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Abstract: Human immunodeficiency virus (HIV) is a life life-threatening and serious infection caused
by a virus that attacks CD4+ T-cells, which fight against infections and make a person susceptible to
other diseases. It is a global public health problem with no cure; therefore, it is highly important to
study and understand the intricate phenomena of HIV. In this article, we focus on the numerical study
of the path-tracking damped oscillatory behavior of a model for the HIV infection of CD4+ T-cells.
We formulate fractional dynamics of HIV with a source term for the supply of new CD4+ T-cells
depending on the viral load via the Caputo–Fabrizio derivative. In the formulation of fractional HIV
dynamics, we replaced the constant source term for the supply of new CD4+ T-cells from the thymus
with a variable source term depending on the concentration of the viral load, and introduced a term
that describes the incidence of the HIV infection of CD4+ T-cells. We present a novel numerical
scheme for fractional view analysis of the proposed model to highlight the solution pathway of
HIV. We inspect the periodic and chaotic behavior of HIV for the given values of input factors using
numerical simulations.

Keywords: human immunodeficiency virus; fractional dynamics; Caputo–Fabrizio derivative; nu-
merical scheme; solutions pathway

1. Introduction

Mathematical biology has a wide range of applications in genetics, environmental
sciences, population dynamics, medical sciences, etc. The field may be expressed as
biomathematics depending on whether dealing with mathematical aspects or biological
aspects [1]. Several biological phenomena and processes can be formulating in the language
of mathematics in the framework of ordinary differential equations, fractional differential
equations, impulsive differential equations, stochastic differential equations, delay differ-
ential equations, etc. [2–6]. Different assumptions, laws, axioms governing these processes
are used in the formulation of these mathematical models to show the intricate dynamics
of biological phenomena. Presently, the most critical and dangerous global health issue is
human immunodeficiency virus (HIV), and numerous mathematical models have been
developed of the human immune system to highlight the overall picture of the infection
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that describes the infection of HIV and its interaction with the immune system. It is re-
ported that HIV is the causative agent for obtaining acquired immune deficiency syndrome
(AIDS), which damages the body’s ability to fight other infections. HIV is an incurable
deadly disease, and millions of people have lost their lives from it. However, people are
living long and healthy lives with HIV due to effective HIV treatment, care, diagnosis,
and prevention. When HIV enters the body of a healthy individual, it quickly reproduces
and damages the CD4+ T-cells, which affects the immune system. The symptoms in the
primary stage of HIV are fever, night sweats, cough, weight loss, headache, diarrhea, rash,
joint pain and muscle aches, swollen lymph glands, and sore throat. At this stage the
load of viruses in the blood is high, and infection easily spreads in the body compared to
other forthcoming stages. Furthermore, HIV infects via bodily fluids (blood, tears, urine,
spit, etc.).

It is noted that CD4+ T-cells play a role in the human body and are the target cells of
HIV; moreover, these CD4+ T-cells perform a key role in the adjustment of the immune
order, so the declination of these cells can have widespread influence on causing damage
to a working immune system. The level of concentration of these cells is used to determine
the stage of HIV infection; therefore, it is valuable to determine its importance using a math-
ematical framework. Numerous mathematical models have been constructed to visualize
the transmission phenomena of CD4+ T-cells with HIV. In the literature, Perelson et al. [7]
developed a simple mathematical system that describes the dynamics of HIV infection in
CD4+ T-cells. Furthermore, Perelson and Nelson [8] developed another model based on [7],
which consists of four variables: the population of free HIV particles, latently infected,
actively infected, and uninfected cells. The model demonstrates many characteristics
observed clinically of AIDS, e.g., the reduction of CD4+ T-cells, and the low levels and
long latency time of the free virus in a human host body. After that, Raun and Calshaw [9]
reduced the model developed by Perelson et al. [8] into one consisting of three indepen-
dent variables: HIV-free virus particles, and infected and uninfected T-cells. The study
by Bushnaq et al. [10] investigated the stability existence of steady states of HIV/AIDS
mode with fractional derivatives and explored the role of memory in the dynamics of HIV
infection. The authors in [11–14] implemented different techniques and methods to show
the path-tracking behavior of the dynamics of HIV. The main objective of the current study
is to formulate the dynamics of HIV with a variable source term instead of a constant
term for the supply of new CD4+ T-cells from the thymus. Furthermore, the mass action
term kVT is introduced, which shows the infection caused by the virus V, interacting with
uninfected CD4+ T-cells, causing the loss of free virus at the rate −kVT, where k is the rate
of infection.

It is well known that fractional-order systems offer more reliable, deeper, more valu-
able and more accurate information about the dynamics of different diseases than classical
integer-order systems [15–18]. Hereditary properties and a description of memory make
them superior to integer-order models [19–23]; moreover, fractional-order models can
easily explore and demonstrate the dynamics between two points. These new ideas have
been effectively used in modeling real-world problems in physics, engineering, biology,
economics, and several other areas [24–31]. In advance studies and in recent research,
fractional calculus produced more accurate information about the dynamics of a system; in
particular the dynamical behavior of infectious diseases can be more accurately highlighted
through fractional calculus. In fractional calculus, Riemann–Liouville, Caputo, Hilfer and
some other operators using the power-law kernel and encounter limitations in modeling
natural phenomena. On the other hand, the Caputo–Fabrizio operator possess an exponen-
tial decay law kernel which produce more accurate results for natural phenomena. This
new developed fractional operator contains stronger properties as compared to the other
fractional operators. Therefore, we opt to investigate the dynamical behavior of HIV in
the framework of the fractional derivative under the Caputo–Fabrizio operator to capture
more accurate and more reliable information about the infection.
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Motivated by the above accurate results of the fractional derivative, we opt to explore
the fractional dynamics of HIV with a source term for the supply of new CD4+ T-cells
depending on the viral load using the Caputo–Fabrizio derivative. We represent the basic
results of fractional Caputo–Fabrizio (CF) derivative in the first section of the article. In the
second section, a fractional model is formulated for HIV with a source term for the supply
of new CD4+ T-cells depending on the viral load in the framework of Caputo–Fabrizio
derivative. The proposed model of HIV infection is then investigated through mathematical
skills. In the third section, a novel numerical scheme is presented to visualize the tracking
path of HIV in the fractional framework. The dynamics of HIV infection is then investigated
with the effect of fractional order numerically in section four. We observe that the input
parameter ϑ has a significant effect on the dynamics of HIV infection and decreases the
level of infection. In addition, we show the chaotic behavior of the system with variation of
input parameters to conceptualize the chaotic pattern of HIV that justifies the suitability of
the scheme. Our analysis predicts that fractional order can be used as a control parameter,
and should be suggested to policymakers. Finally, concluding remarks and suggestions are
presented in last section.

2. Structure of HIV Dynamics

To study HIV/AIDS, the most important requirement is to conceptualize the popula-
tion dynamics of CD4+ T-cells. These cells are produced in the bone marrow, and prema-
ture cells are shifted to the thymus, where they receive extra differentiation and mature
into immunocompetent CD4+ T-cells. In humans, the thymus reaches its maximum weight
at the time of puberty and then slowly becomes complex. Thymus ejection from an adult
has small effect, even though the thymus in adults is in a working state and its few lym-
phocytes perform as precursors of T-cells and immunocompetent T-cells. The focus of the
presented model is on CD4+ T-cells. The succession of HIV infection can be calculated
by the number of CD4+ T-cells, which tells us about initial symptoms. The interest of the
present study is in observing the HIV infection model of CD4+ T-cells, which performs
path-tracking damped oscillations. The mathematical model presented here depicts the
behavior of the infected rate of CD4+ T-cells. The above assumptions of [13] lead us to the
following system:

dT
dt

= s− µTT + rT(1− T + I
Tmax

)− kVT,

dI
dt

= kVT − µI I, (1)

dV
dt

= NµI I − µVV,

where the three terms T(t), I(t), and V(t) illustrate the quantity of healthy CD4+ T-cells
in the blood, infected CD4+ T-cells, and free HIV particles, respectively. The values of
parameters, constants, and initial values of state variables and their explanation of the
above-mentioned model are given in Table 1. In the upcoming section, the model will be
extended in a fractional framework.
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Table 1. List of parameters and state variables with corresponding values used in the fractional model of HIV infection.

Symbols Interpretation of Parameters and State Variables Values

k Rate constant for healthy T-cells which become infected by free virus 2.4× 10−5 days−1

T0 Population of healthy T-cells Assumed
I0 Population of infected T-cells Assumed
s The supply rate of healthy T-cells from precursors 0.1 mm−3

r Growth rate of the healthy T-cells population 3 day−1

µT Death rate of healthy T-cells 0.02 day−1

µI Death rate of latently infected T-cells 0.3 day−1

µV Death rate of free virus of HIV infection 2.4 day−1

N Number of virus produced by infected T-cells Assumed
Tmax Maximum population level of healthy T-cells 1500 mm−3

V0 Population of free HIV virus Assumed

3. Fractional Dynamics of HIV Infection

In this section, a variable source term s(V) = s exp (−κV) is incorporated into the
above system of HIV infection instead of constant the terms used in [13]. The new source
term expresses the generated number of new healthy T-cells from the thymus, which
depends on the concentration of the viral load. The production of healthy T-cells is
observed to decrease due to the increase in the size of viral load; therefore, the source term
is considered to be variable rather than constant.

The numerical solution of the new model using standard parameters with κ = 1 mm−3,
performs the key role in the depletion of healthy T-cells in such a way that their depletion
is more gradual than in the previous model. Here, s indicates the concentration of new
healthy T-cells that are generated from sources within the system, such as the thymus.
Healthy T-cells can be increased rapidly through existing healthy T-cells, and κ is the
constant. The infection model can be solved by a technique in which the system is extended
by introducing a term kVT. Here, k behaves as a constant rate of infection. This kind of
term has logical importance in such a way that the virus necessarily infects the healthy
T-cells, so the chance of attacking healthy T-cells at a low rate can be assumed to be
proportional to the product of V and T. For this reason, the infection takes place when the
virus communicates with uninfected T-cells. First, the virus is induced in heathy T-cells,
which makes these heathy T-cells irresistible at a rate of −kVT and then produces infected
T-cells at a rate of kVT. During HIV infection, the rate of the virus never exceeds the
number of healthy T-cells. Infection can also take place via the communication of cells with
each other, i.e., by meeting infected T-cells with healthy T-cells. In the presented model, V
and T depicts the virus rate and measure of healthy T-cell count in the blood, as, obviously,
there is no compulsion for the infected virus to just stay in the blood. In fact, a very large
number of healthy T-cells is in lymphoid tissues. However, according to the given data,
the calculated number of viruses and healthy T-cells in the blood adequately indicates
their volume in the whole body [8,32,33], just as one would assume for a system to be in
equilibrium. This extended model gives more accurate and more realistic forecasting of the
healthy T-cell depletion for a given time, and can be written in the following way in the
fractional framework:

CF
0 Dϑ

t T = s exp(−κV)− µTT + rT(1− T + I
Tmax

)− kVT,

CF
0 Dϑ

t I = kVT − µI I, (2)
CF
0 Dϑ

t V = NµI I − µVV − kVT,

where CF
0 Dϑ

t indicates Caputo–Fabrizio fractional derivative of order ϑ. In the next
part of the paper, we will discuss and represent the rudimentary knowledge of the Ca-
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puto–Fabrizio fractional derivative, which will be used for the analysis of our proposed
HIV infection model.

Fundamental Knowledge and Concept

Here, we will represent the basic definitions and results important for the analysis
of HIV with the source term for the supply of new CD4+ T-cells depending on the viral
load in a fractional Caputo–Fabrizio(CF) framework. The fundamental knowledge of
Caputo–Fabrizio fractional derivative is given as follows:

Definition 1. Let us suppose h ∈ H1(a, b), where b is greater than a, then the CF derivative [31]
of order ϑ is given by

Dϑ
t (h(t)) =

U(ϑ)

1− ϑ

∫ t

a
h′(x) exp

[
− ϑ

t− x
1− ϑ

]
dx, (3)

where ϑ ∈ [0, 1] and U(τ) denotes normality with U(0) = U(1) = 1 [31]. In this case, when
h /∈ H1(a, b), then the following fractional derivative is obtained

Dϑ
t (h(t)) =

ϑU(ϑ)

1− ϑ

∫ t

a
(h(t)− h(x)) exp

[
− ϑ

t− x
1− ϑ

]
dx. (4)

Remark 1. Let us take α = 1−ϑ
ϑ ∈ [0, ∞) and ϑ = 1

1+α ∈ [0, 1], then Equation (4) can be written
in the following form

Dϑ
t (h(t)) =

M(α)

α

∫ t

a
h′(x)e[−

t−x
α ]dx, M(0) = M(∞) = 1. (5)

In addition to this,

lim
α−→0

1
α

exp
[
− t− x

α

]
= δ(x− t). (6)

In the next step, we will define the fractional integral, which was introduced in [34].

Definition 2. Let h be a given function then the fractional integral is defined in the following
manner

Iϑ
t (h(t)) =

2(1− ϑ)

(2− ϑ)U(ϑ)
h(t) +

2ϑ

(2− ϑ)U(ϑ)

∫ t

0
h(u)du, t ≥ 0. (7)

where 0 < ϑ < 1 and is the order of the above fractional integral.

Remark 2. Further analysis of the above Definition 2 gives that

2(1− ϑ)

(2− ϑ)U(ϑ)
+

2ϑ

(2− ϑ)U(ϑ)
= 1, (8)

which gives U(ϑ) = 2
2−ϑ , 0 < ϑ < 1. A new Caputo derivative of order ϑ was introduced by

Nieto and Losada in [34] by using Equation (8) and is given by

Dϑ
t (h(t)) =

1
1− ϑ

∫ t

0
h′(x) exp

[
ϑ

t− x
1− ϑ

]
dx, 0 < ϑ < 1. (9)

4. Novel Numerical Scheme for Fractional Model

In this section, the main aim is to illustrate the dynamical behavior of the proposed
fractional model (2) of HIV infection, numerically. Several numerical approaches have
been introduced in the literature for Caputo–Fabrizio fractional systems to highlight their
dynamics [35–37]. Here, we will use the scheme of [37] to represent the dynamics of our
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fractional system (2) of HIV infection, which is more reliable, easily implementable, and sta-
ble. The values of the parameter presented in Table 1 will be used for simulation purposes.
First, we represent our proposed fractional model of HIV infection in Volterra type and then
apply the idea of a fundamental theorem of integration for further simplification. To obtain
the numerical scheme, the first equation of our proposed model of HIV infection implies:

z1(t)− z1(0) =
1− ϑ

U(ϑ)
H1(t, z1) +

ϑ

U(ϑ)

∫ t

0
H1(ω, z1)dω. (10)

Next, we take the time t = tm+1, m = 0, 1, . . . , and get the following

z1(tm+1)− z1(0) =
1− ϑ

U(ϑ)
H1(tm, z1(tm)) +

ϑ

U(ϑ)

∫ tm+1

0
H1(t, z1)dt. (11)

and

z1(tm)− z1(0) =
1− ϑ

U(ϑ)
H1(tm−1, z1(tm−1)) +

ϑ

U(ϑ)

∫ tm

0
H1(t, z1)dt. (12)

Here, the difference in the successive terms of the system are obtained as follows:

z1m+1 − z1m =
1− ϑ

U(ϑ)

(
H1(tm, z1m)−H1(tm−1, z1m−1)

)
+

ϑ

U(ϑ)

∫ tm+1

m
H1(t, z1)dt. (13)

Furthermore, we approximate the above-mentioned function H1(t, z1) in the time
interval [tk, tk+1] with the help of interpolation polynomial and get

Pk(t) ∼=
H1(tk, zk)

h
(t− tk−1)−

H1(tk−1, zk−1)

h
(t− tk), (14)

in which h is the time spent and h = tm− tm−1. The expression ofPk(t) is used to determine
the value of the following integral

∫ tm+1

m
H1(t, z1)dt =

∫ tm+1

m

(
H1(tm, z1m)

h
(t− tm−1)−

H1(tm−1, z1m−1)

h
(t− tm)

)
dt,

=
3h
2
H1(tm, z1m)−

h
2
H1(tm−1, z1m−1). (15)

Here, substituting the value of (15) in Equation (13), we get the below

z1m+1 = z1m +

(
1− ϑ

U(ϑ)
+

3ϑh
2U(ϑ)

)
H1(tm, z1m)

−
(

1− ϑ

U(ϑ)
+

ϑh
2U(ϑ)

)
H1(tm−1, z1m−1), (16)

which is the required scheme for first equation of model (2) of HIV infection. Following the
same procedure, we can determine the required scheme for the second and third equations
of the proposed model (2) of HIV infection given by

z2m+1 = z2m +

(
1− ϑ

U(ϑ)
+

3ϑh
2U(ϑ)

)
H2(tm, z2m)

−
(

1− ϑ

U(ϑ)
+

ϑh
2U(ϑ)

)
H2(tm−1, z2m−1), (17)
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and

z3m+1 = z3m +

(
1− ϑ

U(ϑ)
+

3ϑh
2U(ϑ)

)
H3(tm, z3m)

−
(

1− ϑ

U(ϑ)
+

ϑh
2U(ϑ)

)
H3(tm−1, z3m−1). (18)

This method is a two-step Adams–Bashforth scheme for a Caputo–Fabrizio operator,
which takes into account the nonlinearity of the kernel including exponential decay law
for the Caputo–Fabrizio operator. In [37], the stability and convergence of the proposed
scheme are presented in detail. We perform several simulations to understand the intricate
dynamics of HIV, with the source term for the supply of new CD4+ T-cells depending
on the viral load in the fractional framework. The values of input parameters and initial
values of state variables given in Table 1 are used for simulation purposes. In Figures 1–4,
we demonstrate the dynamical behavior of healthy CD4+ T-cells, infected CD4+ T-cells,
and HIV-free virus by varying the fractional-order ϑ, i.e., ϑ = 1.0, 0.85, 0.65, 0.45 to observe
the influence of fractional-order ϑ on the dynamics of HIV infection. We noticed that
the index of memory or fractional order is an effective input parameter and can play an
important role in visualizing a more accurate picture of the system; furthermore, it can
be used as a preventive parameter for HIV infection. In Figures 5–8, we demonstrate
the chaotic behavior of our fractional model (2) of HIV infection with different values of
fractional-order ϑ. The chaotic behavior of a system is very important in many scientific
and engineering applications. It is well known that there is a strong tendency towards
the formulation and visualization of chaotic behaviors of a system. The chaotic patterns
justify the suitability and applicability of the proposed numerical scheme, and can be
further applied to novel chaotic systems. From our simulations, we observe that the
input parameter ϑ highly contributes to and can be used as an effective parameter for
preventive measures.

In our analysis, we mainly focused on the solution pathway and chaotic behavior of
the HIV infection. In addition to this, we showed the influence of fractional parameter ϑ
on the system to observe whether the fractional order can be used as a preventive measure
or not. It should be noted in simulations that the proposed numerical scheme is less
time-consuming and a more easily implementable scheme. However, the investigation
of effectiveness of this scheme such as stability, convergence, consistency, accuracy, and
computational cost are left for future research.
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Figure 1. Illustration of the solution pathway of (a) healthy CD4+ T-cells, (b) infected CD4+ T-cells, (c) free HIV virus
particles and (d) chaotic behavior of the proposed fractional model (2) of HIV infection with fractional-order ϑ = 1.
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Figure 2. Illustration of the solution pathway of (a) healthy CD4+ T-cells, (b) infected CD4+ T-cells, (c) free HIV virus
particles and (d) chaotic behavior of the proposed fractional model (2) of HIV infection with fractional-order ϑ = 0.85.
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Figure 3. Illustration of the solution pathway of (a) healthy CD4+ T-cells, (b) infected CD4+ T-cells, (c) free HIV virus
particles and (d) chaotic behavior of the proposed fractional model (2) of HIV infection with fractional-order ϑ = 0.65.
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Figure 4. Illustration of the solution pathway of (a) healthy CD4+ T-cells, (b) infected CD4+ T-cells, (c) free HIV virus
particles and (d) chaotic behavior of the proposed fractional model (2) of HIV infection with fractional-order ϑ = 0.45.
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Figure 5. Illustration of the (a) chaotic behavior, (b) phase portrait of healthy CD4+ T-cells verses infected CD4+ T-cells,
(c) phase portrait of infected CD4+ T-cells verses free HIV virus particles and (d) phase portrait of healthy CD4+ T-cells
verses free HIV virus particles of the fractional model (2) of HIV infection with fractional-order ϑ = 1.



Molecules 2021, 26, 1806 13 of 17
Molecules 2021, 1, 0 13 of 17

500
400

Healthy T-cells T

300
200

100
0200

400

 Infected T-cells I

600

800

×104

12

0

2

4

6

8

10

1000

F
re

e
 H

IV
 v

ir
u

s
 p

a
rt

ic
le

 V

(a)

Healthy T-cells T
0 50 100 150 200 250 300 350 400 450

In
fe

c
te

d
 T

-c
e

ll
s

200

300

400

500

600

700

800

900

1000

(b)

 Infected T-cells I

200 300 400 500 600 700 800 900 1000

F
re

e
 H

IV
 v

ir
u

s
 p

a
rt

ic
le

 V

×104

0

2

4

6

8

10

12

(c)

Healthy T-cells T
0 50 100 150 200 250 300 350 400 450

F
re

e
 H

IV
 v

ir
u

s
 p

a
rt

ic
le

 V

×104

0

2

4

6

8

10

12

(d)

Figure 6. Illustration of the dynamical behavior (chaotic plot) of the fractional model (2) of HIV infection with fractional-
order ϑ = 0.8.

Figure 6. Illustration of the (a) chaotic behavior, (b) phase portrait of healthy CD4+ T-cells verses infected CD4+ T-cells,
(c) phase portrait of infected CD4+ T-cells verses free HIV virus particles and (d) phase portrait of healthy CD4+ T-cells
verses free HIV virus particles of the fractional model (2) of HIV infection with fractional-order ϑ = 0.8.
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Figure 7. Illustration of the dynamical behavior (chaotic plot) of the fractional model (2) of HIV infection with fractional-
order ϑ = 0.6.

Figure 7. Illustration of the (a) chaotic behavior, (b) phase portrait of healthy CD4+ T-cells verses infected CD4+ T-cells,
(c) phase portrait of infected CD4+ T-cells verses free HIV virus particles and (d) phase portrait of healthy CD4+ T-cells
verses free HIV virus particles of the fractional model (2) of HIV infection with fractional-order ϑ = 0.6.
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Figure 8. Illustration of the dynamical behavior (chaotic plot) of the fractional model (2) of HIV infection with fractional-
order ϑ = 0.4.

5. Conclusions

In this article, we formulated the fractional dynamics of HIV with a source term for the
supply of new CD4+ T-cells depending on the viral load via a Caputo–Fabrizio derivative.
In our model, we incorporated a variable source term for the supply of new CD4+ T-
cells from the thymus depending on the concentration of the viral load. A rudimentary
knowledge of fractional calculus in a Caputo–Fabrizio framework has been presented for
the analysis of the model. We presented a novel numerical scheme for the solution of the
Caputo–Fabrizio fractional model of HIV infection. The dynamics of HIV infection are

Figure 8. Illustration of the (a) chaotic behavior, (b) phase portrait of healthy CD4+ T-cells verses infected CD4+ T-cells,
(c) phase portrait of infected CD4+ T-cells verses free HIV virus particles and (d) phase portrait of healthy CD4+ T-cells
verses free HIV virus particles of the fractional model (2) of HIV infection with fractional-order ϑ = 0.4.

5. Conclusions

In this article, we formulated the fractional dynamics of HIV with a source term for
the supply of new CD4+ T-cells depending on the viral load via a Caputo–Fabrizio deriva-
tive. In our model, we incorporated a variable source term for the supply of new CD4+

T-cells from the thymus depending on the concentration of the viral load. A rudimentary
knowledge of fractional calculus in a Caputo–Fabrizio framework has been presented for
the analysis of the model. We presented a novel numerical scheme for the solution of the
Caputo–Fabrizio fractional model of HIV infection. The dynamics of HIV infection are
demonstrated numerically with different values of fractional-order ϑ. The influence of
fractional order on the chaotic behavior of our proposed model is illustrated. It is predicted
that the index of memory ϑ has a positive effect on the system and can be used as a control
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parameter. Based on our analysis, we suggest that policymakers should not ignore the
role of fractional order in the control of infections. In future research, we will compare the
proposed numerical method with other existing numerical techniques and the dynamics of
HIV infection will be presented with a time delay visualizing the effect of time delay on
HIV infection.
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