Supplementary data

Polydopamine-assisted rapid one-step immobilization of Larginine in capillary as immobilized chiral ligands for enantioseparation of dansyl amino acids by chiral ligand exchange capillary electrochromatography

Yuanqi Gui ^{1,†}, Baian Ji ^{1,†}, Gaoyi Yi ¹, Xiuju Li ^{2,*}, Kailian Zhang ¹ and Qifeng Fu ^{1,*}

¹ School of Pharmacy, Southwest Medical University, Luzhou 646000, China;

guiyuanqi1997@163.com (Y.G.); jibaian1997@163.com (B.J.); yigaoyi169216@163.com (G.Y.) zkl66@swmu.edu.cn (K.Z.)

² School of Pharmacy, Tongren Polytechnic College, Tongren 554300, China

^{*} Correspondence: lxj_trzy@163.com (X.L.); fuqifeng1990@163.com (Q.F.); Tel.: +86-856-6909046 (X.L.); +86-830-3161291 (Q.F.)

⁺ These authors contributed equally to this work.

Table of contents

- Influence of dopamine concentration and the molar ratio of dopamine to L-Arg on the enantioseparation
- **2.** Effect of reaction temperature, reaction time on the enantioseparation and theoretical plate numbers
- **3.** Digital photographs of PDA/L-Arg hybrid coated quartz plates fabricated under different reaction temperature or different reaction time
- 4. Influence of applied voltages on the enantioseparation
- 5. Continuous electrophoresis operation tests
- 6. Comparison of enantioseparation performance for coated and bare capillaries
- 7. Comparison of enantioseparation performance for different CLE-CEC systems
- 8. Relative standard deviations of the retention time of Dns-D, L-AAs in intraday and inter-day and column-to-column
- **9.** Quantitative features of the CLE-CEC method for determination of D-Glu and L-Glu

Figure S1. (a) Electropherograms of Dns-D, L-Ala on PDA/L-Arg@capillary fabricated by using 250 mM L-Arg and different concentrations of dopamine. (b) Electropherograms of Dns-D, L-Ala on PDA/L-Arg@capillary fabricated by using different molar ratio of dopamine to L-Arg. All conditions are the same as Figure 5.

Figure S2. (a) Electropherograms of Dns-D, L-Ala on PDA/L-Arg@capillary fabricated under different reaction temperature. (b) Influence of hydrothermal reaction time on the resolutions and theoretical plate numbers of Dns-D, L-Ala. All the CE experimental conditions are the same as Figure 5.

Figure S3. (A) Digital photographs of PDA/L-Arg coated quartz plates fabricated under reaction time of 1 h with different reaction temperature of 90 °C (a), 120 °C (b), 140 °C (c), 160 °C (d). (B) Digital photographs of PDA/L-Arg coated quartz plates fabricated under 120 °C with different reaction times of 30 min (a), 1 h (b), 1.5 h (c).

Figure S4. Electropherograms of Dns-D, L-Ala on PDA/L-Arg@capillary at different voltages ranged from -15.0 kV to -28.0 kV. All the CE experimental conditions are the same as Figure 5.

Figure S5. Electropherograms of Dns-D, L-Ala after 80 consecutive runs on PDA/L-Arg@capillary. All the CE experimental conditions are the same as Figure 5.

Dns-D, L-AAs		^a Bare capillar	у	^b PDA/L-Arg@capillary			
Dns-D, L-AAs	٢Rs	^d t _D / min	^e t _L /min	°Rs	^d t⊳/ min	^e tı/min	
Dns-D,L-Asp	0.74 ± 0.09	4.05 ± 0.10	4.18±0.20	3.16 ± 0.10	8.91 ± 0.10	9.34±0.10	
Dns-D,L-Ala	1.22 ± 0.03	4.87±0.06	5.05 ± 0.10	3.15 ± 0.03	6.93 ± 0.30	7.33 ± 0.07	
Dns-D,L-Ser	$1.54\pm~0.04$	4.63±0.71	4.92 ± 0.50	5.28 ± 0.04	8.23 ± 0.04	9.03 ± 0.07	
Dns-D,L-Gln	0.66 ± 0.04	4.71±0.53	4.85 ± 0.47	2.98 ± 0.05	7.51 ± 0.09	7.96 ± 0.20	
Dns-D,L-Met	1.29 ± 0.02	4.98 ± 0.80	5.19±0.39	3.14 ± 0.20	7.57 ± 1.20	8.20 ± 0.20	
Dns-D,L-Ile	1.03 ± 0.01	4.45 ± 0.70	4.56 ± 0.80	2.39 ± 0.03	6.99 ± 0.80	7.34 ± 0.20	
Dns-D,L-Asn	1.47 ± 0.04	5.22±0.45	5.41 ± 0.60	2.16 ± 0.05	10.02 ± 0.08	10.68 ± 0.15	
Dns-D,L-Thr	0.75 ± 0.03	4.30 ± 0.5	4.38 ± 0.09	1.82 ± 0.01	6.44 ± 0.06	6.74 ± 0.08	
Dns-D,L-Leu	0.39 ± 0.01	4.34±0.09	4.38 ± 0.08	1.07 ± 0.09	6.21 ± 0.20	6.38±0.10	
Dns-D,L-Pro	0	2.98±0.10	2.98 ± 0.10	0.78 ± 0.10	5.24 ± 0.40	5.38 ± 0.65	
Dns-D,L-Phe	0	4.69 ± 0.07	4.69 ± 0.07	0.66 ± 0.10	7.12 ± 0.30	7.27 ± 0.20	

 Table S1. Enantioseparation performances of Dns-D, L-AAs with PDA/L-Arg@capillary and

 bare capillary.

^a CLE-CEC conditions were same as that in Figure 5 with PDA/L-Arg@capillary;

^b CLE-CE conditions were same as that in Figure 5 with bare capillary;

^c chiral resolution of Dns-D, L-AAs;

^d migration time of Dns-D-AAs;

^e migration time of Dns-L-AAs.

No.	Types of Capillary	fabrication time	Organic solvent	Rs>1.5	Rs<1.5	migration time	Reference
1	Continuous bed capillary	>12 h	No	2 pairs	7 pairs	7-27 min	[34]
2	Silica monolithic capillary	>2 days	70% ACN	12 pairs	_*	5-16 min	[33]
3	Silica monolithic capillary	>1 week	70% ACN	2 pairs	2 pairs	22-24 min	[24]
4	Coated capillary	>4 days	No	5 pairs	5 pairs	6-22 min	[8]
5	Coated capillary	>2 days	No	7 pairs	5 pairs	20-67 min	[7]
6	Coated capillary	1 h	No	8 pairs	3 pairs	5-11 min	This study

Table S2. Comparison with enantioseparation of D, L-AAs using different CLE-CEC systems.

*Not mentioned

Table S3. Relative standard deviations (RSD%) of the retention time of Dns-D, L-AAs in intra-

	5	5				
	Intra-day (n=5)		Inter-day (n=3)		column-to-column (n=3)	
DIS-D,L-AAS	$RSD_{t_1}{}^b$	$\text{RSD}_{t_2}{}^c$	$\text{RSD}_{t_1}{}^b$	$RSD_{t_2}^{\ c}$	$RSD_{t_1}^{\ b}$	$RSD_{t_2}^{\ c}$
Dns-D,L-Asp	1.20	2.84	2.00	3.35	4.90	4.15
Dns-D,L-Ala	1.96	2.47	3.60	2.90	3.89	5.70
Dns-D,L-Ser	1.90	1.30	2.63	2.29	5.76	5.16

day and inter-day and column-to-column. a

^a CLE-CEC conditions were same as that in Figure 5

^b migration time of Dns-D-AAs

^c migration time of Dns-L-AAs

Dns-D,L-Glu	Linear relationship ^b	r^2	Linearity	LOD	LOQ
			range (µg/mL)	(µg/mL)	(µg/mL)
Dns-D-Glu	Y=0.0721*X+0.3375	0.9985	15-800	15	50
Dns-L-Glu	Y=0.0706*X+0.5172	0.9980	15-800	15	50

Table S4. Quantitative results of the CLE-CEC system for Dns-D-Glu and Dns-L-Glu.^a

^aCLE-CEC conditions were same as in Figure 5;

^b Y represents corrected peak area; X represents the concentration of Dns-D-Glu or Dns-L-Glu.