Supplementary

Article

Identification of Potential SARS-CoV-2 Main Protease and Spike Protein Inhibitors from the Genus *Aloe*: An *In silico* Study for Drug Development

Mohamed E. Abouelela ¹, Hamdy K. Assaf ¹, Reda A. Abdelhamid ¹, Ehab S. Elkhyat ¹, Ahmed M. Sayed ², Tomasz Oszako ³, Lassaad Belbahri ⁴,*, Ahmed E. El Zowalaty ^{5,6,*} and Mohamed Salaheldin. A. Abdelkader ^{7,*}

- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-Branch, Assiut 71524, Egypt; m_abouelela@azhar.edu.eg (M.E.A.); hamdyss200@azhar.edu.eg (H.K.A.); reda.ahmed@azhar.edu.eg (R.A.A.); elkhayat@azhar.edu.eg (E.S.E.)
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt; Ahmed.mohamed.sayed@nub.edu.eg
- Department of Forest Protection, Forest Research Institute, 05-090 Sekocin Stary, Poland; T.Oszako@ibles.waw.pl
- Laboratory of Soil Biology, University of Neuchatel, 2000 Neuchatel, Switzerland
- 5 Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
- Department of Pharmacognosy, Faculty of Pharmacy, Sohag University, Nasr City, 82524, Sohag, Egypt
 * Correspondence: lassaad.belbahri@unine.ch (L.B.); ah-

med.el.zowalaty@gu.se (A.E.E.Z.); m.salaheldin@pharm.sohag.edu.eg (M.S.A.A.)

Citation: Abouelela M. E., Assaf H. K., Abdelhamid R. A., Elkhyat E. S., Sayed A. M., Oszako T., Belbahri L., El Zowalaty A. E. and Abdelkader M. S. Identification of Potential SARS-CoV-2 Main Protease and Spike Protein Inhibitors from *Aloe* genus: *In silico* study for drug development. *Molecules* 2021, 26, 1767. https://doi.org/10.3390/10.3390/mole cules26061767

Academic Editors: Shugeng Cao, Mostafa Rateb and Jianguang Luo Received: 24 February 2021 Accepted: 18 March 2021 Published: 21 March 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Page	Contents
3	Figure S1: Compounds isolated from genus Aloe (1-17)
4	Figure S2: Compounds isolated from genus Aloe (18-31)
5	Figure S3: Compounds isolated from genus Aloe (32-47)
6	Figure S4: Compounds isolated from genus Aloe (48-60)
7	Figure S5: Compounds isolated from genus Aloe (61-75)
8	Figure S6: Compounds isolated from genus Aloe (76-92)
9	Figure S7: Compounds isolated from genus Aloe (93-107)
10	Figure S8: Compounds isolated from genus Aloe (108-118)
11	Figure S9: Compounds isolated from genus Aloe (119-127)
12	Figure S10: Compounds isolated from genus Aloe (128-136)
13	Figure S11: Compounds isolated from genus Aloe (137-144)
14	Figure S12: Compounds isolated from genus Aloe (145-153)
15	Figure S13: Compounds isolated from genus Aloe (154-168)
16	Figure S14: Compounds isolated from genus Aloe (169-182)
17	Figure S15: Compounds isolated from genus Aloe (183-194)
18	Figure S16: Compounds isolated from genus Aloe (195-211)
19	Figure S17: Compounds isolated from genus Aloe (212-231)
20	Figure S18: Compounds isolated from genus Aloe (232-237)
21	Table S1. Predicted pharmacokinetics of top scoring compounds.

$$R_6$$
 R_7
 R_1
 R_2
 R_5
 R_4
 R_4

	R_1	R_2	R_3	R_4	R_5	R_6	\mathbf{R}_7
1	ОН	Н	CH_3	Н	Н	Н	ОН
2	ОН	Н	CH ₃	ОН	Н	Н	OCH ₃
3	ОН	Н	CH ₂ (OH)	Н	Н	Н	ОН
4	ОН	Н	CH ₂ (OH)	Н	Н	ОН	ОН
5	ОН	Н	CH ₃	Н	Н	ОН	ОН
6	ОН	Н	CH ₃	Н	Н	ОН	OCH ₃
7	ОН	Н	CH ₃	Н	ОН	Н	ОН
8	CH ₃	Н	ОН	Н	Н	Н	ОН
9	CH ₃	COOCH ₃	ОН	Н	Н	Н	ОН
10	CH ₃	COOCH ₃	ОН	Н	Н	Н	OCH ₃
11	ОН	Н	CH ₃	ОН	Н	Н	ОН
12	ОН	Н	CH ₃	OCH_3	Н	Н	Н
13	ОН	Н	CH ₃	ОН	Н	OCH ₃	ОН
14	CH_3	Н	ОН	Н	ОН	Н	ОН
15	CH_3	COOCH ₃	ОН	Н	ОН	Н	ОН
16	ОН	Н	CH ₃	Н	O-Prenyl	Н	ОН
17	ОН	Н	CH ₃	Н	<i>O</i> -Prenyl- Prenyl	Н	ОН

Figure S1. Compounds isolated from genus Aloe (1-17).

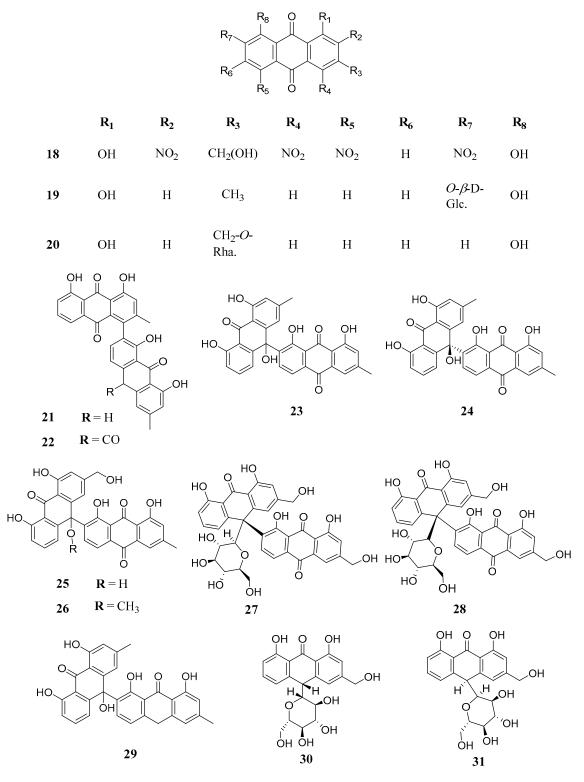


Figure S2: Compounds isolated from genus Aloe (18-31)

Figure S3: Compounds isolated from genus Aloe (32-47)

pounds isolated from genus Aloe (48-60)

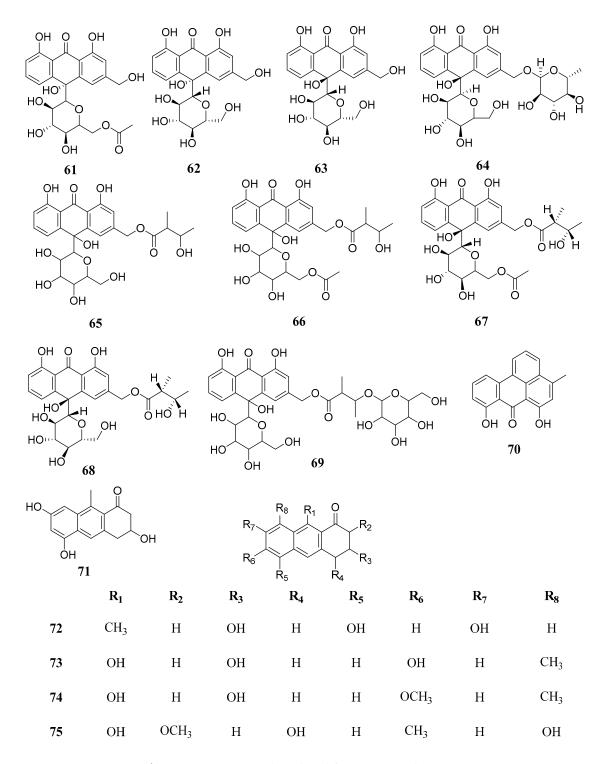


Figure S5: Compounds isolated from genus Aloe (61-75)

Figure S6: Compounds isolated from genus Aloe (76-92)

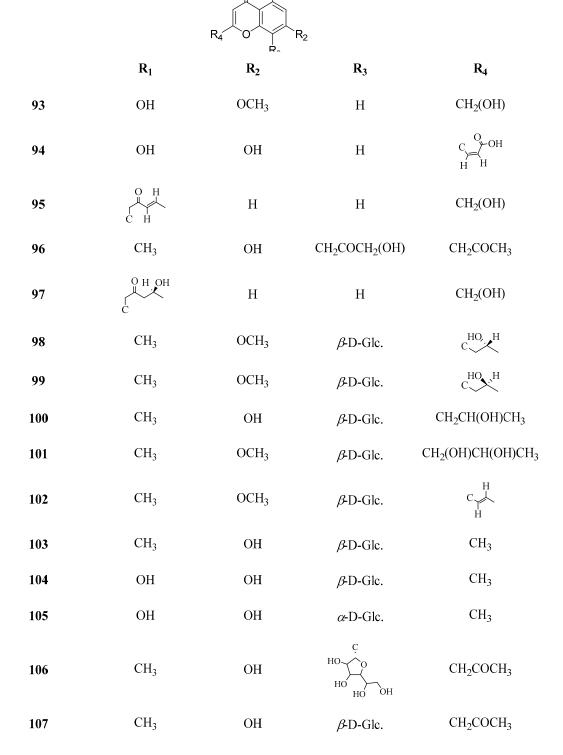


Figure S7: Compounds isolated from genus Aloe (93-107)

	R_1	R_2	R_3	R_5
108	CH ₃	OCH ₃	eta-D-Glc.	CH₂COCH₃
109	CH ₃	ОН	c	CH ₂ COCH ₃
110	CH ₃	ОН	eta-D-Glc.	C HO H
111	CH ₃	ОН	eta-D-Glc.	HO H
112	CH ₃	OCH ₃	eta-D-Glc.	HO H
113	CH ₃	OCH ₃	eta-D-Glc.	HO H
114	CH ₃	ОН	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₂ CH(OH)CH ₃
115	CH ₃	ОН	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₂ CH(OH)CH ₃
116	CH ₃	OCH ₃	$HO \xrightarrow{OH} OH H$	CH(OH)CH(OH)CH ₃
117	CH ₃	OCH ₃	$HO \longrightarrow OH \longrightarrow H$	CH ₂ CH(OH)CH ₃
118	CH ₃	OCH ₃	HO OH H OH	HO H
			1.16	

Figure S8: Com-

pounds isolated from genus Aloe (108-118)

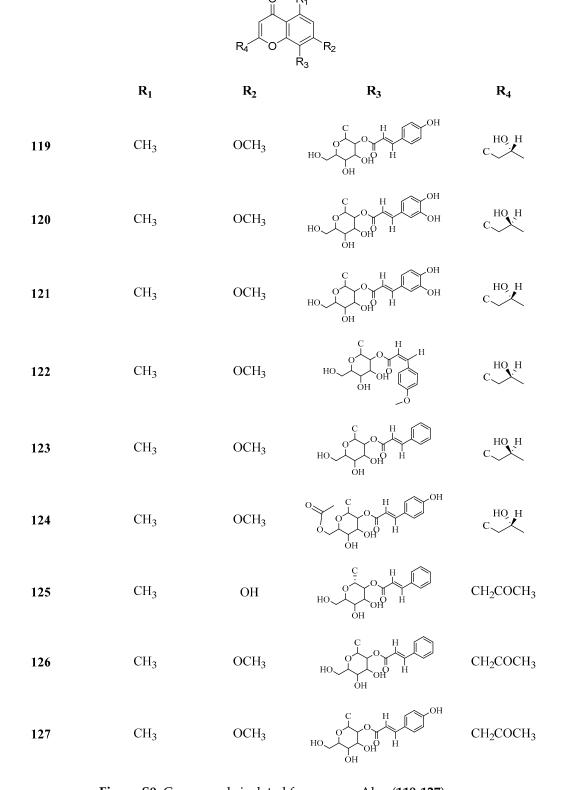


Figure S9: Compounds isolated from genus Aloe (119-127)

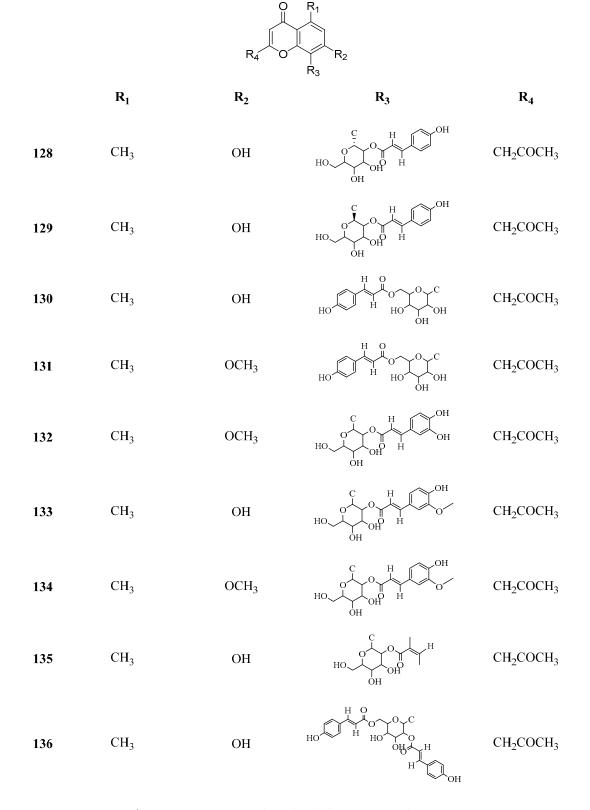


Figure S10: Compounds isolated from genus Aloe (128-136)

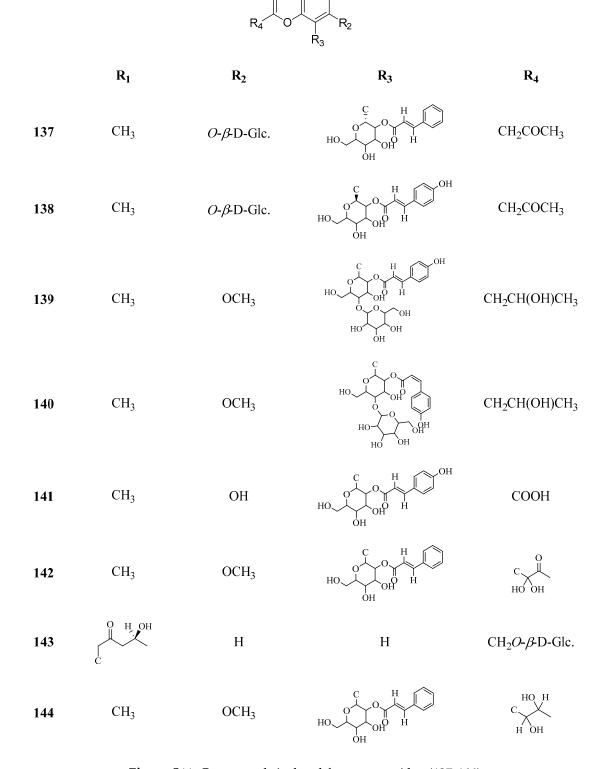


Figure S11: Compounds isolated from genus Aloe (137-144)

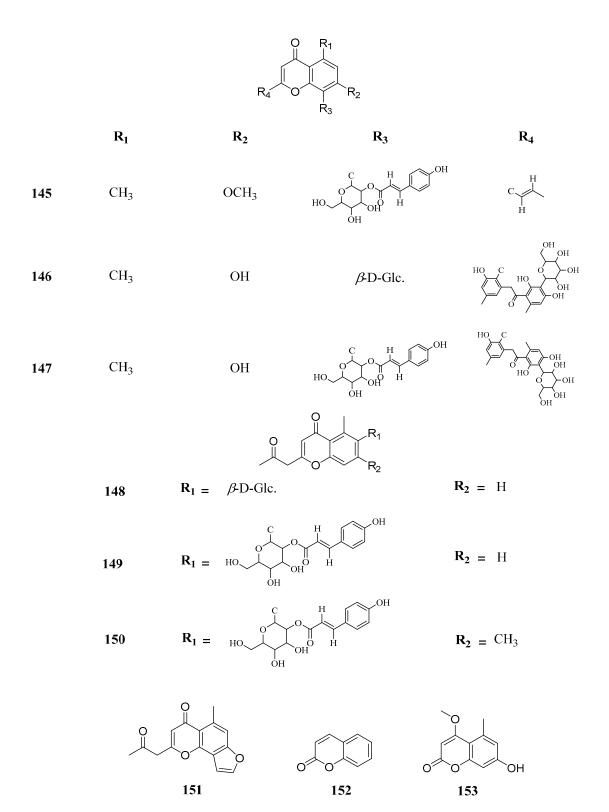


Figure S12: Compounds isolated from genus Aloe (145-153)

Figure S13: Compounds isolated from genus Aloe (154-168)

$$R_6$$
 R_5
 R_4
 R_7
 R_8

	R_1	R_2	R_3	R_4	R_5	R_6
169	СНО	Н	Н	OCH ₃	Н	Н
170	CH ₂ CH ₂ CO OH	Н	Н	ОН	Н	Н
171	CH ₂ CH ₂ CO OCH ₃	Н	Н	ОН	Н	Н
172	C OH	Н	Н	ОН	Н	Н
173	C H OH	Н	Н	ОН	ОН	Н
174	C H OH	Н	Н	ОН	OCH ₃	Н
175	C H OH	Н	OCH ₃	ОН	OCH ₃	Н
176	ОН	Н	CH ₃	Н	ОН	Н
177	СООН	ОН	Н	Н	ОН	Н
178	СООН	Н	Н	ОН	ОН	Н
179	СООН	Н	Н	ОН	OCH ₃	Н
180	СООН	Н	ОН	ОН	ОН	Н
181	СООН	Н	OCH ₃	ОН	OCH ₃	Н
182	COCH ₃	CH ₃	Н	ОН	Н	ОН

Figure S14: Compounds isolated from genus Aloe (169-182)

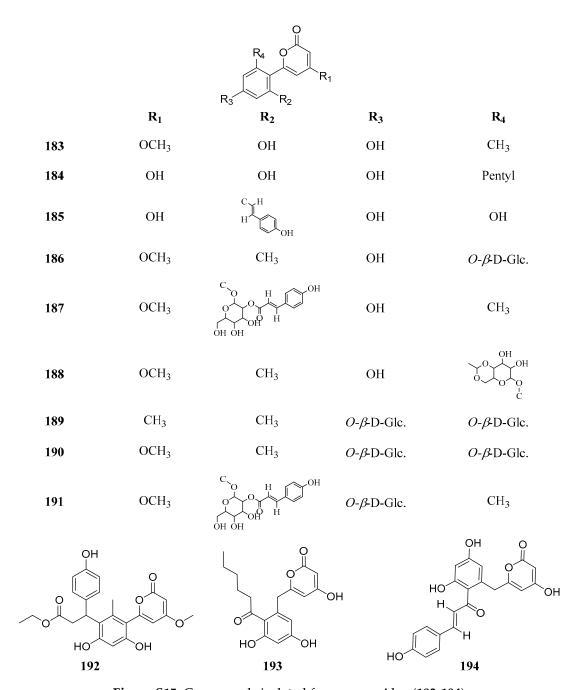


Figure S15: Compounds isolated from genus Aloe (183-194)

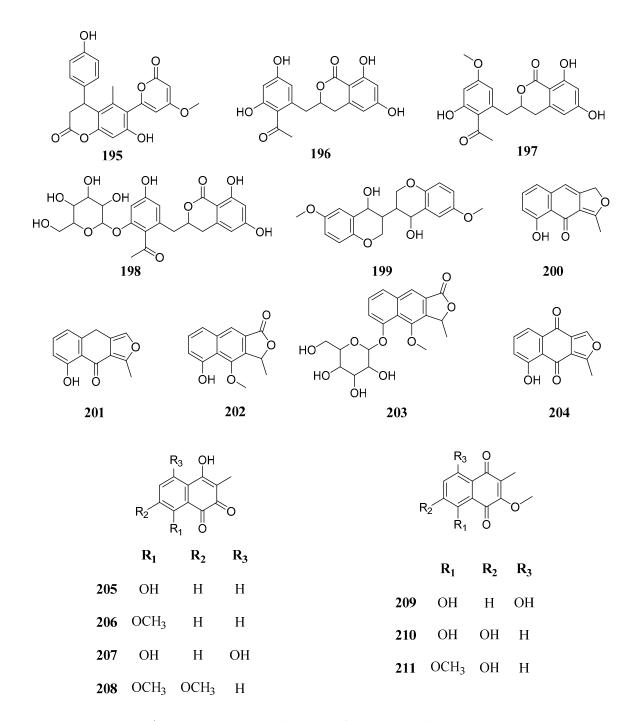


Figure S16: Compounds isolated from genus Aloe (195-211)

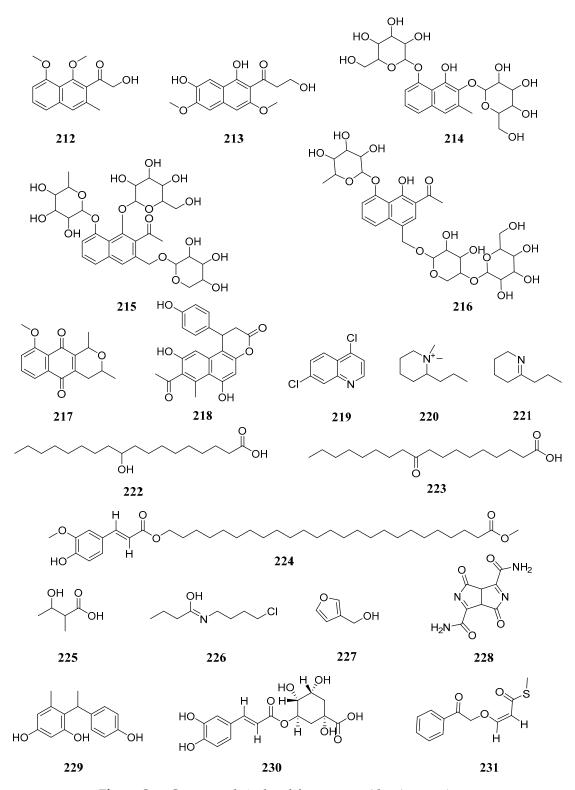


Figure S17: Compounds isolated from genus Aloe (212-231)

Figure S18: Compounds isolated from genus Aloe (232-237)

Table 1. Predicted pharmacokinetics of top scoring compounds.

Compound No.	115	120	131	132	134	159
ВВВ	0.044	0.041	0.0215873	0.03	0.02	0.02
Buffer_solubility_mg_L	12.77	18.077	4.84474	10.88	4.19	28.88
Caco2	12.86	10.71	11.4372	10.62	9.20	7.91
CYP_2C19_inhibition	Inhibitor	Inhibitor	Inhibitor	Inhibitor	Inhibitor	Inhibitor
CYP_2C9_inhibition	Inhibitor	Inhibitor	Inhibitor	Inhibitor	Inhibitor	Inhibitor
CYP_2D6_inhibition	Non	Non	Non	Non	Non	Non
CYP_2D6_substrate	Non	Non	Non	Non	Non	Non
CYP_3A4_inhibition	Inhibitor	Inhibitor	Inhibitor	Inhibitor	Inhibitor	Inhibitor
CYP_3A4_substrate	Substrate	Weakly	Weakly	Weakly	Weakly	Weakly
HIA	77.11	57.61	82.803611	66.18	79.98	2.86
MDCK	0.051	0.05	0.0511802	0.053	0.05	0.32
Pgp_inhibition	Inhibitor	Non	Non	Non	Non	Non
Plasma_Protein_Binding	77.20	73.52	74.833673	68.96	68.79	43.89
Pure_water_solubility_mg_L	3.29	4.86	3.74378	4.05	1.88	217.20
Skin_Permeability	-3.73	-3.85	-3.65856	-3.80	-3.65	-4.66
SKlogD_value	1.72	1.58	1.44	1.49	1.63	-1.11
SKlogP_value	1.72	1.58	1.44	1.49	1.63	-1.11
SKlogS_buffer	-4.63	-4.50	-5.058	-4.72	-5.14	-4.32
SKlogS_pure	-5.22	-5.07	-5.17	-5.14	-5.49	-3.44