Supplementary Materials

Recognition of Hydrophilic Cyclic Compounds by a Water-soluble Cavitand

Yun-huiWan¹, Yu-jie Zhu¹, Julius Rebek, Jr.², Yang Yu^{*1}

- ¹ Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
- ² Skaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA

* Correspondence: *yangyu2017@shu.edu.cn*

Content

¹ H NMR, ¹³ C NMR spectra of the cavitands	1
Mass (HR) spectra of cavitands	5
¹ H NMR spectra of the host-guest complex formed between cavitand 1	l with different
guests	8

¹H NMR, ¹³C NMR spectra of the cavitands

Fig. S1 ¹H NMR spectrum of cavitand 3 in chloroform-*d* at rt

Fig. S2 ${}^{13}C$ NMR spectrum of cavitand 3 in chloroform- $d/DMSO-d_6$ (vol/vol = 9 :1) at rt

Fig. S3 ¹H NMR spectrum of cavitand 2 in chloroform-d at rt

Fig. S4 ¹H NMR spectrum of cavitand 2 in chloroform-d/DMSO-d₆ (vol/vol = 9:1) at rt

Fig. S5 13 C NMR spectrum of cavitand 2 in chloroform-*d*/DMSO-*d*₆ (vol/vol = 9 :1) at rt

Fig. S6 ¹H NMR spectrum of cavitand 1 in DMSO-d₆ at rt, the cavitand display vase form exclusively

Fig. S7 ¹H NMR spectrum of cavitand 1 in D₂O at rt, the cavitand display kite form exclusively

Fig. S8 ¹³C NMR spectrum of cavitand 1 in DMSO-d₆ at rt

Mass (HR) spectra of cavitands

Fig. S9 Mass spectrum of cavitand 2

Fig. S10 Mass spectrum of cavitand 3

Fig. S11 Mass spectrum of cavitand 1

¹H NMR spectra of the host-guest complex formed between cavitand 1 with different

Fig. S12 ¹H NMR spectrum of the complex formed between cavitand 1 and excess of cyclohexane in D₂O

Fig. S13 ¹H NMR spectrum of the complex formed between cavitand 1 and excess of methylcyclohexane

Fig. S14 ¹H NMR spectrum of the complex formed between cavitand 1 and excess of cyclohexanol in

Fig. S15 ^{1}H NMR spectrum of the complex formed between cavitand 1 and excess of cyclohexylamine in

Fig. S16 $^{\mathrm{1}}\mathrm{H}$ NMR spectrum of the complex formed between cavitand 1 and excess of

cyclohexanecarboxylic acid in D2O

Fig. S17 ¹H NMR spectra of the complexes formed between cavitand **1**, 1mmol + from bottom to top, excess of methylcyclohexane, cyclohexanecarboxylic acid, and equimolar methylcyclohexane + cyclohexanecarboxylic acid (1:1) mixture.

Fig. S18 ¹H NMR spectra of the complexes formed between cavitand **1**, 1mmol + from bottom to top, excess of cyclohexane, cyclohexanol, and equimolar cyclohexane + cyclohexanol (1:1) mixture.

Fig. S19 ¹H NMR spectra of the complexes formed between cavitand **1**, 1mmol + from bottom to top, excess of cyclohexane, cyclohexylamine, and equimolar cyclohexane + cyclohexylamine (1:1) mixture

Fig. S20 ¹H NMR spectrum of the complex formed between cavitand 1 and excess of cyclohexanone in D₂O

Fig. S22 $^1\!\mathrm{H}$ NMR spectrum of the complex formed between cavitand 1 and excess of thiane in D2O

Fig. S23 $^1\!\mathrm{H}$ NMR spectrum of the complex formed between cavitand 1 and excess of trans-1,2-diaminocyclohexane in D2O

Fig. S24 $^1\!\mathrm{H}$ NMR spectrum of the complex formed between cavitand 1 and excess of trans-1,2-Cyclohexanedicarboxylic acid in D2O

Fig. S26 ¹H NMR spectra of the complexes formed between cavitand **1**, 1mmol + from bottom to top, exc ess of admantane, 1-adamantanol, amantadine, 1-adamantanecarboxylic acid

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 -4.5 PPM

Fig. S27 Comparative ¹H NMR spectra of the host-guest complex formed between equimolar oxaliplatin and cavitand **1** in D₂O, after stand for from bottom to top 1h, 12 h, 24 h, 4 days ,7 days and 10 days