Supporting Information

for

Isomerization of 5-(2*H*-Azirin-2-yl)oxazoles: an Atom-Economic Approach to 4*H*-Pyrrolo[2,3-*d*]oxazoles

Timur O. Zanakhov, Ekaterina E. Galenko, Mariya A. Kryukova, Mikhail S. Novikov, Alexander A. Khlebnikov*

St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia

E-mail: a.khlebnikov@spbu.ru

Table of Contents:

X-Ray Diffraction Experiments	S2
NMR Spectra of Compounds 2	S6
NMR Spectra of Compounds 3	S59
NMR Spectra of Compounds 4	S110
Computational Details	S116

X-RAY DIFFRACTION EXPERIMENTS

Crystal structure of **3d** was determined by single crystal X-ray diffraction analysis. Suitable crystals were selected and fixed on micro-mounts and the diffraction data were collected on a HyPix diffractometer. The crystal of **3d** was measured at a temperature of 100(2) K, using monochromated CuK α radiation. The unit cell parameters and refinement characteristics of the crystal structure of **3d** is given below. Using Olex2 [1], the structures were solved with the ShelXT [2] structure solution program using Intrinsic Phasing and refined with the ShelXL [3] refinement package using Least Squares minimization.

References

1. Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J; Howard, J.A.K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339.

2. Sheldrick, G.M. Acta Cryst. 2015, A71, 3.

3. Sheldrick, G.M.Acta Cryst. 2015, C71, 3.

2-Ethyl-5-phenyl-4*H*-pyrrolo[2,3-*d*]oxazole

Single crystal of **3d** was obtained by slow evaporation of toluene solution at room temperature. (CCDC 2064882).

Molecular structure of compound **3d**, displacement parameters are drawn at 50% probability level.

•	
Identification code	3d (17505_TZ-19)
Empirical formula	$C_{13}H_{12}N_2O$
Formula weight	212.25
Temperature/K	100.00(10)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	13.1494(3)
b/Å	14.4153(3)
c/Å	5.49770(10)
α/°	90
β/°	90.628(2)
γ/°	90
Volume/Å ³	1042.04(4)
Ζ	4
$\rho_{calc}g/cm^3$	1.353
μ/mm^{-1}	0.701
F(000)	448.0
Crystal size/mm ³	0.15 imes 0.13 imes 0.1
Radiation	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	6.722 to 139.978
Index ranges	$-16 \le h \le 16, -17 \le k \le 17, -6 \le l \le 6$
Reflections collected	10049
Independent reflections	1920 [$R_{int} = 0.0454$, $R_{sigma} = 0.0364$]
Data/restraints/parameters	1920/0/150
Goodness-of-fit on F ²	1.059
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0392, wR_2 = 0.1004$
Final R indexes [all data]	$R_1 = 0.0478, wR_2 = 0.1053$
Largest diff. peak/hole / e Å ⁻³	0.14/-0.22

Table S1. Crystal data and structure refinement for 3d.

Table S2. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 3d. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

tensor.					
Atom	x	у	z	U(eq)	
O ₁	3380.4(7)	3510.6(6)	5323.8(16)	21.7(2)	
N ₂	5667.9(8)	4266.0(7)	7570.2(19)	20.5(3)	
N ₁	3772.9(8)	4400.5(7)	8615(2)	21.5(3)	
C ₄	6091.1(10)	3807.2(8)	5595(2)	18.8(3)	
C ₅	4641.1(10)	4137.9(9)	7412(2)	19.5(3)	
C ₂	4427.9(10)	3607.2(9)	5434(2)	20.1(3)	
C ₁	3053.3(10)	4011.7(8)	7310(2)	20.2(3)	
C ₁₁	7865.4(10)	4218.7(9)	6870(2)	21.6(3)	
C ₈	8636.4(10)	3378.9(9)	2752(2)	23.5(3)	
C ₆	7188.6(10)	3810.0(8)	5205(2)	19.1(3)	
C ₁₂	1941.3(10)	4029.3(9)	7739(2)	21.5(3)	
C ₃	5323.5(10)	3381.4(9)	4217(2)	20.8(3)	
C ₉	9298.6(10)	3787.0(9)	4427(3)	23.7(3)	
C ₇	7594.8(10)	3393.7(8)	3121(2)	20.9(3)	
C ₁₀	8904.9(10)	4207.6(9)	6486(2)	24.0(3)	
C ₁₃	1629.4(11)	3416.9(10)	9864(3)	27.8(3)	

displacement factor exponent takes the form: $-2\pi^{-1}[h^{-}a^{+}]_{11}+2hka^{+}b^{+}U_{12}+]$.						
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
O ₁	20.2(5)	24.0(5)	20.7(5)	-3.1(4)	-1.3(4)	-1.9(3)
N_2	19.9(5)	22.2(5)	19.4(5)	-4.5(4)	-1.3(4)	-1.3(4)
N_1	20.8(6)	22.2(5)	21.6(5)	-1.8(4)	-1.3(4)	-0.3(4)
C ₄	23.0(7)	15.4(6)	18.0(6)	0.7(5)	1.2(5)	0.6(5)
C ₅	20.3(6)	19.6(6)	18.5(6)	-1.4(5)	-0.7(5)	-0.1(5)
C ₂	19.8(6)	20.2(6)	20.2(6)	0.3(5)	-2.5(5)	-1.9(5)
C ₁	23.7(7)	18.3(6)	18.7(6)	0.6(5)	-1.3(5)	0.6(5)
C ₁₁	25.9(7)	20.4(6)	18.6(6)	-0.7(5)	0.0(5)	-0.2(5)
C ₈	26.8(7)	21.1(6)	22.6(6)	0.5(5)	1.9(5)	2.5(5)
C ₆	22.7(7)	15.3(6)	19.3(6)	3.2(5)	-0.9(5)	-0.4(5)
C ₁₂	20.8(6)	21.1(6)	22.4(6)	-1.5(5)	-3.1(5)	0.2(5)
C ₃	23.2(6)	20.9(6)	18.3(6)	-1.5(5)	-0.7(5)	-0.9(5)
C ₉	20.3(6)	23.6(6)	27.1(7)	4.7(5)	0.5(5)	1.5(5)
C ₇	24.9(7)	18.1(6)	19.8(6)	0.2(5)	-1.7(5)	0.0(5)
C ₁₀	24.1(7)	24.5(6)	23.3(7)	1.4(5)	-4.0(5)	-2.4(5)
C ₁₃	26.5(7)	28.9(7)	27.9(7)	2.4(6)	1.5(6)	1.0(6)

Table S3. Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 3d. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Table S4. Bond Lengths for 3d.

Atom	Atom	Length/Å
O ₁	C_2	1.3852(15)
O ₁	C_1	1.3816(16)
N ₂	C_4	1.3926(17)
N_2	C_5	1.3647(16)
N ₁	C_5	1.3787(18)
N_1	C_1	1.3074(16)
C_4	C ₆	1.4614(18)
C ₄	C ₃	1.3973(17)
C ₅	C_2	1.3562(18)

Atom	Atom	Length/Å
C ₂	C ₃	1.3990(19)
C1	C ₁₂	1.4839(19)
C ₁₁	C ₆	1.3995(17)
C ₁₁	C ₁₀	1.3855(19)
C_8	C ₉	1.3910(18)
C_8	C_7	1.3870(19)
C ₆	C ₇	1.4041(19)
C ₁₂	C ₁₃	1.5243(19)
C ₉	C_{10}	1.389(2)

Atom	Atom	Atom	Angle/°		Atom	Atom	Atom
C ₁	O ₁	C_2	103.35(9)		N_1	C_1	O ₁
C ₅	N ₂	C ₄	106.82(10)		N_1	C ₁	C ₁₂
C1	N ₁	C ₅	102.53(11)		C ₁₀	C ₁₁	C ₆
N_2	C_4	C ₆	121.11(11)		C_7	C_8	C ₉
N ₂	C ₄	C ₃	109.81(11)		C ₁₁	C ₆	C4
C ₃	C ₄	C ₆	129.07(12)		C ₁₁	C ₆	C ₇
N ₂	C ₅	N ₁	139.12(11)		C ₇	C ₆	C4
C ₂	C ₅	N ₂	108.85(12)		C1	C ₁₂	C ₁₃
C ₂	C ₅	N ₁	112.00(11)		C_4	C ₃	C ₂
O ₁	C ₂	C ₃	142.90(11)		C ₁₀	C ₉	C ₈
C ₅	C ₂	O ₁	106.76(12)		C ₈	C ₇	C ₆
C ₅	C ₂	C ₃	110.30(11)		C ₁₁	C ₁₀	C ₉
O ₁	C ₁	C ₁₂	116.76(10)	_			

Table S5. Bond Angles for 3d.

Table S6. Hydrogen Atom Coordinates $(\text{\AA} \times 10^4)$ and Isotropic Displacement Parameters $(\text{\AA}^2 \times 10^3)$ for 3d.

Angle/°

115.35(12) 127.87(12) 121.13(13) 120.58(13) 121.81(12) 117.95(12) 120.24(11) 112.70(10) 104.20(11) 119.20(12) 120.73(12) 120.41(12)

Atom	x	y	Z	U(eq)
H ₂	5992	4571	8677	25
H ₁₁	7613	4503	8257	26
H ₈	8894	3094	1373	28
H _{12A}	1588	3822	6278	26
H _{12B}	1732	4663	8060	26
H ₉	9997	3778	4172	28
H ₇	7161	3125	1975	25
H ₁₀	9342	4484	7614	29
H _{13A}	1838	2790	9563	42
H _{13B}	904	3438	10036	42
H _{13C}	1949	3638	11332	42
H ₃	5427(12)	3017(12)	2730(30)	31(4)

2-Methyl-5-(3-phenyl-2*H*-azirin-2-yl)oxazole 2a, ¹H NMR, 400 MHz, CDCl₃

5-(3-(Adamantan-1-yl)-2*H*-azirin-2-yl)-2-methyloxazole 2c, ¹H NMR, 400 MHz, CDCl₃

5-(3-(Adamantan-1-yl)-2*H*-azirin-2-yl)-2-methyloxazole 2c, ¹³C{¹H} NMR, 100 MHz, CDCl₃

2-Ethyl-5-(3-phenyl-2*H*-azirin-2-yl)oxazole 2d, ¹H NMR, 400 MHz, CDCl₃

2-Benzyl-5-(3-(4-bromophenyl)-2*H*-azirin-2-yl)oxazole 2g, ¹H NMR, 400 MHz, CDCl₃

2-Benzyl-5-(3-(4-bromophenyl)-2*H*-azirin-2-yl)oxazole 2g, ¹³C{¹H} NMR, 100 MHz, CDCl₃

5-(3-(4-Fluorophenyl)-2*H*-azirin-2-yl)-2-phenyloxazole 2i, ¹³C{¹H} NMR, 100 MHz, CDCl₃

5-(3-(tert-Butyl)-2H-azirin-2-yl)-2-phenyloxazole 2j, ¹H NMR, 400 MHz, CDCl₃

5-(3-(Adamantan-1-yl)-2*H*-azirin-2-yl)-2-phenyloxazole 2k, ¹H NMR, 400 MHz, CDCl₃

5-(3-(Adamantan-1-yl)-2*H*-azirin-2-yl)-2-phenyloxazole 2k, ¹³C{¹H} NMR, 100 MHz, CDCl₃

5-(3-(4-Methoxyphenyl)-2*H*-azirin-2-yl)-2-(*p*-tolyl)oxazole 2l, ¹³C{¹H} NMR, 100 MHz, CDCl₃

5-(3-(4-Chlorophenyl)-2*H*-azirin-2-yl)-2-(*p*-tolyl)oxazole 2m, ¹H NMR, 400 MHz, CDCl₃

5-(3-(4-Chlorophenyl)-2*H*-azirin-2-yl)-2-(*p*-tolyl)oxazole 2m, ¹³C{¹H} NMR, 100 MHz, CDCl₃

5-(3-(Adamantan-1-yl)-2*H*-azirin-2-yl)-2-(*p*-tolyl)oxazole 2n, ¹³C{¹H} NMR, 100 MHz, CDCl₃

2-(4-Bromophenyl)-5-(3-phenyl-2*H*-azirin-2-yl)oxazole 20, ¹³C{¹H} NMR, 100 MHz, CDCl₃

(E)-3-(5-(3-phenyl-2*H*-azirin-2-yl)oxazol-2-yl)acrylonitrile 2q, ¹H NMR, 400 MHz, CDCl₃

(E)-3-(5-(3-phenyl-2*H*-azirin-2-yl)oxazol-2-yl)acrylonitrile 2q, ¹³C{¹H} NMR, 100 MHz, CDCl₃

(E)-3-(5-(3-phenyl-2H-azirin-2-yl)oxazol-2-yl)acrylonitrile 2q, DEPT, 100 MHz, CDCl₃

5-(3-Phenyl-2*H*-azirin-2-yl)-2-vinyloxazole 2r, ¹H NMR, 400 MHz, CDCl₃

5-(3-Phenyl-2*H*-azirin-2-yl)-2-vinyloxazole 2r, ¹³C{¹H} NMR, 100 MHz, CDCl₃

2-(Chloromethyl)-5-(3-phenyl-2*H*-azirin-2-yl)oxazole 2s, ¹H NMR, 400 MHz, CDCl₃

2-(Chloromethyl)-5-(3-phenyl-2*H*-azirin-2-yl)oxazole 2s, ¹³C{¹H} NMR, 100 MHz, CDCl₃

2-(Chloromethyl)-5-(3-phenyl-2H-azirin-2-yl)oxazole 2s, DEPT, 100 MHz, CDCl₃

2-Methyl-5-phenyl-4*H*-pyrrolo[2,3-*d*]oxazole 3a, ¹H NMR, 400 MHz, DMSO-d₆

2-Methyl-5-phenyl-4*H*-pyrrolo[2,3-*d*]oxazole 3a, ¹³C{¹H} NMR, 100 MHz, DMSO-d₆

2-Methyl-5-phenyl-4*H*-pyrrolo[2,3-*d*]oxazole 3a, ¹³C{¹H} NMR, 100 MHz, DMSO-d₆

2-Methyl-5-(4-bromophenyl)-4*H*-pyrrolo[2,3-*d*]oxazole 3b, ¹³C{¹H} NMR, 100 MHz, DMSO-d₆

5-(Amantan-1-yl)-2-methyl-4*H*-pyrrolo[2,3-*d*]oxazole 3c, ¹H NMR, 400 MHz, CDCl₃

5-(Amantan-1-yl)-2-methyl-4H-pyrrolo[2,3-d]oxazole 3c, DEPT, 100 MHz, CDCl₃

2-Ethyl-5-(4-methoxyphenyl)-4*H*-pyrrolo[2,3-*d*]oxazole 3e, ¹³C{¹H} NMR, 100 MHz, DMSO-d₆

2-Benzyl-5-(4-bromophenyl)-4*H*-pyrrolo[2,3-*d*]oxazole 3g, ¹H NMR, 400 MHz, DMSO-d₆

2-Benzyl-5-(4-bromophenyl)-4*H*-pyrrolo[2,3-*d*]oxazole 3g, ¹³C{¹H} NMR, 100 MHz, DMSO-d₆

2,5-Diphenyl-4*H*-pyrrolo[2,3-*d*]oxazole 3h, ¹H NMR, 400 MHz, DMSO-d₆

S81

5-(4-Fluorophenyl)-2-phenyl-4*H*-pyrrolo[2,3-*d*]oxazole 3i, ¹H NMR, 400 MHz, DMSO-d₆

5-(4-Fluorophenyl)-2-phenyl-4*H*-pyrrolo[2,3-*d*]oxazole 3i, ¹³C{¹H} NMR, 100 MHz, DMSO-d₆

5-(Adamantan-1-yl)-2-phenyl-4*H*-pyrrolo[2,3-*d*]oxazole 3k, ¹H NMR, 400 MHz, CDCl₃

5-(Adamantan-1-yl)-2-phenyl-4*H*-pyrrolo[2,3-*d*]oxazole 3k, ¹³C{¹H} NMR, 100 MHz, CDCl₃

5-(4-Methoxyphenyl)-2-(p-tolyl)-4H-pyrrolo[2,3-d]oxazole 3l, ¹³C{¹H} NMR, 100 MHz, DMSO-d₆

5-(Adamantan-1-yl)-2-(p-tolyl)-4H-pyrrolo[2,3-d]oxazole 3n, ¹H NMR, 400 MHz, CDCl₃

5-(Adamantan-1-yl)-2-(p-tolyl)-4H-pyrrolo[2,3-d]oxazole 3n, ¹³C{¹H} NMR, 100 MHz, CDCl₃

5-(Adamantan-1-yl)-2-(p-tolyl)-4H-pyrrolo[2,3-d]oxazole 3n, DEPT, 100 MHz, CDCl₃

2-(4-Bromophenyl)-5-phenyl-4*H*-pyrrolo[2,3-*d*]oxazole 30, ¹³C{¹H} NMR, 100 MHz, DMSO-d₆

(E)-3-(5-phenyl-4H-pyrrolo[2,3-d]oxazol-2-yl)acrylonitrile 3q, ¹H NMR, 400 MHz, DMSO-d₆

(E)-3-(5-phenyl-4H-pyrrolo[2,3-d]oxazol-2-yl)acrylonitrile 3q, DEPT, 100 MHz, DMSO-d₆

(2-Methyl-5-phenyl-4*H*-pyrrolo[2,3-*d*]oxazol-4-yl)(*p*-tolyl)methanone 4a, DEPT, 100 MHz, CDCl₃

(2,5-Diphenyl-4*H*-pyrrolo[2,3-*d*]oxazol-4-yl)(*p*-tolyl)methanone 4b, ¹H NMR, 400 MHz, CDCl₃

(2,5-Diphenyl-4*H*-pyrrolo[2,3-*d*]oxazol-4-yl)(*p*-tolyl)methanone 4b, ¹³C{¹H} NMR, 100 MHz, CDCl₃

Computational Details

All calculations were performed by using the Gaussian 16 suite of quantum chemical programs¹ at Resource center "Computer center of Saint Petersburg State University". Geometry optimizations of molecules were performed with the $B3LYP^2$ - $D3^3$ density functional method and 6-311+G(d,p) basis set using SMD⁴ solvent model. Stationary points on the respective potential-energy surfaces were characterized at the same level of theory by evaluating the corresponding Hessian indices. Careful verification of the unique imaginary frequency for the transition state was carried out to check whether the frequency indeed pertains to the desired reaction coordinate.

Table S7 . B3LYP-D3/6-311+G(d,p),	, SMD solvent mod	lel for r	nesitylene.		
Absolute Energies (au), Cartesian Co	oordinates of station	nary po	ints		
Molecule 2a		TS (2a	a-3'a)		
	\rightarrow		-72	4	
E = -648.157600, H(0K) = -647.964	700,	E = -6	48.098093, H	(0K) = -647.90	7189,
H(298K) = -647.950975,		H (298	3K) = -647.894	304,	
G(298K) = -648.007342 au.		G (298	3K) = -647.946	297 au.	
Imaginary frequency = $0.$	0.0004160	Imagir	hary frequency	=].	0.700((20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.0904160	N C	0.249/300	1.6546120	0.7006630
C = -0.7627840 = -1.0587490	0.2755100	C	0.3900900	0.3193/20	0.2022410
C = -2.0143230 = -0.3428910	0.1330020	C C	2.0327700	0.1309910	0.0920110
H = 5.1126700 = 0.6611060	1 2046020	С Ц	4.331/010	1 4862030	-0.4339900
C = -2.1541080 = 0.0011000	-1.2040020	n C	2 1732320	-1.161/11/0	0.3900210
H = 1.3195260 = 1.3538860	1 2826410	н	1 7549710	-1.1014140	0.3200210
C = -4.4209750 = 1.0383240	-0.0738580	C	4 7504770	-0 5559140	-0 1436270
C -3.0844680 -0.9145570	-0.5506480	C	2.9897260	1.0923190	-0.3110410
H = -2.9632780 = -1.8926500	-1.0022920	H	2.6556480	2.1011900	-0.5218720
C -3.3581690 1.6087090	0.6267700	C	3.8197320	-1.5058100	0.2744160
Н -3.4680830 2.5872810	1.0795240	Н	4.1398670	-2.5136900	0.5147400
Н -5.3585440 1.5754130	-0.1637450	Н	5.7970780	-0.8241310	-0.2355580
C 0.6080140 -1.0764520	0.7602730	С	-0.4067780	-0.4493840	-0.1885790
Н 0.8234210 -1.3749460	1.7820450	Η	-0.1221530	-1.3630500	-0.6993090
C 1.6622730 -0.3068050	0.0977450	С	-1.7210070	-0.0382690	-0.2077040
C 1.7478980 0.4559100	-1.0227330	С	-2.3175580	1.2167410	-0.0229020
O 2.9165040 -0.3274170	0.6663130	0	-2.7626460	-0.9474570	-0.3055850
Н 0.9708640 0.7016630	-1.7284700	Η	-1.8593820	2.1813770	-0.1552950
C 3.6974360 0.4316310	-0.1524690	С	-3.8841690	-0.2270790	-0.0518360
C 5.1232210 0.6007310	0.2183170	С	-5.1699460	-0.9535590	-0.0154440
Н 5.6155430 1.2247970	-0.5265500	Н	-5.9796610	-0.2508830	0.1733810
Н 5.2160890 1.0747180	1.1999280	Н	-5.3445270	-1.4690740	-0.9643860
Н 5.6296190 -0.3676730	0.2650930	Н	-5.1532730	-1.7107710	0.7747020
N 3.0518180 0.9148640	-1.1678360	N	-3.6676860	1.0511570	0.1190920
Molecule 3'a		TS (3'	a-3a)		

|--|

$\mathbf{E} = \mathbf{E}$	-648.169593 , H (0	K) = -647.97506	2.	E = -	648.123341, H (O	K) = -647.933
H (2	(98K) = -647.9624	180.	_,	H (2	98K) = -647.9207	753,
G(2	(98K) = -648.0138	372 au		G (2	98K) = -647.9718	817 au.
Imag	pinary frequency	v = 0.		Imag	inary frequency	y = 1.
N	-0.2914840	-1.0836640	0.4759810	Ν	-0.2952580	-1.1145400
C	0.3791840	0.0078040	0.2309730	С	0.4099750	0.0496000
C	1.8428700	-0.0028290	0.0454990	С	1.8807810	0.0201340
C	3.8919270	-1.2374910	-0.3473810	С	3.9581900	-1.2280980
Н	4.3981240	-2.1803800	-0.5219870	Н	4.4702700	-2.1758150
C	2.5868620	1.1842250	0.0915790	С	2.6312110	1.1968530
Н	2.0925190	2.1308580	0.2743980	Н	2.1286830	2.1456220
C	4.6254890	-0.0494060	-0.2977790	С	4.6937970	-0.0506780
Ċ	2.5135830	-1.2165800	-0.1754530	С	2.5679810	-1.1950710
H	1.9380680	-2.1332230	-0.2113540	Η	2.0008820	-2.1097120
C	3.9701770	1.1597560	-0.0757280	С	4.0231880	1.1611000
H	4.5340860	2.0847190	-0.0313230	Η	4.5841060	2.0812970
Н	5.7013100	-0.0683840	-0.4323080	Η	5.7776640	-0.0782460
C	-0.4575000	1.2360940	0.0911430	С	-0.4188370	1.2008080
H	-0.1371060	2.1929690	-0.2891870	Η	-0.0927080	2.2039050
C	-1.6937770	0.7889880	0.3386580	С	-1.6970970	0.7359090
C	-1.6542970	-0.6429110	0.7357800	С	-1.6573140	-0.6473780
Õ	-2.9646120	1.1198860	-0.0088700	0	-3.0023240	1.0914180
H	-1.7948810	-0.7684980	1.8214340	Η	-0.9476490	-1.0396630
C	-3.5675900	-0.1599350	-0.2057490	С	-3.6814810	-0.1311700
C	-4.9434050	-0.0968410	-0.7468900	С	-5.1545570	-0.0510450
Н	-5.3178000	-1.1054650	-0.9144820	Н	-5.5691120	-1.0568500
Н	-5.5977270	0.4233940	-0.0413730	Η	-5.5780500	0.4687120
Н	-4.9527890	0.4636940	-1.6855200	Η	-5.4356340	0.5074990
N	-2.8668090	-1.1769100	0.0946960	Ν	-2.9411540	-1.1774420

Molecule 3a

E = -648.208497, H(0K) = -648.013163,H (298K) = -648.000266, G(298K) = -648.051998 au. Imaginary frequency = 0.

E = -64	48.123341, H (0)	K) = -647.93322	6,
H (293	8K) = -647.9207	53,	
G (29	8K) = -647.9718	17 au.	
Imagi	nary frequency	r = 1.	
Ν	-0.2952580	-1.1145400	0.1474860
С	0.4099750	0.0496000	-0.0269190
С	1.8807810	0.0201340	-0.0199990
С	3.9581900	-1.2280980	-0.1879130
Η	4.4702700	-2.1758150	-0.3136000
С	2.6312110	1.1968530	0.1317590
Η	2.1286830	2.1456220	0.2792020
С	4.6937970	-0.0506780	-0.0437520
С	2.5679810	-1.1950710	-0.1790210
Η	2.0008820	-2.1097120	-0.3009140
С	4.0231880	1.1611000	0.1154690
Η	4.5841060	2.0812970	0.2368030
Η	5.7776640	-0.0782460	-0.0534570
С	-0.4188370	1.2008080	-0.1517120
Η	-0.0927080	2.2039050	-0.3765950
С	-1.6970970	0.7359090	0.0775680
С	-1.6573140	-0.6473780	0.2906280
0	-3.0023240	1.0914180	-0.0905710
Н	-0.9476490	-1.0396630	1.2835430
С	-3.6814810	-0.1311700	-0.0505340
С	-5.1545570	-0.0510450	-0.1698540
Н	-5.5691120	-1.0568500	-0.2203790
Н	-5.5780500	0.4687120	0.6951730
Н	-5.4356340	0.5074990	-1.0664400
Ν	-2.9411540	-1.1774420	0.1163600

С	-0.4244540	0.1155300	0.0108450
С	-1.8836370	0.0426000	0.0055190
С	-3.9493230	-1.2226920	0.2450950
Н	-4.4469600	-2.1655800	0.4440120
С	-2.6545680	1.1911730	-0.2483700
Н	-2.1587660	2.1297110	-0.4671960
С	-4.7008990	-0.0749660	-0.0030520
С	-2.5584030	-1.1653680	0.2566790
Н	-1.9964310	-2.0626440	0.4923210
С	-4.0436920	1.1326000	-0.2446250
Н	-4.6166660	2.0314090	-0.4449040
Н	-5.7839800	-0.1197240	-0.0078290
С	0.4051540	1.2163530	0.2559180
Η	0.0719740	2.2095380	0.5071160
С	1.7131450	0.7066290	0.1498410
С	1.6724820	-0.6310830	-0.1470230
Ο	3.0352420	1.0574390	0.2371400
С	3.7069750	-0.1224070	-0.0268540
С	5.1870940	-0.0652620	-0.0064980
Η	5.5878930	-1.0523160	-0.2343350
Η	5.5591420	0.6515930	-0.7447390
Η	5.5501610	0.2500740	0.9764790
Ν	2.9385320	-1.1522520	-0.2610660
Ν	0.3638890	-1.0136320	-0.2212920
Н	0.0155070	-1.9090250	-0.5263950

References

 (1) Gaussian 16, Revision A.03, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.

(2) (a) Becke, A. D. J. Chem. Phys. **1993**, 98, 5648–5652. (b) Becke, A. D. Phys. Rev. A **1988**, 38, 3098–3100. (c) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B **1988**, 37, 785–789.

(3) (a) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. **2010**, *132*, 1054104. (b) Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem. **2011**, *32*, 1456–1465.

(4) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B, 2009, 11, 6378-6396.