solution of [PtMe(Vpy)(PPhMe2)], 1c, (100 mg, 0.221 mmol) in acetone (15 mL)
were added 150 µL (excess, 10-fold) of MeI. The solution was stirred for 3 h at room
temperature, then diethyl ether was added to give a precipitate, which was filtered,
washed with diethyl ether to give the product as a pale yellow solid identified as 2c.
The product was dried in vacuum. Yield: 81%; Anal. Calcd for C17H23INPPt (594.33);
C, 34.36; H, 3.90; N, 2.36. Found: C, 34.25; H, 3.92; N, 2.33. 1H-NMR (400 MHz,
acetone-d6, 295 K): 0.65 (d, 3JPH = 7.6, 2JPtH = 70.3 Hz, 3H, Me ligand trans to I, PtMe),
1.26 (d, 3JPH = 8.2, 2JPtH = 69.4 Hz, 3H, Me ligand trans to N of Vpy, PtMe), 1.98 (d,
2JPH = 8.9, 3JPtH = 12.6 Hz, 3H, Me of PPhMe2), 2.21 (d, 2JPH = 9.0, 3JPtH = 11.1 Hz, 3H,
Me of PPhMe2), 6.83 (td, 3JHH = 6.6 Hz, 4JHH = 1.3 Hz, 1H, H5), 7.03 (dd, 3JHH = 8.0 Hz,
4JPH = 21.7 Hz, 3JPtH = 66.9 Hz, 1H, Hα), 7.44 (d, 3JHH = 7.8 Hz, 1H, H3), 7.52–7.59 (m, 3H,
Hp and Hm PPhMe2), 7.72 (td, 3JHH = 7.7 Hz, 4JHH = 1.5 Hz, 1H, H4), 7.81 (d, 3JHH = 5.1 Hz,
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3JPtH = 12.0 Hz, 1H, H6), 7.86–7.92 (m, 2H, Ho PPh3), 8.03 (dd, 3JHH = 8.0 Hz, 3JPH = 9.2 Hz,
2JPtH = 75.6 Hz, 1H, Hβ); 31P{1H}-NMR (162 MHz, acetone-d6, 295 K): δ −37.8 (s,
1JPtP = 1278 Hz, 1P).

3.3. Kinetic Study

A solution of 1a or 1c in acetone (3 mL, 2.5 × 10−4 M) in a cuvette was thermostated
at 25 ◦C, and a known excess of MeI (150 µL, 3200-fold for 1a; 15 µL, 320-fold for 1c)
was added using a microsyringe. After rapid stirring, the absorbance at λ = 387 (1a) or
386 (1c) nm was collected with time. The absorbance-time curves were analyzed by the
pseudo-first-order method (At = (A0 − A∞) exp(−kobst) + A∞). The same method was used
at other concentrations, and temperatures (10, 15, 25, and 30 ◦C) and activation parameters
(∆S# and ∆H#) were obtained from the Eyring equation (Equation (1)) and the full data are
collected in Table 1. Ref. [79]

ln
(

k2

T

)
= ln

(
kB

h

)
+

∆S‡

R
− ∆H‡

RT
. (1)

3.4. X-ray Crystallography

The X-ray diffraction measurement was carried out on a STOE IPDS2T diffractometer
(STOE & Cie GmbH, Darmstadt, Germany) with graphite-monochromated Mo Kα radia-
tion. The single crystals suitable for X-ray analysis were obtained from CH2Cl2/n-hexane
solution (at room temperature) and mounted on glass fiber, and used for data collection.
Cell constants and an orientation matrix for data collection were obtained by least-square
refinement of the diffraction data for 1c and 2c. Diffraction data were collected in a series of
ω scans in 1◦ oscillations and integrated using the Stoe X-AREA software package (Stoe &
Cie GmbH, Darmstadt, Germany) [80]. Numerical absorption correction was applied using
X-Red32 software (Stoe & Cie GmbH, Darmstadt, Germany). The structure was solved
by direct methods and subsequent difference Fourier maps and then refined on F2 by a
full-matrix least-squares procedure using anisotropic displacement parameters. Atomic fac-
tors are from the International Tables for X-ray Crystallography. All non-hydrogen atoms
were refined with anisotropic displacement parameters. Hydrogen atoms were placed in
ideal positions and refined as riding atoms with relative isotropic displacement parameters.
All refinements were performed using the X-STEP32, SHELXL-2014 and WinGX-2013.3
programs [81–85] Crystallographic data for the structural analysis was deposited with the
Cambridge Crystallographic Data Centre, No. CCDC-2057874 (for 1c) and CCDC-2057873
(for 2c).

3.5. Computational Details

Density functional calculations were performed with the program suite Gaussian09
(Wallingford, CT, USA) [86] using the B3LYP level of theory [87–89]. The LANL2DZ basis
set was chosen to describe Pt [90,91] and the 6-31G(d) basis set was chosen for other atoms.
The geometries of complexes were fully optimized by employing the density functional
theory without imposing any symmetry constraints. To ensure the optimized geome-
tries, frequency calculations were performed employing analytical second derivatives.
CH2Cl2 as solvent was introduced using the conductor-like polarizable continuum model
(CPCM) [92,93]. The calculations for the electronic absorption spectra by time-dependent
DFT (TD–DFT) were performed at the same level of theory. The compositions of molecular
orbitals and theoretical absorption spectra were plotted using the “Chemissian” software
(Petersburg, Russia) [94].

4. Conclusion

We have reported synthesis, photophysical properties of 1b, and kinetic investigation
of its reaction with MeI [76]. In this work, we completed the trend of phosphine ligands
by synthesis of 1a and 1c. The effect of phosphines on the photophysical properties of the
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cycloplatinated(II) complexes and also on the rates of oxidative addition reactions with
MeI studied. These complexes show emission bands in the yellow-orange region with
the same wavelength of 550 nm. The emission bands exhibit a structured shape, which is
indicative of the mixed character 3ILCT/3MLCT and emission from the Vpy cyclometalated
ligand. However, 1c shows the strongest emission, while 1a shows the weakest emission,
which is probably related to the electron-donating ability of the phosphine ligands, which
obeys the trend PPhMe2 > PPh2Me > PPh3. On the other hand, the nature of phosphine
ligands affects the rate of oxidative addition reactions of cycloplatinated(II) complexes
with MeI. The expected rate trend of 1c > 1b > 1a was obtained, which is attributed to
the electron-donating ability of the phosphine ligands (PPhMe2 > PPh2Me > PPh3), being
favorable for the oxidative addition reaction. In this regard, trans to cis isomerization is
also observed for two cases of 2a (very fast) and 2b (slow), which is controlled by the steric
hindrance induced by the phosphine. However, 2c as the trans isomer and kinetic product
is stable and can be isolated and crystallized, which is due to the small steric hindrance of
the PPhMe2 ligand.

Supplementary Materials: The following are available online at: Crystallographic and Computa-
tional data, NMR spectra. Figure S1: 1H NMR spectrum of 1a in acetone-d6, Figure S2: 1H NMR
spectrum of 1c in acetone-d6, Figure S3: 1H NMR spectrum of 3a in acetone-d6, Figure S4: 1H NMR
spectrum of 2c in acetone-d6, Figure S5: 31P{1H} NMR spectrum of 1a in acetone-d6, Figure S6: 31P{1H}
NMR spectrum of 1c in acetone-d6, Figure S7: 31P{1H} NMR spectrum of 3a in acetone-d6, Figure S8:
31P{1H} NMR spectrum of 2c in acetone-d6, Figure S9: Optimized structures of (a) 1a, (b) 1b and
(c) 1c in CH2Cl2 solvent, Figure S10: Selected MO plots of 1a, Figure S11: Selected MO plots of 1b,
Figure S12: Selected MO plots of 1c, Table S1: Crystal data and structure refinements for 1c and 2c,
Table S2: Selected geometrical parameters for the optimized structures of 1a-c, Table S3: Composition
(%) of frontier MOs in the ground state for 1a in CH2Cl2 solvent, Table S4: Composition (%) of
frontier MOs in the ground state for 1b in CH2Cl2 solvent, Table S5: Composition (%) of frontier MOs
in the ground state for 1c in CH2Cl2 solvent.
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