Supporting information

Solution and solid state photophysical properties of positional isomeric acrylonitrile derivatives, with core pyridine and phenyl. Experimental and DFT studies.

Armando Castillo¹, Paulina Ceballos¹, Pilar Santos¹, Margarita Cerón¹, Perumal

Venkatesan¹, Enrique Pérez-Gutiérrez¹, Martha Sosa-Rivadeneyra², S. Thamotharan³,

Maxime A. Siegler⁴ and M. Judith Percino¹

¹Unidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Val3-Ecocampus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa, Pue. México.

²Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP). 14 Sur Esquina San Claudio, San Manuel, 72570, Puebla, México

³Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, India

⁴Department of Chemistry, Johns Hopkins University, New Chemistry Building, 3400 N. Charles St. Baltimore, MD, 21218, USA.

SI 1.0. General procedure for the compounds (I-V)

I: X=Y=Z=CH; II:X=Y=CH Z=C and substituted with 2,4,5-TM(phenyl)CH=C(CN)-III: X=N; Y=Z=CH; IV: X=Z=CH;Y=N; V: X=Y=CH; Z=N

Scheme S1. Reactions to obtain the compounds studied I-V.

I (*Z*)-2-(phenyl)-3-(2,4,5-trimethoxyphenyl)-acrylonitrile and II (2*Z*,2'*Z*)-2,2'-(1,4-phenylene)-bis(3-(2,4,5-trimethoxyphenyl)-acrylonitrile also is called as 1,4-bis- (α -cyano-(2,4,5-trimethoxystyryl)) benzene. III: (*Z*)-2-(pyridin-2-yl)-3-(2,4,5-trimethoxyphenyl) acrylonitrile, IV (*Z*)-2-(pyridin-3-yl)-3-(2,4,5-trimethoxyphenyl)-acrylonitrile and V (*Z*)-2-(pyridin-4-yl)-3-(2,4,5-trimethoxy-phenyl)acrylonitrile.

The general method used to obtain the compounds (**I**, **III**, **IV** and **V**): An amount of 2,4,5-TMB (5.0 mmol) dissolved in (6 ml) of methanol were added 5.0 mmol of the acetonitrile derivative (PhAcN or 2-, 3- 4-PyAcN) in a ball flask, The reaction mixture temperature was raised to reflux and KOH as catalyst was added. The resume of the reaction conditions is shown in Table S1. At the beginning of the reactions, the mixtures acquired different appearances as brown yellow, a darker color, orange color. After the reaction mixture time became dense up until the precipitate formation. The precipitates were filtered under vacuum to obtain the powders, which are washed several times with distilled water. The products **I-IV** were purified by double recrystallization from methanol obtaining a yellows powders with melting points and yields that are resume in the Table S1.

SI 1.1 Synthesis of II.

The molar ration between 2,4,5-TMB and 1,4-PhDAcN was of 2:1. The method synthesis was like former compounds. 0.251 g (1.2 mmol) was dissolved in 5 mL of methanol with 0.100g (6.0 mmol). The reaction mixture temperature was at reflux and an amount of 0.033 g of KOH as catalyst was used. The reaction mixture developed a yellow-orange color, after one hour it changed to an orange-red color until a precipitate of the same color was formed. The solution was vacuum filtered and after several washes with water to remove the catalyst an orange-red solid was obtained. Finally, the compound was purified twice by

recrystallization with DMF. The melting point of obtained product is of 273-275 $^{\circ}$ C and yield of 91%.

Table S1. Reaction conditions used for obtaining I-V

Compound	Molar	ratio	Time	Т	yield	
compound	1:1:1 and 1	h	°C	(%)		
Ι	PhAcN			18	54	85
II	1,4-PhDAcN		КОН	3	54	91
III	2-pyAcN;	2,4,5-		18	58	70
IV	3-PyAcN	IMB		23	58	65
V	HCl de 4-PyAcN,			18	54	80

SI 1.2. Crystallization conditions of **I-V.** All crystals were obtained by slow evaporation at room temperature.

I crystals: 10 mg of powder was dissolved in 1 mL of ethyl acetate; the solution was kept at rest at RT for 72h. Crystals in the form of rectangular prisms with a melting point of 147-148 ° C were obtained. As well when acetone was used as solvent at RT and for 48h needle crystals with a melting point of 145-146 ° C were obtained.

II crystals.10 mg of the orange-red powder was dissolved in 5 ml of chloroform, the solution was kept at room temperature and after 16 h, needle-shaped orange-red crystals with a melting point of 273-275°C were obtained.

III crystals: 10 mg of the **I** powder was dissolved in 1 mL of ethanol; the solution was kept standing at room temperature (RT). After 8 hours yellow crystals were formed in the form of elongated needles with melting point from 135-136 ° C.

IV crystals, 10 mg of the yellow-green crystalline powder was dissolved in 1 mL of ethyl acetate, the solution was kept standing at RT for 48 hours until the formation of green crystals in the form of rectangular prisms with a point of melting 154-155 $^{\circ}$ C.

V crystals: 10 mg of the dark-yellow powder was dissolved in 10 mL of ethanol; the solution could stand at RT for 8 h. Yellow needle-shaped crystals with a point of fusion of 155-157 ° C were obtained.

The compound I was crystallized in different solvents and under the following conditions.

- a) 10 mg of the compound I was placed in a 5 mL beaker, dissolved in 1 mL of ethyl acetate. It was left to stand at room temperature for 72 hours, obtaining yellow-white crystals in the shape of a rectangular prism.
- b) 10 mg of the compound I was placed in a 5 mL beaker and dissolved in 1 mL of acetone. It was left to stand at room temperature for 48 hours, obtaining white needleshaped crystal.
- c) In a two-mouth flask, 50 mg of I was added and 5 mL of DMSO was added, the temperature was raised to 120 ° C and allowed to stir for 72 hours. The solution was changed from a yellow- white to a reddish orange. The orange liquid was transferred to a 10 ml beaker and left at room temperature for a week to obtain crystals in the form of long orange needles.
- d) In a two-mouth flask 50 mg of I was added and 5 mL of DMF was added, then the temperature was raised to 120 ° C and left under constant stirring for 48 hours, the color-changing solution from a yellow-white to A reddish orange. The orange liquid was transferred to a 10 mL beaker and allowed to crystallize at room temperature for a week obtaining orange crystals and in the form of orange needles.

SI 2.0. Characterization IR, ¹H-NMR and EI of the compounds (I-V)

The IR spectra of I-II and III-V are shown in Figure S1. The bands important are: in the raw materials the presence of the absorption band at 1689 cm⁻¹ due to the vibration of the carbonyl group vC = O is not observed, and if observe a new vibration bands such as: the elongation vibration of the double bond vC = C conjugate (acrylonitrile group -HC= CCN-), in the range of 1612-1617 cm⁻¹. Just as the band of greater intensity between 1575-1586 cm⁻¹ ¹ typically corresponds to a double bond of a phenyl group. Another very intense vibration band due to the -C≡N group attached to the conjugated double bond, which was observed between 2198-2204 cm⁻¹ and the band assigned to the vibration δ C–H for the proton that is attached to the atom Carbon conjugated double bond in the range of 920-720 cm⁻¹. The assignment of the signals of I-V ¹H-NMR are summarized in the Tables S2-S4 according to the protons assigned of the structures, Scheme S2 and Figure S3. The compound I was acquired in MeOH-d₄/acetone-d₆ mixture, acetone-d₆ and DMF-d₇, Table S2. The ppm of the protons of phenylacrylonitrile and the proton H₉ (Table S2) are displaced to low field MeOH-d₄/acetone-d6 mixture >. DMF-d₇ \approx acetone-d₆. Due to the compound II is a symmetrical molecule the proton of double bond and the phenyl do not appear at low field unlike pyridine compounds III-V, which is an indication that phenyl does not have a strong electro-attractant effect such as pyridine. The most important is the proton of $\alpha,\beta,$ unsaturated (-CH = CCN-) due to -CN, which is an electro attractor group. For the compound III corresponding to signal at 8.83, ppm, for the compound IV the proton was located at 7.97 ppm, for compound V the proton appears at 8.22 ppm, Finally, for compound I the proton attached to the carbon of the conjugated double bond -CH = CCN- is shift to higher field, that could be the signal at 7.96 ppm.

 \mathbf{II}

I

Scheme S2. III is when X=N; Y=C; and Z=C: IV is when X=C; Y=N; and Z=C: V is when X=C;

Y=C; and Z=N.

Table	S2.	Chemical	shift	values	(ppm)	and	coupling	constant	(J_{Hz})	values	of	compound
compo	ound	s I.										

Part	CDCl ₃	MeOH-d ₄	acetone-d ₆	DMF-d ₇
		/acetone-d ₆		
Acry-H ₈	7.96	9.37	7.98	8.05
H_2, H_6	7.68-7.66,	d, 8.88-	d, 7.65-7.64	d, 7.92-7.91
	J=10		J=5	J=5
H3,H5,H4	7.44-7.41,	m, 8.71-8.69	m, 7.47-7.46	m, 7.73-7.71
	J= 10, 5	J= 10	J=5,	J=10
	7.37-7.32,	m, 8.69-8.68	7.47-7.45; 7.45-	7.71-7.70
	J=10, 5	J=5	7.44 J=10, 5	J=5,
	7.94			
H9	7.94	s, 9.10	s, 7.98	s, 8.27
H ₁₀	6.52	s, 8.10	s, 6.77	s, 7.10
Me ₁	4.03	s, 5.15	s, 3.90	s, 4.16
Me ₂	3.96	s, 5.11	s, 3.85	s, 4.15
Me ₃	3.88	s, 5,06	s, 3.81	s, 4.06

Table S	S3.	Chemical	shift	values(ppm)	and	coupling	constant	(Hz)	values	of	compound
compo	unds	s II.									

Π	CDCl ₃
	s7.95
H_1, H'_1	s,7.89
2H4, 2H'4	s7.65

H_2, H'_2	s, 7.89
H3, H'3	s, 6.46
Me ₁ , Me' ₁	s, 3.90
Me ₂ Me' ₂	s, 3.88
Me ₃ Me' ₃	s, 3.82

Table S4 chemical shift values(ppm) and coupling constant (Hz) values of compounds III-V

Part		III		IV		V
Acry-H ₈		8.83		7.97		8.22
	H ₃	8.66-8.64;	Ц.	8.02	Ц. Ц.	8.68-8.67
А		J=10	Π2	0.95	п5, п3	J=5.0
	H_4, H_6	7.77-7.72,	Ц.	8.61-8.60	Ц., Ц .	7.58-7.57,
		J=10	П4	J=5	п2, п6	J=5.0
	H ₅	7.25-723;	Ц. Ц.	7.96-7.95,		
		J=10	п5, п6	J=5		
	H9	8.04		8.02		8.01
	H ₁₀	6.54		6.54		6.54
В	Me1	3.97		3.99		4.00
	Me2	3.98		3.97		3.97
	Me3	3.93		3.92		3.94

4.00

8.0 7.8 f1 (ppm)

8.8

8.6 8.4 8.2

9.2 9.0 7.4

7.6

3TM-3P CDCB 16oct17

Figure S2. ¹H-NMR spectra of the compounds I, II, III, IV and V in CDCl₃.

Figure S3. EI spectra of the compounds I, II, III and IV.

3.0 Absorption spectroscopy in solution.

The I-V compounds solutions at 0.001 mM concentration and at room temperature using (1) DMSO, (2) MeOH, (3) AcCN, (4) acetone, (5) THF, (6) EtOAc, (7) CHCl₃, and (8) MeOH:acetone (70:30) mixture were prepared. UV-Vis spectra were acquired, because the compounds solutions under UV lamp different emission were observed. The solvents were selected to evaluate the non-polar (non-HBD; no hydrogen bond-donor formation, "aprotic"; e.g. CHCl₃), polar non-HBD("aprotic" solvents; e.g. acetone, DMF, DMSO, THF, EtOAc), and with a dipolar group HBD ("protic"; e.g. methanol) (Figure S11). i.e. in some solvents the fluorescence intensity decreased (quenching process) and in others the fluorescence wavelength showed a shift. The I-V absorbance values in the different solvents are shown in Figures S4-S7.

Figure S4. Absorption spectra of compound I in solvents 1-8

Figure S5. Absorption spectra of compound II in solvents 1-8

Figure S8. Absorption spectra of compound V in solvents 1-8

Table S5. Photophysical properties λ_{abs1} , λ_{abs2} , λ_{abs3} , (nm) and ϵ (M⁻¹ cm⁻¹) of the I-V compounds in several solvents: 1= DMSO (46.68), 2= MeOH (32.70), 3= AcCN acetonitrile (37.5), 4= acetone (21.01), 5= THF (7.5), 6= EtOAc, (6.02), 7= CHCl₃ (4.81), and 8= mixture MeOH/Acetone(70:30). (23.21)

Solvent	λ _{abs1}	λ _{abs2}	λ _{abs3}	ε1	ε2	E 3
			Ι			
1	256	299	381	17525	21500	8350
2	242	303	376	9875	8425	14500
3	241	298	374	17650	12950	9625
4		324	380		4075	8825
5	235	298	366	14875	11675	6450
6	250	303	384	14225	21400	26500
7	241	299	375	27400	23075	14675
8		326	378		6400	18050
		[Π		r	
1	278		415	6970		3773
2	243	341		5486	14247	
3	274		415	20007		8268
4			414			19350
5	251	324	415	8718	5858	20884
6	254	324	415	3937	3453	7244
7	261	281	416	147/0	13190	21042
8		331	413		1587	2844
	• • •		III	1.0.0.0		
1	256	315	396	10300	9000	21025
2	251	313	393	4900	5425	17900
3	276	310	392	5600	3950	7025
4	318	337	406	9825	10375	2750
5	243	315	391	7575	5700	10850
6	250	316	393	2040	1475	3425
7	258	316	396	2825	2800	6975
8			393			8205
			IV			
1	274		383	19675		620
2	249	306	386	3700	4200	7500
3	252	306	383	6800	7022.5	13350
4		325	385		1827.5	6425
5	254	305	387	8725	5275	9675
6	250	314	394	2000	1495	3052.5
7	248	307	389	8625	9525	19225
8		315	387		8000	18050
	-	-	V			
1	256	312	394	8750	5725	11150
2	248	313	390	5500	4825	7200

3	248	310	393	11725	10600	20800
4		324	395		3525	6875
5	247	313	397	9550	8425	15225
6	250	313	395	2750	1975	4125
7	253	313	398	6050	6325	13325
8		328	399		9800	30025

Figure S9. Absorption spectra of I calculated with at theoretical level of m062x / pVTZ in DMSO(1), Methanol(2), Acetonitrile(3), Acetone (4), THF(5), Ethyl Acetate (6), Chloroform (7).

Figure S10. Absorption spectra of **II**, calculated with at theoretical level of m062x / pVTZ in DMSO(1), Methanol(2), Acetonitrile(3), Acetone (4), THF(5), Ethyl Acetate (6), Chloroform (7).

Figure S11. Absorption spectra of **III**, calculated with at theoretical level of m062x / pVTZ in DMSO(1), Methanol(2), Acetonitrile(3), Acetone (4), THF(5), Ethyl Acetate (6), Chloroform (7).

7

Figure S12. Absorption spectra of **IV**, calculated with at theoretical level of m062x / pVTZ in DMSO(1), Methanol(2), Acetonitrile(3), Acetone (4), THF(5), Ethyl Acetate (6), Chloroform (7).

Figure S13. Absorption spectra of **V**, calculated with at theoretical level of m062x / pVTZ in DMSO(1), Methanol(2), Acetonitrile(3), Acetone (4), THF(5), Ethyl Acetate (6), Chloroform (7).

Table S6. Experimental and calculated at theory level of m062x/cc-pvtz for **I-V** compounds. Absorption wavelength (nm), excitation energy (eV) and oscillator strengths (*f*) in DMSO(1), Metanol(2), Acetonitrile(3), Acetone (4), THF(5), Ethyl Acetate (6), Chloroform (7).

			Ι					II	
				1					
λ	Е	ſ	Major contribution	λ_{exp}	λ	Е	ſ	Major contribution	λ_{exp}
(nm)	(eV)	·	(%)	(nm)	(nm)	(eV	Č.	(%)	(nm
				, ,	, ,))
359	3.44	0.784	HOMO→LUMO(97)		395	3.13	1.834	H-1- \rightarrow L+1(14)	
								HOMO→LUMO(84)	
277	4.46	0.179	$H-1 \rightarrow LUMO(88)$		292	4.23	0.154	H-3- \rightarrow L+1(10)	
								$H-2 \rightarrow LUMO(60)$	
								$H_{-1} \rightarrow L_{+1}(21)$	
239	5.17	0.109	$H-3 \rightarrow LUMO(20)$		257	4 80	0.114	$H_{-3} \rightarrow I + 1(11)$	
	0117	0.109	HOMO \rightarrow L+2(11)				0.111	$H_2 \rightarrow UMO(11)$	
			$HOMO \rightarrow L+3(45)$					$H_{-1} \to I + 1(53)$	
			- (-)					$\frac{11-1 \rightarrow L^{+1}(55)}{1100}$	
220	5.61	0.107	$H_2 \rightarrow UIMO(18)$		231	5 3/	0.187	$H_5 \rightarrow UMO(33)$	
220	5.01	0.107	$HOMO \rightarrow I + 1(29)$		231	5.54	0.107	$H_{4}>I I MO(21)$	
			HOMO \rightarrow I +2(30)					$HOMO_>I + 2(31)$	
219	5 64	0.146	$H_{-3} \rightarrow UMO(22)$		220	5 73	0.209	HOMO > I + 3(40)	
21)	5.04	0.140	HOMO \rightarrow L+1(17)		220	5.75	0.207	HOMO > L + 5(30)	
			HOMO \rightarrow L+2(18)					$HOMO \neq E + J(JO)$	
			HOMO \rightarrow L+3(20)						
				2					
357	3.46	0.764	$HOMO \rightarrow LUMO(97)$		393	3.15	1.807	H-1->L+1(14)	
507	5110	0., 0 .			0,00	0.10	1.007	HOMO->LUMO(84)	
277	4.46	0.178	$H-1 \rightarrow LUMO(88)$		292	4.24	0.153	H-3->L+1(10)	
								H-2->LUMO(60)	
								H-1->L+1(20)	
239	5.17	0.103	H-3→LUMO(21)		257	4.81	0.112	H-3->L+1(11)	
			HOMO \rightarrow L+2(11)					H-2->LUMO(11)	
			HOMO \rightarrow L+3(45)					H-1->L+1(53)	
								HOMO->LUMO(11)	
220	5.62	0.103	$H-2\rightarrow LUMO(17)$		231	5.35	0.181	H-5->LUMO(33)	
			$HOMO \rightarrow L+1(27)$					H-4->LUMO(21)	
			$HOMO \rightarrow L+2(32)$					HOMO->L+2(31)	
219	5.65	0.135	H-3→LUMO(23)		220	5.62	0.200	HOMO->L+3(39)	
			$HOMO \rightarrow L+1(19)$					HOMO->L+5(30)	
			$HOMO \rightarrow L+2(16)$						
-			$HOMO \rightarrow L+3(20)$						
	1	-	1	3	1		1	1	1
358	3.46	0.768	$HOMO \rightarrow LUMO(97)$		393	3.14	1.812	H-1->L+1(14)	
								HOMO->LUMO(84)	
277	4.46	0.178	$H-1 \rightarrow LUMO(88)$		292	4.24	0.153	H-3->L+1(10)	
								H-2->LUMO(60)	
		0.101				1.01	0.110	H-1->L+1(21)	
239	5.17	0.104	$H-3 \rightarrow LUMO(21)$		257	4.81	0.113	H-3->L+1(11)	
			HOMO \rightarrow L+2(11)					H-2->LUMO(11)	
			HOMO \rightarrow L+3(45)					H-I->L+I(55)	
220	5.(2)	0.104	$\mathbf{H} 2 \rightarrow \mathbf{H} \mathbf{M} \mathbf{O} (17)$		221	5.25	0.192	$\frac{\text{HUMU->LUMU(11)}}{\text{HUMU(22)}}$	
220	5.62	0.104	$H-2 \rightarrow LUMU(17)$		231	5.35	0.182	H-3->LUMU(33)	
			$HOMO \rightarrow L^{+1}(28)$					H-4->LUMO(21)	

			HOMO \rightarrow L+2(31)					HOMO->L+2(31)	
219	5.65	0.137	$H-3 \rightarrow LUMO(22)$		220	5.62	0.201	HOMO->L+3(39)	
			$HOMO \rightarrow L+1(19)$					HOMO->L+5(30)	
			HOMO \rightarrow L+2(17)						
			HOMO \rightarrow L+3(20)						
				4					
358	3.46	0.772	HOMO→LUMO(97)		393	3.14	1.819	H-1->L+1(14)	
								HOMO->LUMO(84)	
277	4.46	0.178	H-1→LUMO(88)		292	4.24	0.152	H-3->L+1(10)	
								H-2->LUMO(60)	
								H-1->L+1(21)	
239	5.17	0.105	H-3→LUMO(21)		257	4.81	0.113	H-3->L+1(11)	
			$HOMO \rightarrow L+2(12)$					H-2->LUMO(11)	
			$HOMO \rightarrow L+3(45)$					H-1->L+1(53)	
								HOMO->LUMO(11)	
220	5.62	0.104	$H-2 \rightarrow LUMO(18)$		231	5.35	0.183	H-5->LUMO(33)	
			$HOMO \rightarrow L+1(29)$					H-4->LUMO(22)	
		0.1.11	$HOMO \rightarrow L+2(30)$				0.001	HOMO->L+2(31)	
219	5.65	0.141	$H-3 \rightarrow LUMO(22)$		220	5.62	0.204	HOMO->L+3(39)	
			$HOMO \rightarrow L+1(17)$					HOMO->L+5(31)	
			$HOMO \rightarrow L+2(18)$						
			HOMO \rightarrow L+3(21)						
250	2.46	0.707		5	204	2.14	1.020	TT = 1 > T + 1/(1.4)	1
358	3.46	0./8/	$HOMO \rightarrow LOMO(97)$		394	3.14	1.839	H-I->L+I(14)	
277	1.10	0.179	$\mathbf{H} = \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H}$		202	4.24	0.140	$HOMO \rightarrow LOMO(84)$	
211	4.40	0.178	$H-1 \rightarrow LUMU(88)$		292	4.24	0.149	H-3-2L+1(10)	
			$\Pi O M O \rightarrow L + 5(4\%)$					H = 2 - 2 LOMO(00) H = 1 > 1 + 1(21)	
220	5.17	0.111	$H_{2} \rightarrow IIIMO(21)$		257	1.82	0.117	$H_{2} > I + 1(21)$	
239	5.17	0.111	$HOMO \rightarrow I + 2(13)$		237	7.02	0.117	$H_{2}>UMO(12)$	
			HOMO \rightarrow I+3(45)					$H_{-1} > I + 1(53)$	
			1101010 /L+3(45)					$HOMO \rightarrow LUMO(11)$	
220	5.62	0.104	$H-2 \rightarrow LUMO(22)$		231	5.35	0.184	H-5->LUMO(30)	
		7	HOMO \rightarrow L+1(34)		_			H-4->LUMO(25)	
			HOMO \rightarrow L+2(24)					HOMO->L+2(32)	
219	5.62	0.104	$H-3 \rightarrow LUMO(19)$		219	5.63	0.212	HOMO->L+3(37)	
			HOMO \rightarrow L+1(13)		-			HOMO->L+5(33)	
			HOMO \rightarrow L+2(22)						
			HOMO \rightarrow L+3(25)						
				6					
357	3.47	0.781	HOMO→LUMO(97)		393	3.15	1.832	H-1->L+1(14)	
								HOMO->LUMO(84)	
277	4.46	0.177	H-1→LUMO(87)		291	4.24	0.147	H-3->L+1(10)	
								H-2->LUMO(60)	
						_		H-1->L+1(21)	
239	5.17	0.109	$H-3 \rightarrow LUMO(21)$		256	4.82	0.117	H-3->L+1(11)	
			$H-1 \rightarrow LUMO(10)$					H-2->LUMO(12)	
			$HOMO \rightarrow L+2(14)$					H-1->L+1(53)	
220		0.102	HOMO \rightarrow L+3(44)		001		0.101	HOMO->LUMO(11)	
220	5.62	0.102	$H-2 \rightarrow LUMO(23)$		231	5.35	0.181	H-5->LUMO(29)	
			$HOMO \rightarrow L^{+1}(34)$					H-4->LUMU(26)	
210	ECC	0.1.40	$HUMU \rightarrow L^{+}2(23)$		210	ECA	0.210	$\frac{\text{HOMO} > L + 2(32)}{\text{HOMO} > L + 2(22)}$	
218	5.66	0.149	$H-3 \rightarrow LUMU(18)$		219	5.64	0.210	HUMO > L+3(30)	
			$ 10MO \rightarrow L^{+1}(12) $					nuwuu->L+3(34)	
1	1		$110WO \rightarrow L^{+}2(22)$	1	1		1	1	1

			$HOMO \rightarrow L+3(26)$						
				7					
358	3.46	0.80	HOMO→LUMO(97)		394	3.14	1.857	H-1->L+1(14)	
								HOMO->LUMO(84)	
277	4.46	0.177	$H-1 \rightarrow LUMO(87)$		292	4.24	0.146	H-3->L+1(10)	
								H-2->LUMO(60)	
								H-1->L+1(21)	
239	5.17	0.115	H-3→LUMO(21)		256	4.82	0.119	H-3->L+1(11)	
			$H-1 \rightarrow LUMO(10)$					H-2->LUMO(12)	
			$HOMO \rightarrow L+2(14)$					H-1->L+1(53)	
			HOMO \rightarrow L+3(44)					HOMO->LUMO(11)	
220	5.62	0.105	H-2→LUMO(26)		231	5.34	0.185	H-5->LUMO(27)	
			$HOMO \rightarrow L+1(37)$					H-4->LUMO(28)	
			HOMO \rightarrow L+2(20)					HOMO->L+2(32)	
218	5.66	0.159	H-3→LUMO(17)		219	5.64	0.219	HOMO->L+3(36)	
			HOMO \rightarrow L+2(24)					HOMO->L+5(34)	
			HOMO \rightarrow L+3(28)						

			III		IV				
$\lambda(nm)$	Е	f	Major contribution	λ_{exp}	λ	Е	f	Major contribution	λ_{exp}
	(eV)		(%)		(nm)	(eV)		(%)	(nm)
					1				
365	3.40	0.778	HOMO→LUMO		365	3.39	0.774	HOMO→LUMO(97)	
			(97)						
280	4.42	0.209	H-3→LUMO(52)		280	4.41	0.1885	H-1→LUMO(88)	
			H-3→L+1(33)						
247	5.00	0.050	$H-1\rightarrow L+1(12)$		338	5.18	0.110	$H-2\rightarrow LUMO(19)$	
			$HOMO \rightarrow L+1(61)$					$HOMO \rightarrow L+3(53)$	
237	5.21	0.945	H-2→LUMO(23)		225	5.48	0.0349	H-2→LUMO(37)	
			$HOMO \rightarrow L+2(18)$					$HOMO \rightarrow L+2(41)$	
			$HOMO \rightarrow L+3(41)$						
218	5.67	0.168	H-1→L+2 (5%)		222	5.56	0.160	H-2→LUMO(26)	
			$HOMO \rightarrow L+1(3)$					$HOMO \rightarrow L+2(22)$	
								$HOMO \rightarrow L+3(30)$	
	2								
363	3.41	0.769	HOMO→LUMO(97)		363	3.40	0.754	HOMO→LUMO(97)	
279	4.42	0.208	H-1→LUMO (89)		280	4.42	0.187	H-1→LUMO (88)	
247	5.00	0.049	$H-1 \rightarrow L+1(12)$		238	5.19	0.104	H-2→LUMO(20)	
			$HOMO \rightarrow L+1(62)$					$HOMO \rightarrow L+3(52)$	
237	5.21	0.09	H-2→LUMO(23)		225	5.49	0.034	H-2→LUMO(35)	
			$HOMO \rightarrow L+2(19)$					$HOMO \rightarrow L+2(43)$	
			$HOMO \rightarrow L+3(41)$						
218	5.67	0.159	$HOMO \rightarrow L+2(35)$		222	5.57	0.151	H-2→LUMO(27)	
			$HOMO \rightarrow L+3(33)$					$HOMO \rightarrow L+2(20)$	
								$HOMO \rightarrow L+3(31)$	
		-			3	-	-		
363	3.40	0.773	HOMO→LUMO(97)		363	3.40	0.7581	HOMO→LUMO(97)	
280	4.42	0.208	$H-1 \rightarrow LUMO(89)$		280	4.42	0.187	H-1→LUMO(88)	
247	5.00	0.049	$H-1\rightarrow L+1(12)$		238	5.19	0.105	H-2→LUMO(20)	
			$HOMO \rightarrow L+1(62)$					$HOMO \rightarrow L+3(52)$	
237	5.21	0.090	$H-2\rightarrow LUMO(23)$		225	5.49	0.034	$H-2\rightarrow LUMO(35)$	
			$HOMO \rightarrow L+2(19)$					$HOMO \rightarrow L+2(43)$	
			$HOMO \rightarrow L+3(41)$					$HOMO \rightarrow L+1(2)$	

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				$HOMO \rightarrow I + 1(2)$					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	218	5.67	0.161	$HOMO \rightarrow I \pm 2(25)$		222	5 57	0.153	$H_2 \rightarrow U M O(27)$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	210	5.07	0.101	$HOMO \rightarrow L^{+}2(33)$		<i>LLL</i>	5.57	0.133	$HOMO \rightarrow I \pm 2(21)$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				$HOMO \rightarrow L^{+}3(33)$					$HOMO \rightarrow L^{+}2(21)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						4			$110 \text{ MO} \rightarrow \text{L} + 3(31)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	262	2.40	0 770	$IIOMO \cup IIIMO(07)$		4	2.20	0.769	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	303	3.40	0.778	$HOMO \rightarrow LOMO(97)$		304	5.59	0.708	$HOMO \rightarrow LOMO(97)$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	279	4.42	0.209	$H-I \rightarrow LUMO(89)$		281	4.41	0.185	$H-1 \rightarrow LUMO(88)$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	247	5.00	0.049	$H-I \rightarrow L+I(13)$		238	5.19	0.103	$H-2 \rightarrow LUMO(20)$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				$HOMO \rightarrow L+1(62)$					$HOMO \rightarrow L+2(10)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.000			225	5 40	0.025	$HOMO \rightarrow L+3(51)$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	237	5.21	0.092	$H-2 \rightarrow LUMO(23)$		225	5.49	0.035	$H-2 \rightarrow LUMO(37)$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				$HOMO \rightarrow L+2(19)$					$HOMO \rightarrow L^{+2}(42)$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	210		0.1.(2	$HOMO \rightarrow L+3(41)$				0.1.55	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	218	5.67	0.163	$HOMO \rightarrow L+2(35)$		222	5.57	0.157	$H-2 \rightarrow LUMO(26)$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				$HOMO \rightarrow L+3(34)$					$HOMO \rightarrow L+2(21)$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						_			$HOMO \rightarrow L+3(32)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					r	5			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	363	3.41	0.792	$HOMO \rightarrow LUMO(97)$		364	3.40	0.778	HOMO→LUMO(97)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	379	4.43	0.209	$H-1 \rightarrow LUMO(89)$		280	4.41	0.186	H-1→LUMO(88)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	247	5.00	0.0485	$H-1 \rightarrow L+1(13)$		238	5.19	0.108	$H-2\rightarrow LUMO(19)$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				$HOMO \rightarrow L+1(63)$					$HOMO \rightarrow L+2(10)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									$HOMO \rightarrow L+3(52)$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	237	5.21	0.099	H-2→LUMO(21)		225	5.49	0.034	$H-2\rightarrow LUMO(39)$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				$HOMO \rightarrow L+2(21)$					$HOMO \rightarrow L+2(41)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				$HOMO \rightarrow L+3(41)$					$HOMO \rightarrow L+1(2)$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	218	5.68	0.169	$HOMO \rightarrow L+2(33)$		222	5.58	0.161	H-2→LUMO(24)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				$HOMO \rightarrow L+3(35)$					$HOMO \rightarrow L+2(22)$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									$HOMO \rightarrow L+3(31)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					6				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	362	3.42	0.783	$HOMO \rightarrow LUMO(97)$		363	3.41	0.772	HOMO→LUMO(97)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	279	4.43	0.207	$H-1 \rightarrow LUMO(89)$		280	4.42	0.185	H-1→LUMO(88)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	237	5.21	0.099	H-2→LUMO(20)		238	5.19	0.106	$H-2 \rightarrow LUMO(19)$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				$HOMO \rightarrow L+2(21)$					$HOMO \rightarrow L+2(10)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				$HOMO \rightarrow L+3(41)$					$HOMO \rightarrow L+3(51)$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	227	5.46	0.018	H-2→LUMO(61)		225	5.50	0.033	H-2→LUMO(39)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				$HOMO \rightarrow L+2(25)$					$HOMO \rightarrow L+2(41)$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	217	5.68	0.163	$HOMO \rightarrow L+2(33)$		221	5.58	0.158	H-2→LUMO(24)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				$HOMO \rightarrow L+3(35)$					$HOMO \rightarrow L+2(21)$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									HOMO→L+3(32)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					7				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	363	3.41	0.804	HOMO→LUMO(97)		364	3.40	0.791	HOMO→LUMO
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									(97%)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	279	4.43	0.209	$H-1 \rightarrow LUMO(89)$		280	4.41	0.185	H-1 \rightarrow LUMO(88)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	248	4.99	0.048	H-1 \rightarrow L+1(13)		338	4.85	0.110	$H-2\rightarrow LUMO(18)$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				$HOMO \rightarrow L+1(63)$					$HOMO \rightarrow L+2(11)$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									$HOMO \rightarrow L+3(51)$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	237	5.21	0.105	$H-2\rightarrow LUMO(19)$		225	5.49	0.034	$H-2\rightarrow LUMO(41)$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				$HOMO \rightarrow L + 2(22)$					$HOMO \rightarrow L + 2(40)$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				HOMO \rightarrow L+3(41)					
$HOMO \rightarrow L+3(35)$ $HOMO \rightarrow L+2(23)$ $HOMO \rightarrow L+3(32)$	218	5.68	0.173	HOMO \rightarrow L+2(32)		221	5.58	0.165	$H-2\rightarrow LUMO(23)$
HOMO \rightarrow L+3(32)				HOMO \rightarrow L+3(35)					$HOMO \rightarrow L+2(23)$
									HOMO \rightarrow L+3(32)

V

			1	1	- F	1	1	1	r
λ	E	f	Major contribution	λ_{exp}	λ	E	f	Major contribution	λexp
(nm)	(eV)		(%)	(nm)	(nm)	(eV)		(%)	(nm)
			1				T	2	
372	3.33	0.765	HOMO→LUMO(97)		370	3.34	0.744	HOMO→LUMO(97)	
282	4.38	0.202	H-1→LUMO(90)		282	4.38	0.202	H-1→LUMO(90)	
237	5.22	0.091	$HOMO \rightarrow L+2(20)$		237	5.23	0.087	$HOMO \rightarrow L+2(20)$	
			$HOMO \rightarrow L+3(54)$					$HOMO \rightarrow L+3(54)$	
223	5.54	0.057	H-3→LUMO(16)		223	5.55	0.065	H-3→LUMO(15)	
			H-2→LUMO(22)					H-2→LUMO(22)	
			$HOMO \rightarrow L+1(42)$					$HOMO \rightarrow L+1(42)$	
217	5.71	0.173	H-3→LUMO(36)		216	5.71	0.168	H-3→LUMO(38)	
			$HOMO \rightarrow L+2(16)$					$HOMO \rightarrow L+2(16)$	
			$HOMO \rightarrow L+3(16)$					$HOMO \rightarrow L+3(17)$	
			3					4	
370	3.34	0.748	HOMO→LUMO(97)		370	3.34	0.752	HOMO→LUMO(97)	
282	4.38	0.202	H-1→LUMO(90)		282	4.38	0.202	$H-1 \rightarrow LUMO(90)$	
								$HOMO \rightarrow L+3(4)$	
237	5.22	0.088	$HOMO \rightarrow L+2(20)$		237	5.22	0.089	$HOMO \rightarrow L+2(20)$	
			$HOMO \rightarrow L+3(54)$					$HOMO \rightarrow L+3(54)$	
								$HOMO \rightarrow L+1(4)$	
223	5.55	0.066	$H-3 \rightarrow LUMO(15)$		223	5.55	0.067	H-3→LUMO(15)	
			H-2→LUMO(22)					H-2→LUMO(21)	
			$HOMO \rightarrow L+1(42)$					$HOMO \rightarrow L+1(43)$	
216	5.71	0.020	H-3→LUMO(38)		216	5.71	0.175	H-3→LUMO(38)	
			$HOMO \rightarrow L+2(16)$					$HOMO \rightarrow L+2(16)$	
			HOMO \rightarrow L+3(17)					$HOMO \rightarrow L+3(17)$	
			5	-			_	6	-
370	3.34	0.767	HOMO→LUMO(97)		369	3.35	0.761	HOMO→LUMO(97)	
282	4.38	0.201	H-1→LUMO(90)		282	4.39	0.200	H-1→LUMO(90)	
237	5.22	0.095	$HOMO \rightarrow L+2(21)$		237	5.22	0.093	$HOMO \rightarrow L+2(22)$	
			$HOMO \rightarrow L+3(53)$					$HOMO \rightarrow L+3(53)$	
223	5.55	0.070	H-3→LUMO(14)		222	5.45	0.069	H-3→LUMO(13)	
			H-2→LUMO(20)					H-2→LUMO(20)	
			$HOMO \rightarrow L+1(45)$					$HOMO \rightarrow L+1(45)$	
216	5.72	0.192	H-3→LUMO(39)		216	5.72	0.190	$H-3\rightarrow LUMO(40)$	
			$HOMO \rightarrow L+2(17)$					$HOMO \rightarrow L+2(16)$	
			$HOMO \rightarrow L+3(19)$					$HOMO \rightarrow L+3(20)$	
		7	1	1					
370	3.34	0.780	HOMO→LUMO(97)	1					
282	4.39	0.200	H-1→LUMO(90)]					
237	5.22	0.098	$HOMO \rightarrow L+2(23)$						
			$HOMO \rightarrow L+3(52)$]					
222	5.56	0.073	H-3→LUMO(12)						
			$H-2\rightarrow LUMO(19)$						
			$HOMO \rightarrow L+1(46)$	1					
216	5.72	0.204	H-3→LUMO(38)						
			$HOMO \rightarrow L+2(17)$						
			$HOMO \rightarrow L+3(20)$						

Figure S14. Schematic diagrams of HOMO and LUMO comparison by DFT calculations of acrylonitrile's compounds contain ring A substituted with F, Cl, Br, 2,4,5-TMO, -N(CH₃)₂, N(Ph)2, Cz and ring (B) is a phenyl ring or pyridine ring in position *ortho*, *meta* and *para*.

Figure S15. Graph of HOMO and LUMO calculations, energy gap with theory level of m062x / pVTZ

Solvent	Dielectric	LUMO	НОМО	Gap
	constant			
			eV	
1	46.68	1.66	-7.98	9.64
2	32.7	1.77	-9.56	11.33
4	37.5	1.53	-10.88	12.41
5	21.04	0.83	-8.81	9.64
7	7.58	1.78	-8.9	10.68
3	6.02	1.56	-9.58	11.14
6	4.81	0.22	-10.25	10.47

Table S7. DFT calculations of (1) DMSO, (2) MeOH, (3) AcCN, (4) Acetone (5) THF, (6) EtOAc, (7) Chloroform.

Figure S16. Images of the emission **I-V** solution under UV lamp.in (1)DMSO, (2) MeOH, (3) AcCN, (4) acetone, (5) THF, (6) EtOAc, (7) CHCl₃, and (8) MeOH:acetone (70:30).at

concentration of 0.001 mM.

Figure S17. Dipole moment of I-V performed with a theory level at m062x / pVTZ.

Table S8. Wave numbers (cm⁻¹) for the absorption and fluorescence emission maxima of the 1-V in different solvents and the Stokes shift. (1) DMSO, (2) MeOH, (3) EtOAc, (4) AcCN, (5) Acetone, (6) Chloroform, (7) THF and (8) mixture MeOH/Acetone (70:30).

Solvent	λ _{abs} nm	Ū _a (cm ^{−1})	λ _{em} nm	Ū _f (cm ^{−1})	$ar{v}_{a}-ar{v}_{f}$ (cm ⁻¹)	$1/2 \ \bar{v}_a + \bar{v}_f$ (cm ⁻¹)	$ar{v}_a + ar{v}_f$ (cm ⁻¹)
		•		Ι			
1	381	26,246.72	468	21,367.52	4,879.2	23,807.12	47614.24
2	376	26,595.74					
3	374	26,737.97	513	19,493.18	6,548.48	22,767.42	45,534.84
4	380	26,315.79		18,281.54			
5	366	27,322.40	547		8,034.25	22,298.66	44,597.33
6	384	26,041.66					
7	375	26,666.66	504	19,841.27	7,481.13	23,581.83	47,163.67
8	378	26,455.03					
				II			
1	415	24,096.39	530	18,867.92	5,228.47	21,482.15	42,964.31
2	341	29,325.51	690	14,492.75	14,842.76	21,909.13	43,818.26
3	415	24,096.39	521	19,193.86	4,902.53	21,645.12	43,290.25
4	414	24,154.59	530	18,867.92	5,286.67	21,511.25	43,022.51
5	415	24,096.39	516	19,379.84	4,716.55	21,738.11	43,476.23
6	415	24,096.39	523	19,120.46	4,975.93	21,608.42	43,216.85
7	416	24,038.46	503	19,880.72	4,157.74	21,959.59	43,919.18
8	413	24,213.08	607	16,474.46	7,738.62	20,343.77	40,687.54
				III			
1	396	25,252.52	498	20,080.32	5,171.21	22,666.41	45,332.83
2	393	25,445.29	442	22,624.43	2,820.86	24,034.86	48,069.72
3	392	25,510.20		22,988.50	2,521.69	24,249.35	48,498.7
4	406	24,630.54		18,797.00	5,833.54	21,713.78	43,427.54
5	391	25,575.45	435	20,576.13	4,999.32	23,075.79	46,151.58
6	393	25,445.29	532				
7	396	25,252.52	486				
8	393	25,445.29	440	22,727.27	2,718.02	24,086.28	48,172.56
				IV			
1	383	26,109.66	584	17,123.29	8,986.38	21,616.47	43,232.94
2	386	25,906.74					
3	383	26,109.66	525	19,047.62	6,333.09	22,214.16	44,428.33
4	385	25,974.03					

5	387	25,839.79					
6	394	25,380.71					
7	389	25,706.94	540	18,518.52	7,321.27	21,179.15	44,358.31
8	387	25,839.79					
				V			
1	394	25,380.71	507	19,723.87	5,656.84	22,552.29	45,104.58
2	390	25,641.03	553	18,083.18	7,557.85	21,862.1	43,724.21
3	393	25,445.29					
4	395	25,316.46	519	19,267.82	6,177.47	22,356.55	44,713.11
5	397	25,188.92	510	19,607.84	5,708.62	22,462.15	44,924.3
6	395	25,316.46					
7	398	25,125.63	506	19,762.85	5,426.07	22,475.88	44,951.77
8	399	25,062.66					

	Solvent	٤r	n	Δf	$f(\varepsilon,\mathbf{n}) + 2\mathbf{g}(\mathbf{n})^*$	<i>f</i> (ε,n)	μ <i>(D</i>)	F (ε,n)	$\mathbf{F}_{1}(\boldsymbol{\varepsilon},\mathbf{n})^{T}$	$F_2(\varepsilon,n)$
1	DMSO	46.68	1.479	0.263	1.488	0.84	3.9	0.2632	0.8404	0.628
2	MeOH	32.7	1.329	0.308	1.302	0.854	1.7	0.3062	0.8545	0.5622
3	AcCN	37.5	1.344	0.138	1.331	0.8631	3.45	0.3054	0.3536	0.3851
4	Acetone	21.04	1.359	0.203	1.281	0.792	2.87	0.2847	0.4892	0.3999
5	THF	7.58	1.407	0.21	1.102	0.5491	1.75	0.2096	0.5491	0.4468
6	EtOAc	6.02	1.372	0.305	0.9954	0.4891	1.88	0.1998	0.863	0.535
7	CHCl ₃	4.81	1.48	0.284	1.002	0.3709	1.15	0.1375	0.7924	0.5453
8	MeOH/Acetone	23.21	1.334	0	-	-	-	0.2974	0.8139	0.5442

Table S9. Dielectric constant and refractive index of various solvents, as well as Lippert's, Bakhshiev's and Kawasaki-Chamma-Violet's polarity parameters.

*Experimental and theoretical values of different references of $(\varepsilon, n) + 2g(n)$ and $f(\varepsilon, n)$

Experimental parameters according to the equations of Lippert's F (ϵ ,n), Bakhshiev's F₁ (ϵ ,n) y Kawski – Chamma – Viallet F₂ (ϵ ,n)

	λ_{abs}	ν _a	λ_{em}	$v_f cm^{-1}$	v_a - v_f	$1/2 \bar{\upsilon}_a + \bar{\upsilon}_f$	$\bar{\upsilon}_a + \bar{\upsilon}_f$
Sample	nm	cm ⁻¹	nm		cm ⁻¹	(cm ⁻¹)	(cm ⁻¹)
(I)	438	22,831.05	472	21,186.44	1,644.61	22,008.74	44,017.49
(II)	604	16,556.29	616	16,233.77	322.52	16,395.03	32,790.06
III	463	21,598.27	501	19,960.08	1,638.19	20,779.17	41,558.35
IV	478	20,920.50	518	19,305.02	1,615.48	20,112.76	40,225.52
V	488	20,491.82	502	19,920.32	571.5	20,206.07	40,412.14

Table S10. Wave numbers (cm^{-1}) for the absorption and fluorescence emission maxima of the 1-V in solid state and the Stokes shift.

Table S11. Crystallographic data for the structures of I and II

Parameters	Ia and Ib	II
Empirical formula	$C_{18}H_{17}N_1O_3$	$C_{30}H_{28}N_2O_6$
$M_{ m r}$	295.32	512.54
Color, habit	Colorless, block	Orange
Crystal system, space group	Monoclinic, $P2_1/n$	Monoclinic, $P2_1/c$
Temperature (K)	293	110
<i>a</i> (Å)	14.5858(2)	4.4283 (2),
<i>b</i> (Å)	7.37534(14)	18.0006 (11),
<i>c</i> (Å)	14.6835(2)	15.5766 (7)
α(°)	90	9093.627 (4)
β (°)	103.7001(14)	90
γ (°)	90	
$V(Å^3)$	1534.65(4)	1239.16 (11)
Z	4	2
$Dc(g \text{ cm}^{-3})$	1.278	1.374
Radiation type	Cu Kα	Cu Ka
μ (mm ⁻¹)	0.707	0.79
Crystal size (mm)	0.557 x 0.20 x 0.111	$0.22\times0.08\times0.03$
T_{\min}, T_{\max}	0.943, 0.985	0.891, 0.977
No. of measured, independent and	37305, 3259, 2680	8104, 2437, 1936
observed $[I > 2\sigma(I)]$ reflections		
R _{int}	0.048	0.041
$(\sin \theta / \lambda)_{max} (\text{Å}^{-1})$	0.633	0.616
$R[F^2 > 2\sigma F^2)], wR(F^2), S$	0.0421, 0.1132, 1.030	0.055, 0.160, 1.05
No. of reflections	3259	2437
No. of parameters	203	175

H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta ho_{ m max}, \Delta_{ m min} \ ({ m e} \ { m \AA}^{-3})$	0.17, -0.22	0.33, -0.25

Table S12. Crystallographic data for the structures of III-V

	ш	IV	V
Parameters	111	1 V	v
Empirical formula	$C_{17}H_{16}N_2O_3$	$C_{17}H_{16}N_2O_3$	$C_{17}H_{16}N_2O_3$
Mr	296.32	296.32	296.32
Color, habit	Yellow, needle	Yellow, block	Orange, needle
Crystal system,	Orthorhombic, Pbca	Triclinic, P-1	Monoclinic, $P2_1$
space group			
Temperature (K)	110	293(2)	110(2)
<i>a</i> (Å)	7.13613 (18),	7.9756(4)	3.92005(11
<i>b</i> (Å)	17.5199 (5),	9.1759(4)	21.5815(7)
<i>c</i> (Å)	23.2243 (5)	10.7900(4)	8.3715(3)
α(°)	90	81.523(3)	90
β (°)	90	75.072(4)	92.609(3)
γ (°)	90	76.392(4)	90
$V(Å^3)$	2903.60 (13)	738.40(6)	707.50(4)
Z	1	2	2
$Dc(g \text{ cm}^{-3})$	1.356	1.333	1.391
Radiation type	Cu Ka	Cu Ka	Cu Ka
μ (mm ⁻¹)	0.77	0.758	0.791
Crystal size (mm)	$0.43 \times 0.09 \times 0.05$	0.43 x 0.22 x 0.18	$0.23 \times 0.07 \times 0.03$
T_{\min}, T_{\max}	0.830, 0.967	0.967,0.928	0.881, 0.981
No. of measured,	22286, 2843, 2455	28355, 3124, 2395	8996, 2769, 2660
independent and			
observed [1>			
$2\sigma(I)$] reflections			
R _{int}	0.041	0.0461	0.031
$(\sin \theta / \lambda)_{max} (\text{Å}^{-1})$	0.616	0.633	0.616
$R[F^2 > 2\sigma F^2)],$	0.035, 0.096, 1.05	0.046, 0.143, 1.04	0.032, 0.087, 1.09
$wR(F^2), S$			
No. of reflections	2843	3124	2769
No. of parameters	203	202	202
H-atom treatment	H-atom parameters	H-atom parameters	H-atom parameters

	constrained	constrained	constrained
$\Delta \rho_{\text{max}}, \Delta_{\text{min}} (e \text{ Å}^{-3})$	0.23, -0.17	0.26, -0.14	0.18, -0.17

Compound	A	m.p.	
	Powder	Crystal	°C
Ia			147-148
Ib			145-146
ш	•		134-135
IV			152-153
V	4		165-166

Table S13. Crystal morphology for I-V

Figure S18. herringbone packing or I slipped stacking without π - π overlap between adjacent molecules

Figure S19. Herringbone packing of **II** with slipped stacking (i) with very slip weak π - π overlap between adjacent molecules and (ii) a view down the bc crystallographic plane.

Figure S20. Molecular packing of **III** slipped stacking without π - π overlap occurring between adjacent molecules

Figure S21. Molecular packing of **IV**)which shows a structure of 2D supramolecular lamella and π – π overlap stacking occurring between Py-Py rings.

Figure S22. Herringbone packing or V slipped stacking without π - π overlap occurring between adjacent molecules

Donor	ED	Acceptor	ED	E ²	E(j)-E(i) ^c	F(i,j) ^d	Donor	ED	Acceptor	ED	E^2	E(j)-	F(i,j) ^d
(i)	(e)	(j)	(e)		(a.u.)	(a.u.)	(i)	(i)(e	(j)	e		E(i) ^c	(a.u.)
												(a.u.)	
	Ι							II					
]	Phenylacry	lonitirle						
π C3-C4	1.65884	π*C5-C6	0.32111	29.35	0.35	0.092	πС2-С3	1.63204	π*C1-C3	0.37678	30.21	0.35	0.092
π C1-C2	1.63887	π*C3-C4	0.33096	29.13	0.35	0.091	π C1-C3	1.97317	π*C2-C3	0.38016	30.05	0.35	0.092
π C5-C6	1.67548	π*C1-C2	0.36746	28.56	0.36	0.091	π C1-C2	1.67465	π*C1-C3	0.37678	28.03	0.36	0.090
π C7-C8	1.84453	π*C15-N1	0.07588	22.14	0.50	0.095	π C4-C5	1.8419	π*C12-N1	0.07595	22.16	0.49	0.095
π C15-N1	1.96788	π *C7-C8	0.18159	8.60	0.48	0.060	π C12-N1	1.96827	π*C4-C5	0.18414	8.54	0.48	0.060
σ C7-C15	1.97797	σ*C15-N1	0.00962	5.53	1.77	0.089	C4-C12	1.97793	σ*C12-N1	0.00958	5.50	1.77	0.088
σ C1-C7	1.95783	σ*C8-C9	0.02188	4.78	1.25	0.069	σ C3-C4.	1.95804	σ*C12-N1	0.00958	4.89	1.70	0.082
σ C2-C3	1.98005	σ*C1-C7	0.03202	4.70	1.27	0.069	σ C5-C6	1.97384	σ*C3-C4	0.03173	4.04	1.24	0.063
σ C8-C9	1.97391	σ*C1-C7	0.03202	4.03	1.24	0.063	σ C2-C3	1.97317	σ*C1-C3	0.02262	3.24	1.37	0.060
σ C1-C6	1.97352	σ*C1-C2	0.02253	3.29	1.37	0.060							
					-	trimethoxy	yphenyl		-				
π C11-C12	1.71197	π*C9-C10	0.43053	32.15	0.37	0.101	πC9-C10	1.71158	π*C6-C11	0.43068	32.24	0.37	0.101
π C13-C14	1.71931	π*C11-C12	0.40085	28.19	0.35	0.092	πC7-C8	1.72032	π*C9-C10	0.40033	28.09	0.35	0.091
π C9-C10	1.64051	π*C13-C14	0.34048	27.98	0.36	0.090	πC6-C11	1.63935	π *C7-C8	0.34079	28.03	0.36	0.090
σ C9-C14	1.96902	σ*O3-C13	0.02651	5.23	1.22	0.071	σ C6-C7	1.96897	C8-O1	0.02648	5.25	1.22	0.071
σ C10-C11	1.9782	σ*O2-C12	0.0256	4.97	1.25	0.070	σ C11-C12	1.97822	C9-O2	0.02557	4.97	1.25	0.070
σ C12-C13	1.96882	σ*O2-C17	0.00977	4.51	1.12	0.064	σ C8-C9	1.96879	C14-O2	0.00978	4.51	1.12	0.064
σ O3-C18	1.99057	σ*C2-C13	0.0357	4.04	1.48	0.069	σ C13-O1	1.99057	C8-C9	0.03572	4.04	1.48	0.069
σ O1-C16	1.99168	σ*C9-C10	0.02915	3.84	1.52	0.069	C15-O3	1.99165	C6-C11	0.02935	3.86	1.52	0.069
σ O2-C17	1.99109	σ*C12-C13	0.0357	3.80	1.50	0.068	C14-O2	1.99107	C8-C9	0.03572	3.80	1.50	0.068
σ O1-C10	1.98925	σ*C9-C14	0.0203	2.15	1.59	0.052	C11-O3	1.98926	C6-C7	0.02029	2.16	1.59	0.052
σ O3-C13	1.98917	σ*C11-C12	0.02519	1.93	1.58	0.049	C8-O1	1.98914	C9-C10	0.02519	1.93	1.58	0.049
σ O2-C12	1.98989	σ*C13-C14	0.02504	1.78	1.63	0.048	C9-O2	1.98991	C7-C8	0.02501	1.78	1.63	0.048
LP O2	1.83456	π*C11-C12	0.40085	41.32	0.44	0.128	O2	1.83428	C9-C10	0.40033	41.40	0.44	0.128
LP O3	1.85537	π*C13-C14	0.34048	36.01	0.44	0.119	01	1.85552	C7-C8	0.34079	35.97	0.44	0.119
LP O1	1.85509	π*C9-C10	0.43053	33.59	0.45	0.119	03	1.85417	C6-C11	0.43068	33.81	0.45	0.119
LP N1	1.96388	σ*C7-C15	0.03968	15.86	1.14	0.120	N1	1.96393	C4-C12	0.03966	15.85	1.14	0.120

Table S14. Second order perturbation theory analysis of Fock matrix in NBO basis for I and II.

ED: Electron Density $E^{(2)}$: means energy of hyperconjugative interaction

Donor	ED	Acceptor	ED	E^2	E(j)-	F(i,j) ^d	Donor	ED	Acceptor	ED	E(2)	E(j)-E(i) ^c	F(i,j) ^d	
(i)	(e)	(j)	(e)		E(i) ^c	(a.u.)	(i)	(e)	(j)	(e)	Kcal/mol	(a.u.)	(a.u.)	
					(a.u.)									
			III				IV							
						Pyridila	lacrylonitrile							
π C5-N1	1.70153	π*C1-C2	0.30278	37.87	0.40	0.110	πN1-C2	1.70781	π*C1-C5	0.34145	37.12	0.40	0.110	
π C3-C4	1.6657	π*C5-N1	0.4293	37.70	0.35	0.104	πС3-С4	1.66343	πN1-C2	0.37406	36.94	0.35	0.102	
π C1-C2	1.6336	π*C3-C4	0.30181	33.33	0.35	0.098	πC1-C5	1.60241	π*C3-C4	0.30758	31.52	0.35	0.096	
π C6-C8	1.84079	π*C7-N2	0.06976	20.84	0.51	0.094	πC6-C8	1.84522	π*C7-N2	0.0753	21.99	0.50	0.095	
π C7-N2	1.96582	π*C6-C8	0.17976	8.92	0.47	0.060	πC7-N2	1.96771	π*C6-C8	0.18325	8.66	0.48	0.060	
σ C6-C7	1.97826	σ*C7-N2	0.00943	5.72	1.77	0.090	σC6-C7	1.97783	σ*C7-N2	0.00956	5.57	1.77	0.089	
σ C5-C6	1.96089	σ*C8-C9	0.02203	4.99	1.25	0.071	σC5-C6	1.95892	σ*C7-N2	0.00956	4.81	1.71	0.082	
σ C1-N1	1.98587	σ*C5-C6	0.03986	4.82	1.40	0.074	σC4-C5	1.97402	σ*C1-C5	0.03624	2.77	1.37	0.055	
σ C3-C4	1.97992	σ*C5-C6	0.03986	4.72	1.28	0.070	σC2-C3	1.9872	σ*C3-C4	0.01368	1.95	1.39	0.047	
σ C8-C9	1.97438	σ*C5-C6	0.03986	3.79	1.23	0.061	-	-	-	-				
σ C2-C3	1.98211	σ*C3-C4	0.01377	2.14	1.39	0.049	-	-	-	-				
					-	trimethox	yphenyl Grup)		-				
πC11-C12	1.71028	π*C9-C10	0.4331	32.56	0.37	0.101	C11-C12	1.71063	C9-C10	0.43116	32.42	0.37	0.101	
πC13-C14	1.71738	π*C11-C12	0.4005	28.53	0.35	0.092	C13-C14	1.71973	C11-C12	0.39935	28.14	0.35	0.091	
πC9-C10	1.63906	π*C13-C14	0.33544	27.65	0.36	0.090	C9-C10	1.64097	C13-C14	0.33965	27.89	0.36	0.090	
σ C9-C14	1.96911	σ*C13-O3	0.02657	5.23	1.22	0.071	C9-C14	1.96882	O3-C13	0.0264	5.24	1.22	0.071	
σ C10-C11	1.9782	σ*C12-O2	0.0256	4.96	1.25	0.070	C10-C11	1.97823	O2-C12	0.0255	4.95	1.25	0.070	
σ C12-C13	1.9689	σ*C16-O2	0.00984	4.54	1.12	0.064	C12-C13	1.96882	O2-C16	0.00978	4.51	1.12	0.064	
σ C17-O3	1.9905	σ*C12-C13	0.03588	4.08	1.48	0.070	O3-C17	1.99052	C12-C13	0.0358	4.05	1.48	0.070	
σ C15-O1	1.99168	σ*C9-C10	0.02901	3.85	1.52	0.069	O1-C15	1.99165	C9-C10	0.0294	3.86	1.52	0.069	
σ C16-O2	1.99109	σ*C12-C13	0.03588	3.80	1.50	0.068	O2-C16	1.99104	C12-C 13	0.0358	3.81	1.50	0.068	
σ C10-O1	1.98929	σ*C9-C14	0.02035	2.12	1.59	0.052	C8-C9	1.97384	C10-C11	0.02632	3.47	1.33	0.061	
σ C13-O3	1.98922	σ*C11-C12	0.02528	1.93	1.58	0.049	O1-C10	1.98926	C9-C14	0.0202	2.17	1.59	0.052	
σ C12-O2	1.98995	σ*C13-C14	0.02502	1.76	1.64	0.048	C14-O2	1.98991	C13-C 14	0.02507	1.78	1.63	0.048	
							C13-O3	1.98916	C13-C 14	0.02507	1.49	1.61	0.044	
LP O2	1.83306	π*C11-C12	0.4005	41.72	0.44	0.128	02	1.83326	C11-C12	0.39935	41.69	0.44	0.128	
LP O3	1.85486	π*C13-C14	0.33544	36.18	0.44	0.119	O3	1.85476	C13-C14	0.33965	36.24	0.44	0.119	
LP O1	1.85558	π*C9-C10	0.4331	33.57	0.45	0.119	01	1.85453	C9-C10	0.43116	33.74	0.45	0.119	
LP N2	1.96442	σ*C6-C7	0.03854	15.78	1.13	0.119	N2	1.96408	C6-C7	0.03966	15.91	1.13	0.120	
LP N1	1.91169	σ*C5-C4	0.03719	14.13	0.99	0.107	N1	1.91499	C2-C3	0.02827	12.83	1.00	0.103	

Table S15. Second order perturbation theory analysis of Fock matrix in NBO basis for III and IV

Donor	ED	Acceptor	ED	E ²	E(j)-E(i) ^c (a.u.)	$F(i,j)^d$ (a.u.)					
(i)	(e)	(j)	(e)								
V											
		Pyri	dilacrylonitrile								
πC1-C5	1.63101	C2-N1	0.37048	39.64	0.35	0.104					
πC2-N1	1.71245	C3-C4	0.29592	38.14	0.40	0.111					
πС3-С4	1.6516	C1-C5	0.35599	33.45	0.36	0.098					
πC6-C8	1.83532	C7-N2	0.07622	22.35	0.50	0.096					
πC7-N2	1.96801	C6-C8	0.18582	8.55	0.48	0.059					
σ C6-C7	1.97796	σ* C7-N2	0.00959	5.56	1.77	0.089					
σ C1-C2	1.98513	σ* C5-C6	0.03324	5.24	1.27	0.073					
σ C5-C6	1.95935	σ* C7-N2	0.00959	4.93	1.70	0.082					
σ C8-C9	1.97418	σ* C5-C6	0.03324	4.02	1.24	0.063					
σ C4-C5	1.97378	σ* C1-C5	0.02169	3.17	1.37	0.059					
σ C3-N1	1.98746	σ* C3-C4	0.02733	1.58	1.51	0.044					
	-	trimeth	oxyphenyl Group								
π C11-C12	1.70886	π*C9-C10	0.43341	32.87	0.37	0.101					
πC13-C14	1.7217	π*C11-C12	0.39718	28.15	0.35	0.092					
πC9-C10	1.63689	π*C13-C14	0.33505	27.63	0.36	0.090					
σ C9-C14	1.96905	σ* C13-O3	0.02645	5.25	1.22	0.072					
σ C10-C11	1.97828	σ* C12-O2	0.02545	4.94	1.25	0.070					
σ C12-C13	1.96883	σ* C16-O2	0.00985	4.55	1.12	0.064					
σ C17-O3	1.99048	σ* C12-C13	0.03599	4.08	1.48	0.070					
σ C15-O1	1.9916	σ* C9-C10	0.02928	3.89	1.52	0.069					
σ C16-O2	1.991	σ*C11-C12	0.03599	3.84	1.50	0.068					
σ C10-O1	1.98934	σ*C9-C14	0.02036	2.14	1.59	0.052					
σ C13-O3	1.98919	σ*C11-C12	0.02528	1.92	1.58	0.049					
σ C12-O2	1.98999	σ*C13-C14	0.02503	1.76	1.64	0.048					
02	1.83095	C11-C12	0.39718	42.31	0.44	0.129					
03	1.85423	C13-C14	0.33505	36.46	0.44	0.119					
01	1.85317	C9-C10	0.43341	34.29	0.45	0.120					
N2	1.96392	C6-C7	0.03931	15.90	1.13	0.120					
N1	1.91675	C3-C4	0.02733	13.04	1.01	0.104					

Table S16. Second order perturbation theory analysis of Fock matrix in NBO basis for V.

Geometry (Å, °) Symmetry operator Dimer Important Distance E_{coul} Epol E_{dis} Erep E_{tot} interactions (Å) $d(\mathbf{H}\cdots\mathbf{A})$ $d(D \cdots A)$ <D-…A -x+3/2, y-1/2, -z+1/2 C17-H17B···C14 2.89 3.949 165 8.247 -4.2 -9.1 5.8 -9.1 -1.6 1 3.660 C16-H16A...O3 2.571 179 C3-H3…O3 2.675 3.525 134 -x+2, -y+1, -z 6.378 -2.5 -1.3 -10.2 5.8 -8.2 2 x+1/2, -y+1/2, z+1/2 C16-H16B····O3 3 2.506 3.481 148 9.040 -4.4 -1.5 -5.1 4.4 -6.7 C5-H5…N1 155 2.452 3.469 С6-Н6…С3 2.89 3.969 -x+5/2, y-1/2, -z+1/2 8.770 -1.8 -0.7 -7.2 -6.1 4 171 3.6 С6-Н6…С4 3.934 160 2.893 C18-H18B····C1 2.715 3.560 134 -x+2, -y, -z 6.355 -2.4 -1.5 -9 -5.9 5 7 C18-H18B....C2 2.819 3.764 145 H16C···C1 2.347 x-1/2, -y-3/2, z+1/2 11.509 -1.8 -3.7 -4.2 -0.7 2 6 Π 3.232 4.428 -4.2 -38 -18.8 1 $C2 \cdots C5$ x+1, y, z -6.6 30.1 C2…C5 3.389 C2…C5 3.346 C14-C14A ···· C10 2.789 3.712 142 C13-H13C ··· N1 2.666 3.728 164 2 C1-H1....C14 2.775 3.698 171 -x+3, y+1/2, -z+3/2 14.539 -3.8 -1.8 -6.3 -6.7 6.1 C15-H15B····C13 2.791 3.407 116 C10-H10···N1 2.615 3.696 173 C15-H15A…N1 2.739 115 3.372 C1-H1...C14 2.775 3.698 142 -x-1, y+1/2, -z+1/2 14.539 -3.8 -1.9 3 -6.7 6.2 -6.2 C15-H15B···C13 2.789 3.407 115

Table S17. Geometrical parameters for intermolecular interactions exist in different dimers of I-V and the intermolecular interaction

energies for these dimers (in kcal mol⁻¹).

	C10-H10…N1	2.613	3.696	172							
	C15-H15A…N1	2.739	3.372	116							
4	C14-H14 <i>B</i> ····O3	2.693	3.759	166	-x+2, y-1/2, -z+3/2	12.526	-1.8	-0.8	-4.2	2	-4.9
	H14 <i>B</i> ··· H15 <i>B</i>		2.357								
5	C13-H13 <i>B</i> ····O1	2.431	3.353	141	x-3, y, z-1	19.823	-3.7	-1.1	-3.3	3.3	-4.8
6	C14-H14 <i>B</i> ····O3	2.693	3.759	166	-x+2, y+1/2, -z+3/2	12.526	-1.8	-0.8	-4.2	2	-4.8
	•		·	•	III	·	•				
1	C16-H16A····C1	2.864	3.759	139	x+1/2, y, -z+1/2	3.907	-7.5	-3.5	-20.3	16.1	-15.2
	С16-Н16А…С7	2.735	3.605	136							
	C17-H17C···N2	2.525	3.572	160							
	C18-H18C···C13	2.815	3.707	139							
	C18-H18A····O3	2.718	3.649	143							
	C16-H16C···C1	2.651	3.692	159							
	C16-H16C…N1	2.659	3.716	163							
	C16-H16C···C3	2.859	3.848	151							
2	C5-H5…N2	2.257	3.232	147	-x+1/2, y+1/2, z	8.808	-5.4	-2.3	-6.5	7.7	-6.6
	C18-H18A····C6	2.807	3.483	120							
3	C18-H18 <i>B</i> ····O1	2.566	3.477	140	-x, y+1/2, -z+1/2	9.289	-3.1	-1	-5.1	3.1	-6
4	C3···C3		3.624		x-1/2, -y+1/2, -z+1	11.689	-2.6	-0.9	-4.8	3.5	-4.8
	C4-H4…N2	3.045	4.117	174							
	C4-H4…C15	3.125	4.123	154							
5	C17-H17 <i>B</i> ····N1	2.877	3.947	167	-x+1/2, -y, z+1/2	12.288	-2.7	-0.5	-1.6	0.5	-4.2
6	С3-Н3…С16	3.062	3.688	117	x, -y+1/2, z+1/2	12.584	-0.1	-0.4	-2.7	1.2	-2
					IV						
1	C18-H18C····O1	2.712	3.688	149	-x+1, -y, -z+1	4.057	-7.2	-2.4	-20.2	12	-17.8
2	C17-H17A····C14	2.807	3.709	140	-x, -y, -z+1	6.924	-2.2	-1.6	-12.2	6.9	-9.1
3	C5-H5…N2	2.676	3.64	147	x, y-1, z	9.176	-4.1	-1.6	-5.7	5.1	-6.4
	С6-Н6…С18	2.865	3.715	135							
	H18 <i>B</i> ····H8		2.225								
	C18-H18 <i>B</i> ····O1	2.506	3.465	146							
	C16-H16A····O3	2.484	3.464	149							
4	C18-H18A…N2	2.624	3.579	146	-x+1, -y, z	7.769	-3.1	-1.5	-5.8	4	-6.3

5	C16-H16C…N1	2.726	3.346	116	x-1, y, z+1	11.649	-3.5	-1.1	-4.9	3.5	-6
	H17A···H2		2.388								
6	C16…C16		3.569		-x, -y+1, -z+1	8.767	-0.9	-0.3	-2.8	1	-3.1
					V						
1	C18-H18C···N2	2.743	3.829	175	x-1, y, z	3.920	-1.2	-2.8	-20.7	14.4	-10.3
	C18-H18A····C18	2.848	3.92	168							
	C17-H17A····C11	2.792	3.583	129							
	C16-H16C···C16	2.854	3.92	166							
2	H17 <i>C</i> ···H3		2.282		-x+2, y+1/2, -z	11.936	-3.7	-1.5	-5.2	4.9	-5.6
	C11-H11…N1	2.698	3.786	177							
	C16-H16C···C5	2.865	3.404	110							
3	C3-H3…N2	2.583	3.474	138	x, y, z-1	8.372	-2.8	-1	-5.3	3.5	-5.5
4	H18B····H8		2.182		x-1, y, z-1	9.081	-2.7	-1.4	-5.5	4.8	-4.8
	C18-H18BO1	2.482	3.419	143							
	C16-H16 <i>B</i> ····O3	2.457	3.407	145							
5	С6-Н6…С17	2.859	3.707	135	-x+2, y+1/2, -z+1	11.344	-1.4	-0.6	-2.9	1.7	-3.2
6	C17-H17 <i>B</i> ····N2	2.797	3.525	124	-x+3, y-1/2, -z+1	11.631	-1.1	-0.4	-2	1.1	-2.4

Compound	Donor	ED	Acceptor	ED	E(2)	$E(j)$ - $E(i)^c$	$F(i,j)^d$
	<i>(i)</i>	(e)	(j)	(e)		(a.u.)	(a.u.)
	π C5-C6	1.67548	π*C1-C2	0.36746	28.56	0.36	0.091
	π C7-C8	1.84453	π*C15-N1	0.07588	22.14	0.50	0.095
Ι	σ C7-C15	1.97797	σ*C15-N1	0.00962	5.53	1.77	0.089
	σ C2-C3	1.98005	σ*C1-C7	0.03202	4.70	1.27	0.069
	σ C8-C9	1.97391	σ*C1-C7	0.03202	4.03	1.24	0.063
	σ C1-C6	1.97352	σ*C1-C2	0.02253	3.29	1.37	0.060
	πС2-С3	1.63204	π*C1-C3	0.37678	30.21	0.35	0.092
	π C4-C5	1.8419	π*C12-N1	0.07595	22.16	0.49	0.095
Π	σ C3-C4.	1.95804	σ*C12-N1	0.00958	4.89	1.70	0.082
	σ C2-C3	1.97317	σ*C1-C3	0.02262	3.24	1.37	0.060
	π C1-C2	1.6336	π*C3-C4	0.30181	33.33	0.35	0.098
	π C6-C8	1.84079	π*C7-N2	0.06976	20.84	0.51	0.094
	σ C6-C7	1.97826	σ*C7-N2	0.00943	5.72	1.77	0.090
	σ C1-N1	1.98587	σ*C5-C6	0.03986	4.82	1.40	0.074
	σ C3-C4	1.97992	σ*C5-C6	0.03986	4.72	1.28	0.070
III	σ C8-C9	1.97438	σ*C5-C6	0.03986	3.79	1.23	0.061
	σ C2-C3	1.98211	σ*C3-C4	0.01377	2.14	1.39	0.049
	LP O2	1.83306	π*C11-C12	0.4005	41.72	0.44	0.128
	LP O3	1.85486	π*C13-C14	0.33544	36.18	0.44	0.119
	LP O1	1.85558	π*C9-C10	0.4331	33.57	0.45	0.119
	LP N2	1.96442	σ*C6-C7	0.03854	15.78	1.13	0.119
	LP N1	1.91169	σ*C5-C4	0.03719	14.13	0.99	0.107
	πN1-C2	1.70781	π*C1-C5	0.34145	37.12	0.40	0.110
	πC6-C8	1.84522	π*C7-N2	0.0753	21.99	0.50	0.095

Table S18. Second order perturbation theory analysis of Fock matrix in NBO basis for I-V.

IV	σC6-C7	1.97783	σ*C7-N2	0.00956	5.57	1.77	0.089
	σC5-C6	1.95892	σ*C7-N2	0.00956	4.81	1.71	0.082
	σC4-C5	1.97402	σ*C1-C5	0.03624	2.77	1.37	0.055
	πC2-N1	1.71245	π*C3-C4	0.29592	38.14	0.40	0.111
	πС3-С4	1.6516	π*C1-C5	0.35599	33.45	0.36	0.098
V	πC6-C8	1.83532	π*C7-N2	0.07622	22.35	0.50	0.096
	σ C6-C7	1.97796	σ* C7-N2	0.00959	5.56	1.77	0.089
	σ C5-C6	1.95935	σ* C7-N2	0.00959	4.93	1.70	0.082
	σ C4-C5	1.97378	σ* C1-C5	0.02169	3.17	1.37	0.059
	σ C3-N1	1.98746	σ* C3-C4	0.02733	1.58	1.51	0.044

^a E(2) means energy of hyper conjugative interactions (stabilization energy in kJ/mol). ^b Ej - Ei is energy difference between donor and acceptor *i* and *j* NBO orbitals. ^c F(i,j) is the Fock matrix element between *i* and *j* NBO orbitals.