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Abstract: Keratinocyte carcinoma (KC) is a form of skin cancer that develops in keratinocytes, which
are the predominant cells present in the epidermis layer of the skin. Keratinocyte carcinoma comprises
two sub-types, namely basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). This review
provides a holistic literature assessment of the origin, diagnosis methods, contributing factors, and
current topical treatments of KC. Additionally, it explores the increase in KC cases that occurred
globally over the past ten years. One of the principal concepts highlighted in this article is the
adverse effects linked to conventional treatment methods of KC and how novel treatment strategies
that combine phytochemistry and transdermal drug delivery systems offer an alternative approach
for treatment. However, more in vitro and in vivo studies are required to fully assess the efficacy,
mechanism of action, and safety profile of these phytochemical based transdermal chemotherapeutics.

Keywords: keratinocyte carcinoma; medicinal plants; phytochemistry; transdermal drug delivery systems

1. Introduction

Cutaneous carcinoma, or skin cancer, remains one of the highest occurring cancer
types, with the number of incidences increasing globally. Although the number of cases
differs significantly depending on the geographical region, it remains a major health care
problem across the world, as it affects both men and women of every ethnicity/race [1].

There are two criteria that classify skin cancer; the cell from which they originate and
their clinical behavior. Skin cancer is categorized into two major groups: non-melanoma
skin cancer (NMSC) and malignant melanoma. The cases of non-melanoma skin cancer
are generally substantially higher than melanoma cases and are often much less complex
to treat compared to melanoma, as it has a lower metastatic potential [2]. Non-melanoma
skin cancer, consisting of basal cell carcinoma (BCC) and squamous cell carcinoma (SCC),
is often referred to as keratinocyte carcinoma, as these two subtypes are derived from the
epidermal keratinocytes [3].

2. Methodology

A scientific literature search was performed during 2018–2020, using several databases
(Science Direct, Google Scholar, Scopus, and Pubmed). The literature search focused on
the following topics; KC, BCC, and SCC. Review articles linked to these topics contributed
extensively to the structure of the current review. To understand the severity of KC and
the increase in cases and mortality, various research papers, and cancer registries were
analyzed. Previous research papers that reported on in vitro and in vivo studies regarding
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the use of medicinal plants, phytochemicals, and transdermal drug carriers provided
insights on novel treatments for KC. Literature that was reviewed ranged from the year
1987–2020, which included research articles, patents, book chapters, and review articles.

3. The Origin and History of Keratinocyte Carcinoma

Basal cell carcinoma and SCC originate within the epidermis layer of the skin [4]. The
epidermis layer undergoes a process known as homeostasis, where new cells replace old or
damaged cells. Homeostasis and the regeneration of skin cells are maintained by stem cells
located within the epithelial tissue, which have the ability to differentiate into different
cell lineages and are able to self-renew. The epidermis layer is comprised of three main
compartments: the interfollicular epidermis, the hair follicle, and the sebaceous and sweat
glands [5]. There have been numerous conflicting results on the epidermal lineage of BCC
and SCC cells, which are discussed below.

3.1. Basal Cell Carcinoma

The origin of BCC has been debated since the early 1900s. Krompecher defined
the origin of BCC as a tumor that arose from the basal cell layer of the interfollicular
epidermis [6]. Several researchers over the years have endorsed Krompechers’ definition.
However, Lever [7] had a contrary view, which explained that BCC is of follicular origin,
derived from an epithelial hair germ. Immunohistochemical studies have been conducted
that substantiated Levers’ view [8]. A study conducted by Van Scott and Reinertson in
the year 1961, discovered that the growth of tumorous epithelial cells is dependent on
their stroma. A later study validated the findings by Van Scott and Reinerston and further
reported on the stromal properties, which are fundamental requirements for tumor growth,
which include platelet-derived growth factor (PDGF) A and B, and their corresponding
receptors α and β. Another study that focused on gene expression profiling of BCC stromal
tissue demonstrated that PDGF receptor-like protein displayed an upregulation in BCC
stroma. Extensive studies are necessary to accurately assess the effect of the stroma in
relation to BCC tumor growth [9,10].

In the year 1824, Aurther Jacob, a member of the royal college of surgeons in Ireland,
first described what we now term “basal cell carcinoma”. He conducted immunohisto-
chemical studies that led him to define BCC as a mass of cancerous cells, which were
germinative keratinocytes that emerged from hair follicles [11]. Further research conducted
by a German pathologist, Krompecher Odon, in 1900 validated the discovery formed by
Jacob. In the year 1903, Krompecher published a book called Der Basalzellenkrebs (The
Basal Cell Cancer), which explained that these specific tumors arise from the lowest layer
of cells present in the skin [6]. A recent study performed by Tan et al. confirmed that
BCC originates within the basal layer of the epidermis and arises from the interfollicular
epidermis [12].

3.2. Squamous Cell Carcinoma

A review by Kipling et al. provided a fundamental timeline that established the
discovery of SCC. Heinrich Bass (Bassius) first described scrotum carcinoma in 1731, which
was published in an article entitled ‘Scrotum sphacelo consumptum et fenatum’. In the year
1740, Treyling also confirmed the description of scrotum carcinoma in an article titled
‘Scrotum immaniter auctum scirrhoso scrophulosm’ [13]. However, Percivall Pott, an English
surgeon and scientist, was the first to assign occupational cause to the disease. In the
year 1775, Pott established that high incidence rates of scrotal cancer were related to
chimney soot exposure. Subsequent studies termed this cancer chimney sweeps carcinoma,
which can be described as an extremely rare sub-division of SCC. Potts’ discovery was
the inception of a plethora of research articles focused on SCC [14,15]. Squamous cell
carcinoma arises from the squamous cell layer, which is located in the epidermal layer of
the skin [16]. Therefore, SCC can be described as an epithelial malignancy that occurs in
organ covered squamous epithelium [17].
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4. Incidence and Demographics of Keratinocyte Carcinoma

A report by the World Health Organization (WHO) reveals there is are estimated
2–3 million cases of KC cancer that occur globally each year [18]. Due to the incidence of
skin cancer not always being reported, the estimated number of cases that occur globally
each year are severely underestimated. It is also evident that there is a large variation
in the number of reported cases that occur; therefore, the worldwide burden of KC re-
mains unclear. The occurrence rate of KC in the United States (US) documented by the
American Cancer Society revealed that an estimated 3.3 million people were diagnosed
with KC; however, the number of cases is severely underestimated, as KC cases are not
required to be reported to cancer registries [19]. A report by Rogers et al. substantiated
the increase in the number of cases, where 5,434,193 million KC cases were diagnosed,
and 3,315,554 individuals were treated in the US in 2015 [20]. According to GLOBOCAN,
the estimated number of new KC cases in 2018, excluding basal cell carcinoma cases, was
1,042,056 with 65,155 deaths [21]. Estimates for the number of non-melanoma skin cancer
incidence worldwide for 2020 were updated by Globocan (Figure 1) [22].
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Figure 1. Estimated age-standardized world-wide incidence rates of non-melanoma skin cancer in
2020. Reproduced from [22]. Copyright 2021, International Agency for Research on Cancer 2021,
World Health Organization.

Basal cell carcinoma is the world’s most prevalent human cancer and is accountable
for approximately 70–80% of all skin cancers [23,24]. A report by Dessinioti et al. revealed
that Australia had the highest incidence of BCC (~1–2%) annually, with approximately
2448 of a 100,000 population diagnosed in 2011, followed by the US (450 per 100,000 in
2010) and Europe (220.1 per 100,000 yearly average) [25,26]. The South African National
Cancer Registry reported approximately 14,414 BCC and 6950 SCC cases in 2016 [27].
Another study found that the lowest incidence rates of BCC were in Finland, in comparison
to other European countries [28]. This trend is followed closely by Italy, with 88 out of
100,000 people diagnosed with BCC [29]. Squamous cell carcinoma has been reported
to contribute approximately 20% of skin cancer cases [30]. Numerous reports indicate a
significant incline in SCC incidence rates over the past three decades, with an approximately
yearly increase of 3–10% [26]. Currently, SCC incidence rate is estimated to be between
15–35/100,000 people per year and is set to increase between 2–4% annually, due to chronic
ultraviolet B (UVB) exposure and an aging population [31].
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5. Diagnosis of Keratinocyte Carcinoma

The early diagnosis of KC, such as SCC, is crucial in controlling the risk of cancer
becoming invasive and assists in minimizing the complexity of treatment plans. Approxi-
mately 70% of all BCCs are found on the head and neck, which can have detrimental effects
such as facial deformities and the collapse of certain vital structures [32].

Dermatoscopy, an in vivo imaging diagnostic technique, is used to examine pigmented
skin lesions under high magnification in order to distinguish between pigmented BCC and
melanoma. Computer tomography or magnetic resonance imaging are used to determine
the extent of abnormal cell tissue growth in cartilage, bone, large nerve, eyeball, or parotid
gland, whereas skin biopsy aids in identifying KC subtypes and subsequent treatment
plans [33]. Lesions that appear clinically abnormal can be tested via biopsy or excision.
Abnormal lesions can be examined using incisional biopsy (incision, punch, or shave
biopsy), where a section of tissue is removed, or excisional biopsy, where the entire lesion
or tissue is removed. Appropriate treatment and prognosis is therefore based on tumor
differentiation grade, histologic subtype, degree of dermal invasion, tumor depth, presence
or absence of perineural, lymphatic, or vascular invasion, and extension of tumor cells to
margins [34,35]. A tumor staging system, such as the Cancer Staging Manual, published by
the American Joint Committee on Cancer (AJCC), is used to determine the prognosis and
treatment plant based on the location and size of the tumor, whether it has spread to the
lymph nodes, and the extent to which it has spread to other parts of the body [34]. There
are two types of staging systems, the number staging system (Table 1) or the TNM (tumor,
node, and metastasis) staging system. A full description of the TNM staging system has
been described by Fahradyan et al. [35].

Table 1. The number staging system of keratinocyte carcinoma [34].

Stage Description

0 In situ carcinoma, cancer has developed but has not spread or grown into
surrounding tissue

1 Tumor ≤2 cm in size, with less than two high-risk features
2 Tumor >2 cm in size, with two or more high-risk features

3 Tumor with invasion of the maxilla, mandible, orbit, or temporal bone or
the tumor has spread to nearby lymph nodes (<3 cm in size)

4 Tumor with invasion of skeleton or perineural invasion of skull base or the
tumor has spread to lymph nodes (>3 cm in size) or an internal organ

High-risk features include >2 mm thick, cells are poorly differentiated or undifferentiated, has grown into the
dermis, perineural invasion (space around a nerve), primary site non-hair-bearing lip, started to develop on the
ear or lip.

6. Clinical Variants of BCC

Basal cell carcinoma accounts for approximately 70% of KC cases and most commonly
develops on sun-exposed skin, predominantly on the head, but can also develop on the
neck, trunk, and lower extremities. It is defined as a slow growing tumor, which rarely
metastasizes but can cause facial deformities if left untreated. A characteristic feature of
BCC is the formation of island or nests of basaloid cells found in the epidermis, which can
invade the dermis depending on the variant of BCC [36,37]. There are numerous subtypes
of BCC; however, several main variants are summarized in Table 2.
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Table 2. Clinical variants of basal cell carcinoma.

Basal Cell Carcinoma Variant Characteristics References

Nodular BCC

• Most dominant form of BCC (60–80% of BCC cases)
• Most often arises on sun exposed areas, commonly on the

head and neck (85–90%)
• Develops over a long period of time, often years
• Identified by elevated, exophytic pearl-shaped nodules

with telangiectasia on the surface and periphery
• Bleeding and ulceration often occurs
• Subtype: micronodular BCC, less susceptible to ulceration,

and is skin or great in color with a firm shape and
defined border

[38–41]

Pigmented BCC

• Rare variant of BCC, consists of 6% of BCC cases
• Pigmented variant of nodular BCC (can be found in

micronodular and superficial BCC)
• Brown, black, or blue in color with enlarged pigmented

papule and telangiectasis
• Often misdiagnosed as angiomas, seborrheic keratisis,

or melanoma

[39,40,42]

Superficial BCC

• Consists of 10–30% of BCC cases, often affecting
younger patients

• Slow-growing and develops over a long period of time,
often on the trunk or upper extremities

• Flat, glazed, pale pink lesion with distinct borders,
enveloped marginally with protruding edges

[39]

Morphoeic/sclerosing BCC

• Aggressive type of BCC, occurring on the face
• Can be fast-growing, reaching several centimetres in a few

months, or undergoes no changes for several years
• Slightly glistening surface with indistinct boarders

[39]

7. Actinic Keratosis as Precursor Lesions of SCC

Actinic keratosis (AK) is a principal precursor lesion for the formation of SCC. It
is often found on parts of the body that are exposed to solar UV radiation such as the
forearms, back, scalp, upper chest, face, neck, and back of the hands. Due to the correlation
between the development of AK and exposure to UV radiation, it is often found in middle-
aged people and the elderly. It can be clinically identified by poorly formed borders, flaky
erythroderma, and uneven papules or patches. It is also found on surface areas of the body
that exhibit various pre-existing impairments such as uneven pigmentation, telangiectasias,
and atrophy. The formation of AK can lead to the development of invasive SCC; however,
it can also spontaneously regress or remain a benign AK lesion. Although most cases of
SCC have been linked to AK, it has been reported that only 5–10% of AK lesions develop
into invasive SCC. Histologically, actinic keratosis is the exponential growth of abnormal
keratinocyte cells, which predominately occurs in the lower layers of the epidermis [38].
Additionally, these atypical keratinocytes display an assembly of distinct characteristics
such as pleomorphic and hyperchromatic nuclei, polarity deficiency, cell size enlargement,
and mitosis enhancement. Several subtypes of AK have been identified that exhibit a broad
range of histologic patterns (Table 3) [38,39].

Reports indicate that the rate of progression from AK to SCC ranges from approxi-
mately 12% to 20% [40]. A study by Sahin et al. assessed the degree of AK advancement
and its link to SCC formation. In this study, evaluations were performed on 115 lesions
from 82 patients diagnosed with AK, over a period of eight years, in which the percentage
of male patients was 51% and female patients was 48%. This study revealed that the
highest percentage of AKs were located on the nose (30.4%), followed by the face (23.5%),
lips (8.7%), and ears (7.8%) [41]. Furthermore, when comparing AK localization in males
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and females, it was observed that AKs frequently occur on the nose of males, whereas
in females, they occur on the facial skin. When comparing the subtypes of AK, research
indicates that proliferative AK has the highest rate of occurrence at 29.6%. Additionally,
acantholytic AKs display a 4% progression rate to SCC [41].

Table 3. Various subtypes of actinic keratosis.

Actinic Keratosis Subtype Characteristics Occurrence Percentage (%) References

Pigmented actinic keratosis

• Excess quantity of melanin resulting
in hyperpigmentation

• Can be clinically and histologically
misdiagnosed as melanoma in situ
(accumulation of abnormal elastin)

• Rough or scaly papule or plaque that is
brown or grey (1 to 5 cm diameter)

• Spreads horizontally across the skin’s surface

1.7 [39,41,42]

Lichenoid actinic keratosis

• Dense infiltration of lymphocytes at the
dermal–epidermal junction, including basal
keratinocyte necrosis

• Can be morphologically misdiagnosed as
benign lichenoid keratosis or lichenoid
regression in melanoma

• Pink to red–dark red scaly plaque on the
chest, back and legs

- [39,43]

Bowenoid actinic keratosis

• Atypical keratinocytes inhabit the majority of
the epidermis (similar to Bowen’s disease)

• Does not infiltrate the outer root sheath of the
hair follicle

• Irregularly shaped cells containing
light-toned cytoplasms and clustered nuclei,
which can develop into large SCCs

9.6 [39,44]

Proliferative actinic keratosis

• Flaky, erythematous macules, with
indistinct borders

• Finger-like projections emerge from
abnormal keratinocytes that are seen in the
superficial dermis

• Larger than 1 cm and can increase to 3 to 4
cm over time

• Can expand into the dermis and epidermis;
however, however these cells have poor
cellular differentiation

29.6 [39,44]

Hypertrophic actinic keratosis

• Characterized by increased keratin formation
in the stratum corneum and
epidermal hypergenesis

• Histological patterns include focal
parakeratosis, abnormally increased
thickness of stratum granulosum, amplified
epidermal hyperplasia (mimics psoriasis),
and dense collagen bundle fibres in the
papillary dermis

• Commonly occurs in the upper extremities of
the body

27 [39,45]
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Table 3. Cont.

Actinic Keratosis Subtype Characteristics Occurrence Percentage (%) References

Atrophic actinic keratosis

• Atrophic transformations present, observable
by the decreased epidermis thickness and
flattened rete ridges

• Irregular cells are frequently observed in the
basal layer of the epidermis

• Infrequent mitoses, indicating that this
variant emerges from mutations in the basal
layer of the epidermis

8.7 [39,46]

Acantholytic actinic keratosis

• Acantholysis of atypical keratinocytes,
resulting in abnormal keratinocyte separation
and intra-epidermal cleft formation

• Fissures observed within dyskeratotic and
acantholytic cells, located in the
suprabasal layer

• Potential to develop into adenoid squamous
cell carcinoma

18.3 [39,47]

Actinic cheilitis/cheilosis
(rare variant)

• Premalignant inflammatory condition that
can progress to squamous cell carcinoma

• Identified by the presence of swollen reddish
lesions, which have an excessive amount of
fluid (acute phase)

• Lesions appear grey-whitish, wrinkled, and
hyperkeratotic (chronic phase; months–years)

3.5 [48]

Cutaneous horn
(uncommon variant)

• A hyperkeratotic nodule, which is conical,
dense, and projects through the skin

• Comprised of compacted keratin and often
develops on the upper parts of the face

• Several skin lesions could emerge from the
base of this keratin horn

1.7 [49]

8. Squamous Cell Carcinoma
8.1. Squamous Cell Carcinoma In Situ

Squamous cell carcinoma in situ (SCCIS) can be viewed as a fundamental transitional
phase from AK to invasive SCC. Currently, the predominant trend in oncology research
is the synonymity that exists between Bowen’s disease and SCCIS, exclusively for lesions
occurring on non-genital areas [38,39].

Squamous cell carcinoma in situ, which is also known as Bowen’s disease, can be
histologically identified by the following characteristics: atypia, which extends through the
complete thickness of the epidermis, excluding the adnexal structures, and hyperparaker-
atosis, which can either be nominal or extremely abundant, which gives rise to a cutaneous
horn. Atypical keratinocytes exhibit apoptosis, hyperchromasia, nuclear pleomorphism, as
well as a “windblown” appearance when polarity is lost. It is generally defined as a skin
disease that does not possess the ability to invade the dermis layer of the skin. Squamous
cell carcinoma in situ can develop on any epidermal body site; however, studies indicate
that approximately 72% of SCCIS cases occur on sun-exposed skin surfaces, namely the
hands, neck, and head. It is therefore often diagnosed in elderly people aged over 60 years
old and is rarely diagnosed in individuals under the age of 30. Other areas in which SCCIS
can be found include the nail bed, soles of the feet, and palms of the hand. Squamous
cell carcinoma in situ can be clinically distinguished by the following features; presence
of a distinct plaque or scaly patch, which is benign and displays erythema. Lesions may
develop unfavorable properties which include crustation, fissures, hyperkeratosis, and
ulcerations. Reports indicate that the risk of SCCIS progressing to invasive SCC is approxi-
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mately 3–5%. Statistics further revealed that 20% of tumors that evolve to invasive SCC
will ultimately metastasize [38,39].

8.2. Invasive Squamous Cell Carcinoma (SCCI)

Invasive squamous cell carcinoma is often referred to as standard SCC. Histologically,
it is defined as the vertical invasion of abnormal cells, which originates at the basement
membrane and advances into the dermis. It has been reported that approximately 97% of
SCCI cases are linked to the malignant progression of AK [50]. There are several variants
of SCC (Table 4).

Table 4. Clinical variants of squamous cell carcinoma.

Squamous Cell Carcinoma Subtype Characteristics References

Generic/simplex SCC

• Atypical keratinocytes present in the form of lobules
and cords

• Originates in the epidermis and extend to the dermis
• Forms small/large islands or invasive tumor strands
• Characteristics include a mononuclear inflammatory infiltrate,

loss of surface epithelial cells, ulceration, and hyperkeratosis

[51]

Acantholytic SCC
(adenoid/lobular SCC)

• A form of sweat gland carcinoma
• Identified by squamous differentiation related to acantholysis

(forms forged glandular tumors)
• High-risk variant of SCC
• Forms clefts within the tumors due to loss of cohesion

between cells

[52,53]

Spindle cell SCC
(sarcomatoid SCC)

• A rare variant of SCC that is not well differentiated
• Infiltration of proliferating pleomorphic cells in the

connective tissue
• Ability to invade the dermis, subcutis, fascia, muscle,

and bone
• Atypical cells can developed into a whorled pattern, with the

ability to invade the dermis
• Presence of extremely large cells that are multinucleated,

pleomorphic, and have multiple mitotic structures
• Develops on sun-exposed areas such as the head, neck, chest,

and upper extremities

[38,54]

Verrucous SCC

• Well-differentiated SCC comprising of rete ridges (bulbous,
thickened, and papillomatous), which invade the dermis

• Four categories (depending on where it develops):
oroaerodigestive VC, anourogenital VC, palmplantar VC, and
cutaneous VC

• Tumor strands form sinus tracts (which attached to the skin’s
surface) that invade the dermis and subcutaneous layer

• Presence of mitotic structures, nuclear growth, large atypical
keratinocytes, and hyperchromasia

• Often associated with the human papilloma virus

[38,55]

Clear-cell SCC
(hydropic SCC)

• Rare variant of SCC that appears edematous with ulcerated
masses or nodules

• Three types: Type 1 (keratinizing), Type 2 (non-keratinizing),
and Type 3 (pleomorphic)

• Type 1: vacant cytoplas, lesions appear as a sheet formation,
or tumor cells appear as small clusters sporadically dispersed

• Type 2: emerges from dermis and tumor cells are in a parallel
formation (separated by stroma, which is fibrotic and
inflammatory in nature)

• Type 3: originates in the epidermis and exhibits
severe ulceration

[56]
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Table 4. Cont.

Squamous Cell Carcinoma Subtype Characteristics References

Single cell infiltrates

• Rare variant of SCC, identified by the presence of
single infiltrates

• Often occurs in the elderly found on the face and neck
• More aggressive in nature when compared to generic SCC
• Lesions are often undetected or misdiagnosed
• Irregular cells are individually arranged or clustered in

the dermis
• Located in the skin where there is excess elastin due to

sun damage

[57]

De Novo SCC

• Aggressive variant of SCC not associated with actinic
keratosis or sun exposure

• Well-differentiated simplex SCC, in close proximity to an ulcer
or scar

• Develops on areas of the skin exposed to long-term disease or
injury, commonly in lower extremities

[58,59]

9. Recurrent and Metastatic KC

Tumor recurrence and incomplete excision of the primary tumor are major risk factors
that can increase the possibility of developing metastatic SCC. Studies have revealed that
aggressive tumors are susceptible to recurrence and are accountable for approximately
25–30% of SCC metastasis [60]. In a study by Clayman et al., 130 patients, which exhib-
ited advanced or aggressive SCC tumors, displayed a recurrence of 27.5% [61]. Leading
characteristics of recurrent tumors include large tumor size, invasion of lympho-vascular
or perineural system, and tumor infiltration into subcutaneous tissue [62]. A study that
comprised of 603 patients with cutaneous SCC revealed that 89% of patients died from dis-
tant metastasis, which is consistent with current SCC metastatic reports [63]. Key features
that are linked to metastasis include cancerous cells that disseminate via the lymphatic,
which are responsible for 80% of metastases [64], and the fact that the vast majority of
metastatic SCC cases occurred on the head and neck of patients [60]. A report by Lazarus
et al. presented a study in which 6900 patients had SCC; however, only 142 patients ex-
hibited metastatic lesions. An evaluation of these lesions revealed that lymph nodes are
the primary site for metastases occurrence (Table 5) [65]. On the contrary, metastatic BCC
cases are rare, with a percentage rate of approximately 0.0028–0.55% [66]. Metastatic BCC
follows the same trend as SCC, where 85% of cases originate from tumors that are located
in the head and neck region of the patient. Moreover, statistics reveal that a minimum of
two-thirds of metastasis cases arise from tumors that are exclusively situated on the face.
Tumors that exhibit a specific set of characteristics can be categorized as having a high
metastatic potential, such as tumors located in the mid-face or ear, a tumor that has been
present for a long period of time, tumor diameter size (>2 cm), and previous radiation
treatment [67]. A study by Freitas et al. evaluated 25 BCC cases between the time period
of January 2012 and March 2017 and concluded that metastases occur most frequently in
lymph nodes (Table 5).
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Table 5. Anatomical sites of metastases occurrence in squamous cell carcinoma and basal cell carcinoma.

Site of Metastases Occurrence Percentage (%)

Squamous Cell Carcinoma

Lymph node 4.3
Lung 0.2
Liver 1.1
Bone 0.2

Subcutaneous tissue 0.2
Brain 0.2

Generalized 0.1
Site unspecified 1.6

Basal Cell Carcinoma

Lymph nodes 56
Lung 36

Paotid gland 20
Bone 16

Submandibular gland 12
Thyroid 4

Skin 0
Liver 0

10. Risk Factors Associated with the Development of KC

There are various environmental and biological factors that contribute to the develop-
ment of KC, which are divided into external and internal factors. Identification of high-risk
patients allows for early diagnosis and an efficient treatment regime to be established.

10.1. External Risk Factors
10.1.1. Solar UV Radiation

The main external risk factor for developing KC is exposure to solar UV radiation [68].
However, specific patterns of UV radiation exposure result in development of various
types of KC. The development of SCC can be linked to long-term sun exposure, whereas
BCC formation is associated with excessive sun exposure that transpired in early life as
well as intermittent exposure [69]. Furthermore, Kim et al. highlighted that 90% of KC
cases are linked to high levels of UV radiation exposure [70]. Solar UV radiation can
be divided into three categories, according to a difference in wavelength, namely UVA
(320–400 nm), UVB (280–320 nm), and UVC (200–280 nm) [71]. A study conducted by
Grossman et al. showed that solar UV radiation induces KC development through DNA
damage and immunosuppression [72]. Previously, UVA was reported to primarily be
responsible for skin aging; however, recently, UVA has been coupled with UVB, where
both are implicated in the development of cutaneous skin cancer. There are different
mechanisms by which UVA and UVB cause DNA damage. UVB is known to play a greater
role in KC development, due to wavelength penetration depth. UVB radiation is absorbed
by cellular components that are present in the epidermis, whereas UVA radiation infiltrates
into the basal layer of the epidermis and dermal fibroblasts [73,74]. A study conducted
by Boukamp [75], confirmed the findings by Grossman et al. [72] with regards to UVB
being a major contributing factor for KC development [75]. This study revealed that the
formation of photoproducts, which damage the DNA present in keratinocytes, occurs due
to long-term UVB exposure [75]. One of the major photoproducts that form is cyclobutene
pyrimidine dimer (CPD). CPDs form thymine dimers (T/T) and pyrimidine-pyrimidone
lesions (6-4PP), which, if unrepaired, are mutagenic. This specific type of DNA damage
can be repaired by the nucleotide excision repair mechanism (NER); however, malfunction
of this mechanism can result in multifocal skin cancer [76]. Additionally, UV radiation
has been reported to cause mutations in the suppressor gene existing in the p53 protein.
The central function of the p53 tumor suppressor gene is to encode for a protein, which
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regulates the cell cycle and induces apoptosis [76]. Previous studies have indicated that
mutations present in the p53 gene are associated with numerous human cancers and are
most prevalent in KCs [77]. According to Kooy et al., UV radiation is able to induce
immunosuppression by depleting epidermal dendritic Langerhans cells (CD1a+). As a
result, T helper type-1 converts to T helper type-2 response, which inhibits the ability of
cell-containing-antigens to induce antitumor immunity [78].

10.1.2. Indoor Tanning

Artificial sources of UV radiation have been categorized as cancer causing agents
by the International Agency for Research on Cancer (IARC) in the year 2012 [79]. Indoor
tanning generates similar adverse effects in human skin as exposure to solar UVB radiation;
however, reports indicate that indoor tanning is 10–15 times stronger than exposure to
solar UVA radiation [80]. A review conducted by Wehner et al. investigated approximately
9300 cases of keratinocyte carcinoma and was able to correlate the development of KC to
indoor tanning. This report revealed a 67% higher risk of developing SCC and a 29% higher
risk for BCC development when exposed to indoor tanning. Studies indicate that exposure
to indoor tanning between 16–25 years leads to a greater risk of developing BCC [81].

10.1.3. Ionizing Radiation

The association between exposure to ionizing radiation and skin cancer formation was
discovered by radiologists that were working with X-ray analysis. Furthermore, SCC de-
velopment was observed in skin locations that exhibited dermatitis and ulceration, which
was caused due to high-level ionizing radiation exposure, whereas formation of BCC was
seen in low to moderate exposure to ionizing radiation [82]. Ionizing radiation is used as a
form of treatment for various types of cancers; however, this is often associated with the
development of radiation dermatitis, which occurs in approximately 95% of patients re-
ceiving radiation therapy. This is due to damage caused to the basal keratinocytes and hair
follicle stem cells, which is followed by double-stranded DNA breaks and inflammation
caused by the production of reactive oxygen species [83].

10.1.4. Arsenic Exposure

Studies indicate that the two leading characteristics that arsenic exhibits are its ability
to act as a toxin and as a carcinogen. The mechanism of action is to target and negatively al-
ter the cellular processes within various organ systems based on a dose and time-dependent
manner. The toxic effects of arsenic are first displayed in the skin, which can include the
development of BCC and SCC. Development of SCC from arsenic exposure is said to be
more aggressive in nature when compared to chronic UV-induced SCC. Statistics reveal
that 33% of untreated arsenic-induced SCC demonstrates metastatic behavior [84].

10.2. Internal Factors
10.2.1. Age

Studies have shown that the development of KC is more prevalent in elderly patients
with a median age diagnosis of 70 years and older [85]. There are several factors that
potentially contribute to the frequent occurrence of KC in the elderly, namely prolonged
exposure to solar UV radiation and repair mechanisms of the cell that are not functioning at
optimum levels [86]. Transformations that occur in the immune system of elderly patients
result in immune suppression, which can lead to opportunistic disease development, of
which malignancies are frequently observed [87].

10.2.2. Skin Type

Skin type and pigmentation is a crucial factor regarding the development of KC. Skin
type 1 is represented by people who have fair skin, light blue, and grey eyes, with light red
and blonde hair, and are more susceptible to KC formation. The number of KC cases occur
more frequently in fair-skinned individuals as compared to dark-skinned individuals. This
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is due to low levels of melanin present in the skin. Melanin, which is responsible for skin
pigmentation, has photoprotective properties. It protects the skin by acting as a physical
barrier to UV radiation and is furthermore able to absorb UV radiation, thereby limiting the
amount of UV that penetrates the skin. Melanin is produced in the melanosomes, which is
translocated to adjacent keratinocytes via dendrites [88,89].

10.2.3. Immunosuppression

Immunosuppression is a significant contributing factor for the development of KC,
more specifically SCC. The development of KC occurs more frequently in patients that
exhibit immunodeficiency, which includes patients that use immunosuppressive drug
therapy in cases such as solid-organ transplantation, auto-immune inflammatory diseases,
and human immunodeficiency virus (HIV) infection. Patients who have received organ
transplants have an increased risk (20–200-fold) of developing SCC. A study revealed the
incidence ratio of SCC caused by solid-organ transplantation to be 1355/100,000, whereas
the incidence ratio of SCC in the general population was 38/100,000 [90].

11. Topical Pharmacotherapies Currently Used for the Treatment of KC

Topical chemotherapy is a form of non-surgical therapy used to remove or eliminate
localized skin cancer cells. There are several topical treatments available (Table 6), which
can induce cell death through the direct damage to DNA/RNA, such as 5-fluorouracil, or
act as immune-modulators, such as imiquimod, which stimulates the production of various
cytokines, thereby inducing antitumor activity. Topical treatments are often a consideration
when patients are elderly or unhealthy; therefore, surgery may not be an option, or for
individuals who have tumors/lesions on areas that cosmetically sensitive, and therefore
surgery may result in a disfiguring scar [91].

Table 6. Existing topical pharmacotherapies for the treatment of KC.

Pharmacotherapy Efficacy Mechanism Disadvantages/Adverse
Side Effects References

5-Fluorouracil (5-FU)

5% FU: 80% and 54–86%
efficacy for superficial BCC
and SCC in situ,
respectively
30 mg/mL (one-thrice
weekly) intralesional 5-FU:
90–100% efficacy for small
superficial/modular
tumors (0.6–1.5 cm)
50 mg/mL (biweekly)
intralesional 5-FU: 67%
efficacy for large tumors
(2.4 cm)

Disrupts DNA synthesis
and repair by inhibiting
thymidylate synthase;
causes DNA damage, DNA
strand breaks and cell
death
Misincorporation of 5-FU
in RNA; inhibits
conversion of pre-rRNA to
mature rRNA and disrupts
post-transcriptional
modification of tRNA

High rate of tumor
recurrence; optimal for
small-sized tumors
Erythema, scaling, blisters,
necrosis, ulceration,
erosions, pruritus, burning,
headaches, fever, diarrhea,
nausea, and mouth ulcers

[92–97]

Imiquimod (IMQ)

5% IMQ: 43–94% for
superficial BCC
5% IMQ: 50–65% for
nodular BCC
5% IMQ: 71% for
invasive SCC
5% IMQ: 57–80% for
Bowen’s disease

Induces pro-inflammatory
cytokines secretion,
interferon gamma (IFN-γ),
tumor necrosis factor alpha
(TNF-α), interferon alpha
(IFN-α), interleukin (IL)-6,
IL-1α, IL-1β, IL-8, and
IL-12, thereby activation
acquired and natural
immune response and
antitumor activity

Extensive recurrence rate
after first 12–24 months;
optimal for tumors <2 cm
in size
Erythema, discomfort,
erosion, scaling, blisters,
necrosis, ulcerations,
erosions, pruritus, burning,
flu-like symptoms,
dizziness, and headaches

[95,96,98]
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Table 6. Cont.

Pharmacotherapy Efficacy Mechanism Disadvantages/Adverse
Side Effects References

Ingenol mebutate (IM)
Active compound in

Euphorbia peplus L.
(milkweed) sap

0.05% IM: 63% efficacy for
superficial BCC (increased
efficacy directly
proportional to
higher dosage)
0.25% IM gel: 70 and 30%
efficacy for SCC growth in
female and male mice
respectively

Induces cell necrosis
through loss of
mitochondrial membrane
potential and induction of
mitochondrial membrane
polarization
Necrosis induced
pro-inflammatory
cytokines resulting in
neutrophil-mediated
antibody-dependent
cellular cytotoxicity

Thicker skin in male mice
resulted in poorer drug
penetration and decreased
efficacy
Crusting, flaking,
erythema,
erosion/ulceration,
swelling, and blistering

[99–103]

Photodynamic
therapy (PDT)

72–100% efficacy on
superficial BCC

Increased uptake of PDT
by cancerous cells; once
PDT has exited normal
cells, tumor cells (with
PDT) are exposed to light
at a specific wavelength,
resulting in release of
reactive oxygen species,
thereby inducing cell death

Nodular BCC and BCC
tumors >2 mm are less
responsive to PDT
(inadequate penetration);
BCC tumors between
1–2 mm in thickness, SCC
an AK lesions have a high
recurrence rate; less
effective on superficial
BCC than IMQ and 5-FU
Burning, prickling,
erythema, edema,
hypo-and
hyper-pigmentation,
allergic contact dermatitis
(rare) and pain, which
often leads to
incomplete treatments

[104–113]

Retinoids
Class of compounds

derived from vitamin A

0.1% tazarotene gel (daily
for eight months): cleared
11 of 13 superficial BCC
and 5 of 17 nodular BCC; a
24 week trial recorded
70.8% of BCC with >50%
regression and 30.5%
healed with no recurrence
after 3 years
0.1% tazarotene gel (daily):
efficacy of 46.6% of SCC in
situ (0.5–4 cm); complete
clearance from month 3–5
(no recurrence after 3
month follow-up)

Antiproliferative activity
and induction of apoptosis
in basaliomatous cells

Effective against
undifferentiated BCC
tumors, however not
effective against keratotic
BCCs (overexpression of
p53 and cellular retinol
binding protein-1)
Mild erythema, edema,
and local skin irritation

[114–116]

12. Transdermal Delivery of Drugs

A fundamental approach used to enhance bioavailability of pharmaceutical drugs is
developing novel drug delivery systems. Although oral delivery systems are preferred for
pharmaceutical drug administration, these systems are linked to several disadvantages such
as insufficient drug stability within the gastrointestinal tract, reduced drug concentration
upon reaching its site of action due to metabolism, and decreased drug solubility in
intestinal fluid resulting in poor permeability through the intestinal membrane [117].
Due to the large surface area and accessibility of the skin, extensive investigations of
drug delivery via the skin have been conducted. Administration of drugs through the
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skin can result in the drug being confined within the skin (topical application) or the
drug can penetrate through the skin, allowing it to reach the blood circulatory system
(transdermal delivery). There are numerous advantages associated with transdermal
drug delivery when compared to conventional drug administration routes, these include;
non-invasiveness, increased patient compliance, enhanced drug bioavailability, more cost
effective and decreased drug plasma fluctuations [118]. However, it is imperative to
consider physiological and physiochemical factors, as these factors influence a drug’s
movement through skin. A drug’s absorption rate is primarily controlled by skin age,
moisture contents, and anatomical location. Aged skin has a decreased moisture contents,
resulting in reduced and slower absorption when compared to younger skin. An increase
in temperature leads to an enhanced absorption rate, whereas a reduction in blood flow
results in a drug’s influx being negatively impacted [119]. An ideal transdermal drug
should possess characteristics such as a short half-life, low molecular weight (less than
1000 Da), bio-compatible, low melting point, and an affinity for both hydrophilic and
lipophilic phases [120].

12.1. Targeted Delivery Through the Skin

The main objective of drugs that exert their pharmaceutical effect topically is to target
a multitude of sites that exist in different skin layers, skin appendages, and underlying
tissue. Studies indicate that the systemic circulatory system is predominately targeted
by transdermal drug compounds; moreover, the anatomical structures of interest are hair
follicles, nerves, Langerhans cells, keratinocytes, and melanocytes within the epidermis.
It is imperative that drug candidates for transdermal delivery include the following char-
acteristics: limited sites for hydrogen bonding, have a low molecular weight, average
lipophilicity, and a low melting point [121]. The permeation of a drug occurs through the
stratum corneum and can be calculated by Fick’s second law:

J =
DmCvP

L
(1)

where J represents the transport flux, Dm is the diffusion coefficient of the drug present in
the membrane, Cv represents the drug concentration that exists in the vehicle, P is the drug
partition coefficient, and L represents the thickness of the stratum corneum [122].

12.2. Transdermal Drug Permeation Routes

Administration of drugs through the skin can follow two potential routes, trans-
epidermal and trans-appendegeal (Figure 2) [117]. The trans-epidermal pathway allows
for molecules to pass through the stratum corneum and can be further sub-divided into
intracellular and intercellular pathways [123]. The intracellular route depicts a pathway that
permits the transport of hydrophilic or polar solutes through differentiated keratinocytes
known as corneocytes, whereas the intercellular route allows the transport of lipophilic
or non-polar solutes via intercellular spaces in the lipid matrix. The second transdermal
drug route (trans-appendageal route) represents a pathway that allows the permeation
of molecules via hair follicles that are associated with sebaceous glands as well as sweat
glands [123]. This route is suitable for ions and large polar molecules, which experience
difficulty in stratum corneum permeation [124].
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12.3. Transdermal Delivery of Skin Cancer Drugs

The majority of chemotherapeutic drugs are distributed using the systemic circula-
tory system and are capable of generating cytotoxic effects on healthy cells. Therefore,
transdermal drug delivery of anticancer compounds can be viewed as an attractive alterna-
tive, due to the two essential advantages of transdermal drug delivery systems, namely
increased therapeutic benefit and enhanced drug targeting. However, there are several
challenges that have been linked to this treatment method, including increased concentra-
tion, lack of bioavailability, and penetration of drug compounds possessing antineoplastic
properties [125,126]. Due to the advancements in technology, anticancer macromolecules,
inclusive of proteins and nucleic acids, that experience difficulty penetrating the stra-
tum corneum can be delivered with the assistance of penetration enhancers, physical
enhancement devices, and micro-carriers [127].

Studies have reported on two types of penetration enhancers, namely chemical and
biological. Chemical penetration enhancers can be described as compounds that facilitate
increased drug penetration through the skin, such as alcohol, terpenes, esters, fatty acids,
polyols, and surfactants. Reports on various mechanisms of action for this type of enhancer
include facilitating disturbances within the stratum corneum, intercellular protein inter-
action, and enhanced drug segmentation within the stratum corneum [128]. Biological
enhancers are peptide-based and are capable of transporting an array of compounds, such
as nucleic acids, proteins, polymers, and nanoparticles, throughout the skin with minimal
toxicity. Physical enhancement devices can be characterized by the implementation of
electric fields such as electroporation, iontophoresis, and sonophoresis [127]. Further litera-
ture explained that the fundamental purpose of these techniques is based on the ability to
exert a momentary and reversible disintegration of the stratum corneum, which results in
enhanced permeation of an antineoplastic drug at a tumor site [129].

In recent times, micro-nanocarrier systems that include inorganic nanoparticles, nano-
emulsions, dendritic nanocarriers, and liposomes have attracted increased attention in the
field of transdermal drug delivery, as they offer various advantages, such as increased skin
penetration, enhanced solubility, and implementation of controlled release [127]. Within
the micro-nanocarrier system, there exist several elements that greatly contribute to skin
permeability, such as charge, shape, and size of nanomaterials [130].

This review explored several transdermal drug delivery and micro-nanocarrier sys-
tems for their application in skin disorders and skin cancer (Table 7).
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Table 7. Transdermal drug delivery and micro-nanocarrier systems in skin disorders and skin cancer.

Nano-Carrier Study Outcome Reference

Liposomes

Synthesized elastic liposomes
loaded with 5-fluorouracil
(5-FU) investigated (in vitro
and in vivo) for drug
permeation enhancement
across the stratum corneum of
the skin.

• Optimized elastic 5-FU loaded liposomes
showed higher drug permeation flux
(89.74 ± 8.5 µg/cm2/h2) when compared
with the drug solution 5-FU
(8.958 ± 6.9 µg/cm2/h2) and the liposome
(36.80 ± 6.4µg/cm2/h2) alone

• Drug deposition of the optimized elastic
5-FU loaded liposomes was approximately
three-fold higher in comparison with the
5-FU drug solution

• In vivo analysis showed that the optimized
elastic 5-FU loaded liposomes enhanced
drug permeation without generating skin
structure transformation

[131]

Uptake of
α-melanocyte-stimulating
hormone (α-MSH)-conjugated
liposomes in melanoma cells
(B16-F10)

• Increased uptake in melanoma cells when
compared to conventional liposomes

• Camptothecin encapsulated by
α-MSH-conjugated liposomes resulted in a
sustained and controlled release of
camptothecin

[132]

Cytotoxicity of co-delivered
curcumin encapsulated
cationic liposomes complexed
with STAT3 siRNA against
SCC cells

• Significant reduction in SCC cell growth
when compared to the treatment of cells
with curcumin and STAT3 siRNA alone

[133]

Solid lipid nanoparticles
(SLNs)

Cytotoxicity of
doxorubicin-loaded solid lipid
nanoparticles against B16-F10
cells and melanoma-induced
Balb/C mice

• Increased cytotoxicity against B16F10 cells
and melanoma-induced Balb/C mice when
compared to doxorubicin alone

[134]

5-FU loaded SLNs for the
treatment of skin carcinoma
in vivo

• Higher permeation of 5-FU loaded SLNs
(269.37 ± 10.92µg/cm2) in comparison
with the drug solution 5-FU
(122 ± 3.09µg/cm2)

• Mice administered with 5-FU loaded SLNs
demonstrated a decrease in angiogenesis, a
decline in inflammatory reactions, and
reduced keratosis

[135]

Microneedles

Treatment of BCC using the
intradermal delivery of an
immunomodulator (5% w/v
imiquimod cream), using an
oscillating microneedle device
(Dermapen). Dermal
permeation analysis was
performed on the
cross-sections of porcine skin

• Significant increase in transdermal
permeation of 5% w/v imiquimod cream
when the cream was first applied to the
skin, followed by the Dermapen application

• Limited dermal permeation observed with
the application of 5% w/v imiquimod
cream alone

• The enhanced dermal permeation was due
to an intradermal depot that was generated,
which lasted for 24 h

[136]
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Table 7. Cont.

Nano-Carrier Study Outcome Reference

Hydrogel

Investigation of injectable
intra-tumoral 5-FU hydrogel
to enhance efficacy and
decrease systemic toxicity
associated with 5-FU
observed in cancer patients

• A single injection of 5-FU loaded hydrogel
exhibited enhanced tumor growth
suppression when compared with the drug
solution or hydrogel alone

• 5-FU loaded hydrogel showed a longer
retention time (>18 days) within the tumors

• Low biodistribution of 5-FU into other
organs was maintained

[137]

Ethosomes

A complex of
CUR-Eth-PEI/DOX-Eth-SC
(cytotoxic drug and a
chemosensitizer) was
evaluated (in vitro and
in vivo) for potential
anticancer activity on B16-F10
cells. Two modified
ethosomes were synthesized,
namely polyethyleneimine
(PEI)-modified ethosomes
(Eth-PEI) and sodium cholate
(SC)-modified ethosomes
(Eth-SC). These modified
ethosomes functioned as
carriers for doxorubicin (DOX)
and curcumin (CUR)

• CUR-Eth-PEI/DOX-Eth-SC with a ratio of
(7:3) exhibited enhanced antitumor activity
in the treatment of melanoma

[138]

13. Potential Therapeutic Effects of Phytochemical/Medicinal Plants against KC

Due to the considerable incline of KC cases worldwide, researchers have a vested
interest in developing novel treatment options [139]. The fundamental purpose of an
anticancer therapeutic strategy is the ability to selectivity target malignant tumor cells,
that either inhibits their growth or induces cell death [140]. However, the vast majority of
KC treatments that are currently available, also have a detrimental effect on non-tumors
cells. In an effort to create cutting-edge, more effective and non-toxic anticancer treatments,
researchers have explored the possibility of isolating compounds from natural sources,
more specifically phytochemicals [141].

Studies have reported that phytochemicals and medicinal plants exhibit potential anti-
cancer properties. From the year 1940 to 2014, approximately 50% of approved anticancer
therapeutic agents were either obtained or derived from natural sources [142]. Several
medicinal plants, and their bioactive compounds, have been investigated for potential
anticancer activity. These have been tested against skin tumors, in both in vitro and in vivo
studies, and have exhibited noteworthy activity by arresting the development and prolifer-
ation of skin tumor cells [143]. Phytochemicals have the potential to alter various molecular
processes associated with the development of skin cancer and subsequently inhibit tumor
proliferation [144]. Some of the reported studies on medicinal plants and phytochemicals
have been summarized in Table 8. Additionally, emerging KC treatments that are currently
in the clinical trial phase have been summarized in Table 9.



Molecules 2021, 26, 1979 18 of 29

Table 8. The therapeutic effect of medicinal plants and phytochemicals against keratinocyte carcinoma.

Phytochemical Source/Origin Treatment Outcome References

Hypericin Hypericum perforatum L. (St John’s Wort)

Hypericin directly injected into affected tissue, 3–5 times
weekly (SCC (40–100 µg) and BCC (40–200 µg)), showed
no necrosis of surrounding tissue and was successful as a
targeted delivery system

Combination of hypericin and PDT resulted in pain
and burning [145,146]

Effect of 0.07% hypericin on BCC, AK, and Bowen’s
disease, followed by irradiation (weekly, for 6 weeks)

All patients experiences pain and burning after
irradiation, 50% complete clinical remission of AKs,
11% histological clearance of sBCC, and 80%
histological clearance of Bowen’s disease

[147]

Mice injected with SCC cells to develop tumors (3–15 mm
diameter) were injected with 10 µL of DMSO containing
10 µg hypericin per gram of tumor and irradiated after
24 h

Hypericin retained in tumors for a prolonged period
of time was observed to be more effective in small
sized tumors (<400 mm3), whereas larger tumor
displayed partial ablation followed by recurrence

[148]

Black salve (escharotic agent)
Sanguinaria canadensis L. (bloodroot)

Ointment containing 300 mg bloodroot, galangal, sheep
sorrel, and red clover resolved suspected melanoma
neoplasm of the left naris (63 year old male)

Complete loss of the left naris and severe
tissue damage [149]

Application on BCC located on the nasal cavity (83 year
old male) Complete loss of nasal ala [150]

Application of black and “yellow” salve on micronodular
BCC located on right nasal sidewall (65 year old female)

Patient discontinued use due to pain and tenderness,
formation of 12 mm ulceration with eschar formation.
Secondary intention healing treated the wound

[151]

Application on 5 mm BCC lesion (51 year old male)
Agonizing pain and formation of large eschar and
formation of scar. Biopsy after 12-months showed no
presence of BCC

[152]

Application on BCC located in the right-hand side of the
neck (49 year old male)

Development of triangular keloidal scar that had to
be surgically removed and repaired. After
reconstruction, no tumor was identified

[153]

Application to SCC on the right lower leg (55 year
old woman)

Formation of a thick escharotic plaque, which
dislodged revealing normal granulation tissue.
Histological examination revealed no residual SCC

[154]
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Table 8. Cont.

Phytochemical Source/Origin Treatment Outcome References

Application of black salve (containing zinc chloride) on
BCC on the left cheek of the face

Formation of a thick escharotic plaque, which
dislodged revealing normal granulation tissue.
Histological examination of the plaque revealed
acute and subacute inflammation, necrosis and BCC
in the dermis; however, scar did not have any BCC

[154]

Ursolic acid- UA (pentacyclic
triterpene)

Several plant species such as Ocimum
basilicum L. (basil), Salvia Rosmarinus

Schleid. (rosemary), apple peels (Malus
pumila Mill.), and berries

Effect against B16 mouse melanoma cells after
24 h exposure

UA showed a fifty percent inhibitory concentration of
7.7 µM. Cytotoxicity attributed to potential inhibition
of lipoxygenase and cyclooxygenase and
cytostatic activity.

[155]

Effect on Ca3/7 (mouse SCC) and MT1/2 (mouse skin
papilloma) skin cancer cells

Induced cell death in both cell lines through
activation of AMP-activated protein kinase (AMPK)
and peroxisome proliferator activated receptor-α
(PPAR-α)

[156]

Luteolin (flavonoid)
Several plant species such as Daucus

carota L. (carrots), Capsicum annuum L.
(peppers), Petroselinum crispum (Mill.)
Fuss (parsley), and Brassica oleraea L.

(broccoli)

Effect on B16F10 murine melanoma cells

Inhibited tumor progression by inhibiting
hypoxia-induced epithelial-mesenchymal transition
in melanoma cells through upregulation of
β3 integrin

[157]

Effect on B16 murine melanoma cells
Induced apoptosis in melanoma cells through
ERK1/2 signaling attenuation, upregulation of Bax,
and down-regulation of Bcl-2

[158,159]

Effect in normal human keratinocytes (NHK) after
exposure to UVB radiation

Enhanced survival rate of NHK through inhibition of
the mitochondrial intrinsic apoptotic pathway and
inhibition of inflammatory mediators IL-1α and
prostaglandin-E2. However, did not inhibit
malignant keratinocytes

[160]

Resveratrol-RV (polyphenol)
Commonly found in Vitis vinifera L.

(grapes), Morus spp (mulberries), and
Arachis hypogaeae L. (peanuts)

Photo-chemopreventive activity of RV (25 µmol/0.2 mL
acetone per mouse) in hairless mice induced with
UVB radiation
Topical application in hairless mice induced with
UVB radiation

Inhibition of skin thickness growth and ear
punch weight
Topical application inhibited increased ornithine
decarboxylase (ODC) enzyme activity and protein
expression. Increased levels of ODC activity are
linked to an increase in neoplastic growth

[161]
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Table 8. Cont.

Phytochemical Source/Origin Treatment Outcome References

Effect of RV (1–50 µM for 24 h) on human epidermoid
carcinoma (A431) cells

Inhibited cell growth, induced apoptosis, and cell
cycle arrest at the G1 phase through the activation of
the cyclin-dependent kinase inhibitor 1 (WAF1/p21),
which in turn induced cyclin D1/D2-cdk6, cyclin
D1/D2-cdk4, and cyclin E-cdk2 complex inhibition

[162]

Capsaicin (capsaicinoid) Major compound present in plants
belonging to the Capsicum genus

Effect on parental SCC cells

Induced apoptosis due to mitochondrial respiration
suppression, antiproliferative activity potentially due
to production of hydroperoxide and/or the inhibition
of enzymatic processes within the electron
transport chain

[163]

Topical application of alcoholic Capsicum extract
(containing capsaicin) on BCC and SCC lesions

Topical application reduced the size of the lesion and
the lesions disappeared after a certain period of time

[164]

Ethanolic fruit extract of Combretum molle

Effect of extract against A431 cells

Antiproliferative activity with IC50 value of
23.2 ± 0.8 µg/mL [165]

Methanolic leaf extract of Calystegia sepium

Antiproliferative activity with IC50 value of 24.71
µg/mL; induced cell cycle arrest at G0/G1 stage and
induced the expression of nuclear factor kappa B1
(NF-κβ) and apoptotic peptidase activating factor 1
(APAF1)

[166]

Ethanolic aerial part extract of Euclea crispa subsp. crispa Antiproliferative activity with IC50 value of
41.8 ± 0.4 µg/mL [165]

Ethanolic leaf and stem extract of Helichrysum odoratissimum
Antiproliferative activity with IC50 value of
15.5 ± 0.2 µg/mL; induced apoptosis and increased
IL-12 and inhibited IL-8 levels in U937 cells

[167]

Ethanolic aerial part extract of Sideroxylon inerme Antiproliferative activity with IC50 value of
46.8 ± 2.0 µg/mL [165]

Ethanolic leaf extract of Syzygium jambos
Antiproliferative activity with IC50 value of
54.70 ± 0.60 µg/mL; inhibited cyclooxygenase-2
enzyme with IC50 value 3.79 ± 0.90 µg/mL

[168]

Ethanolic leaf extract of Vanilla planifolia Antiproliferative activity with IC50 value of
31.2 µg/mL; induced DNA fragmentation [169]

Methanolic aerial part extract of Verbascum nigrum

Antiproliferative activity with IC50 value of
81.92 µg/mL; however, fraction VNF4 (consisting of
ilwensisaponins A and C, songarosaponins A and B)
showed an IC50 of 12.27 µg/mL

[170]
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Table 9. Plant derived bioactives and their biological effect on keratinocyte carcinoma.

Name/Bioative Ingredient Source/Origin Treatment Outcome References

BCC

10% Sinecatechins ointment
(Veregen®)/Epigallocatechin-gallate

(EGCG)

Camellia sinensis L. leaf extract containing
catechins (>85%) Application to sBCC (39 patients)

• No significant difference between placebo and
treatment group

• Caused erythema, edema, erosions, crusts, and itching
• Insufficient uptake of active by sBCC cells in current

formulation; different formulation should be considered
[171]

SCC

0.5% Curcumin
of 50% ethanolic turmeric extract in

vaseline ointment

Polyphenolic present in rhizomes of
Curcuma longa L.

Application to ulcerated tumor (62
patients)

• Foul odour of wound reduced by >90% and itching
was reduced

• Pain (potentially due to anti-inflammatory activity of
curcumin), lesion thickness, and exudates from ulcer
was reduced in 50%, 10%, and 70% of cases respectively

• One patient reported severe itching (possible due to
curcumin allergy)

• Ethanol used to prepare the extract caused irritation,
not present in an ointment

• In pre-clinical trials, xenografted mice, with SRB12-p9
SCC, showed significant suppression of tumor growth
when treated with oral, topical, or combined

[172,173]

EGCG (6.5 µmol) once daily for 5 days a
week (18 weeks in total)

Major catechin found in Camellia sinensis
L.

Application to SCC tumors developed in
female hairless SKH-1 mice irradiated
with UVB for 20 weeks (twice weekly)

• Reduced the number of non-malignant and SCC per
mouse by 55% and 66%, respectively

• Tumor volumes reduced; however, SCC tumor size did
not reduce

[174]

Caffeine (6.2 µmol) once daily for 5 days
a week (18 weeks in total) Methylxanthine alkaloid found in coffee

• Reduced the number of non-malignant and SCC per
mouse by 44% and 72%, respectively

• Tumor volumes reduced, however SCC tumor size did
not reduce

[174]

Betulin-based Oleogel-S10 Pentacyclic triterpenes isolated from
Betula pubescens Ehrh.

Application to patients with actinic
keratosis (157 patients)

• Once and twice a day application resulted in complete
tumor clearance in 3.9% and 6.8% of
patients, respectively

• Not significant clearance when compared to placebo
[175]
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Often, public perception is that herbal or medicinal plant treatments are deemed safe
and effective, as is the case with the use of black salve. Black salve has not undergone any
clinical trials in order to evaluate its safety or efficacy against skin cancer and is available
to purchase over-the-counter or online. A review by Lim summarizes numerous case
reports on the use of black salve for skin neoplasms; however, almost each of the cases
reported side effects that included severe tissue necrosis and damage as well as scarring
ulceration [176]. A major alkaloid compound present within bloodroot is sanguinarine,
which has been linked to the potential carcinogenic effect of bloodroot; however, due to
contradictory in vitro and in vivo results, the carcinogenic classification of sanguinarine
has not yet been established [177].

Furthermore, there is a lack of quality control and quantification or standardization of
the active ingredients within these “home” remedies. Black salve has been largely linked
to the occurrence of facial deformities, which needs to be corrected through cosmetic
reconstruction, which emphasizes the need for the correct safety and efficacy trials to be
conducted before these types of remedies are made available on the market for use.

Similarly, in a pilot trial, betulin oleogel-S10 was initially shown to be effective in
treating AK, with a clearance rate of 64%; however, this was a small trial and did not
include the use of a placebo control [178]. Consequently, a larger study on the use of betulin
oleogel-S10 was conducted by Pflugfelder et al. [175], including a placebo control group,
which concluded that the topical use of betulin-oleaogel-S10 did not significantly clear AK
when compared to the placebo group.

Camptothecin, an alkaloid isolated from Camptotheca acuminata Decne. is a cytotoxic
compound that inhibits DNA topoisomerase I [179]; however, due to its insolubility in
biocompatible solvents, it remains a challenge to effectively administer it intravenously.
However, in a study by Lin et al. [132], α-MSH liposomes that encapsulate camptothecin
showed an enhanced antiproliferative activity against melanoma cells, when compared to
camptothecin alone, due to the targeted delivery and controlled release of camptothecin,
which emphasizes the importance of using appropriate drug delivery systems. Similarly, a
study by Kessels et al. [171] showed that a 10% sinecatechin ointment, which contained
EGCG, was not effective in treating superficial BCC; however, it was concluded that this
may be due to a lack of EGCG uptake by the cancerous cells and that using liposomes as a
drug delivery mechanism may enhance the uptake and effectiveness of EGCG.

14. Conclusions

The number of KC cases is increasing at an alarming rate globally. Moreover, statistics
revealed that South Africa is one of the leading countries in the world, with the highest rates
of skin cancer cases. Although the current topical treatments available for KC have shown
promising results, they have also been associated with numerous adverse effects. Therefore,
the discovery, development, and treatment of KC using plants and their natural products
are becoming increasingly sort after. Natural plant compounds, such as polyphenolics
and alkaloids, have in numerous studies demonstrated increased antiproliferative and
anticancer activity. Studies have shown that these natural compounds are capable of
functioning both independently and interdependently. Various reports further indicated the
emergence of nanocarrier and transdermal delivery systems and the numerous advantages
they offer, specifically to overcome current challenges faced in cancer treatment, such as
bioavailability, targeted delivery, and systemic toxicity. However, it is important to note
that case studies alone are not considered conclusive to determine or evaluate the safety
and efficacy of a test substance such as a plant extract or natural product. Large clinical
trials are required that include a placebo control group and different skin types in order to
determine the effectiveness of a test substance.

Although there have been numerous reports on the antiproliferative activity of plant
extracts and their natural products on non-melanoma skin cancer cell lines, there have been
relatively few studies that have evaluated the potential of these plants/natural products
in clinical trials. Additionally, although some plant extracts or natural products may not
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have shown significant in vitro activity or anticancer activity in animal models when used
alone, a suitable drug delivery system may provide for enhanced delivery and efficacy and
therefore should further be explored.

The topical application of EGCG and caffeine, using different transdermal delivery
systems, should be considered for further evaluation, as this may result in increased uptake
of phytochemicals by the cancerous cells. In addition, the use of capsaicin against skin
cancer should be further assessed, as it showed promising results in two patients but has
not been assessed in larger clinical trials. The potential of synthesizing capsaicin derivatives
may provide a source of novel compounds with decreased irritant effects and increased
efficacy. Ursolic acid, which has extensively been studied for its activity against melanoma,
has not been well documented for its activity against keratinocyte carcinomas and therefore
should be considered for further assessment.

It is, however, important to note that upon identification of a plant extract or com-
pound showing significant activity, the mechanism of action, as well as the efficacy and
toxicity potential of the identified extract or compounds requires further evaluation using
clinical trials, which includes the pharmacodynamics and pharmacokinetic properties of
the plant extract/compound.
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