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Abstract: It is challenging work to develop a low-cost, efficient, and environmentally friendly Cr(VI)
adsorbent for waste water treatment. In this paper, we used hemicelluloses from chemical fiber factory
waste as the raw material, and prepared two kinds of carbon materials by the green hydrothermal
method as adsorbent for Cr(VI). The results showed that hemicelluloses hydrothermally treated
with citric acid (HTC) presented spherical shapes, and hemicelluloses hydrothermally treated with
ammonia solution (HTC-NH2) provided spongy structures. The adsorption capacity of the samples
can be obtained by the Langmuir model, and the adsorption kinetics could be described by the pseudo-
second-order model at pH 1.0. The maximum adsorption capacity of HTC-NH2 in the Langmuir
model is 74.60 mg/g, much higher than that of HTC (61.25 mg/g). The green hydrothermal treatment
of biomass with ammonia solution will provide a simple and feasible way to prepare adsorbent for
Cr(VI) in waste water treatment.

Keywords: hemicelluloses; hydrothermal carbonization; adsorption kinetics; heavy metal

1. Introduction

Nowadays, climate change and environmental pollution have raised increasing con-
cerns, especially industrial waste water, which usually contains heavy metal particles and
organic dyes [1,2]. Chromium, which been widely applied in manufacturing industries
(such as dyeing, tanning, printing, polishing, and electroplating), is a typical heavy metal el-
ement in industrial waste water [3–6]. Chromium usually exists in various oxidation states,
e.g., trivalent chromium and hexavalent chromium. Trivalent chromium is an important
element in regulating glucose metabolism and maintaining normal tolerance in vivo. It can
also affect the body’s lipid metabolism and reduce the contents of cholesterol and triglyc-
eride in blood. However, Cr(VI) shows toxicity and carcinogenicity for creatures. Besides,
Cr(VI) usually exists in the form of HCrO4

− and CrO4
2− in the environment, which has a

high dissolubility in water. The high dissolubility of Cr(VI) in water allowed it to easily
migrate into the digestive system and cause injures to human bodies [7]. National Health
Commission (NHC, China) and China Environmental Protection Law have set the allow-
able limit (0.05 mg/L and 0.5 mg/L) for hexavalent chromium in human drinking water
and industrial waste standards, respectively. It is necessary to prevent humans from harms
caused by hexavalent chromium from various industrial waste waters [8,9].

To remove Cr(VI) from water, many methods have been developed, such as redox,
biological treatment, adsorption, electrochemical processes, and so on [8,10]. Among these
methods, adsorption is considered to be the most promising because of its simplicity,
low cost, and low energy consumption. There are many kinds of adsorbents used for Cr(VI)
adsorption in waste water, such as metallic oxide, polymer materials, and carbon-based
adsorbents [11–14]. Owing to the controllable morphology, high surface area, low toxicity,
low cost, and environmental-friendliness, carbon materials have become a kind of widely
accepted adsorbent [15–18].
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Owing to the simplicity, low cost, and environmental-friendliness, hydrothermal
carbonization is one of the most promising methods for the production of valuable carbon
materials, such as carbon spheres and porous carbons [19,20]. Hydrothermal carbons
could be prepared from fossils, polysaccharides, and agricultural and forestry wastes,
among others [21]. Noteworthily, agricultural and forestry wastes with extremely low cost,
great availability, and relatively high carbon content [22,23] have become the proper candi-
date for producing carbon materials. For example, it was reported corn stalk and Tamarix
ramosissima can be converted to lignite-like solid products after hydrothermal treatment,
and heating values increased significantly [22]. Besides, carbon materials obtained by hy-
drothermal treatment usually have rich functional groups and excellent physical properties,
as well as different morphology [24,25].

Although many works in the literature have reported different carbon materials used
for Cr(VI) adsorption, these materials cannot achieve the desired adsorption performances
(e.g., high removal efficiency, high adsorption capacity, without second pollution) [26,27].
Large numbers of adsorption experiments have shown that the adsorption capacity of
carbon materials is highly dependent on pH, and the addition of the element nitrogen
can also increase the adsorption capacity for Cr(VI). For example, polyethylenimine (PEI)
grafted graphene oxide nanosheets were used for adsorption Cr(VI), and the optimum
adsorption could be achieved at pH 2.0 and the maximum adsorption capacity was up to
1185 mg/g, which is the highest adsorption capacity [28]. This is related to the fact that
amino (NH4

+) is a kind of functional group with positive charges in adsorbents, and the
element N can also provide electrons to promote the reduction of Cr(VI) [29].

In this study, hemicelluloses collected from chemical fiber company were used
to prepare carbon materials with different morphology by hydrothermal treatment.
The physical and chemical properties of samples were characterized by Fourier transform-
infrared spectro-scope (FT-IR), X-ray diffraction (XRD), scanning electron microscopy
(SEM), Raman spectroscopy, X-ray photoelectron spectroscope (XPS), and Brunauer–
Emmett–Teller surface area analyzer (BET). We found the hydrothermal carbons could
effectively remove Cr(VI) in Cr-containing aqueous solution. The results will help to
develop economical and feasible adsorbents for environmental remediation.

2. Materials and Methods
2.1. Materials

Hemicelluloses were collected from a chemical fiber factory (Guangzhou, China)
and dried for 2 days to constant quality before use. Potassium dichromate, anhydrous
ethanol, and ammonia solution (AR) were purchased from Guangdong Guanghua Sci-
Tech Co. Ltd. (Guangzhou, China). Citric acid monohydrate (AR) was purchased from
Shanghai Lingfeng Chemical Reagent Co. Ltd. (Shanghai, China). Diphenyl carbamide
was purchased from Shanghai Richjoint Chemical Reagents Co. Ltd. (Shanghai, China).

2.2. Carbon Materials Synthesis from Hemicelluloses

Two kinds of carbon materials were prepared from hemicelluloses by the hydrothermal
method, and the production procedures were listed as follows.

Hemicelluloses (4 g) were dispersed in 60 mL of 0.1 mol/L citric acid solution. The mix-
ture was transferred to a 100 mL reactor for hydrothermal reaction under the condition
of 200 ◦C for 16 h in muffle furnace. After the hydrothermal treatment, the sample was
washed three times with ultrapure water and ethanol (95%), respectively. The finally
obtained carbon spheres, named hemicelluloses hydrothermally treated with citric acid
(HTC), were air-dried in an oven at 110 ◦C for 12 h.

Hemicelluloses (4 g) were dispersed in 60 mL of (12.5%) ammonia solution and stirred
with vigorous magnetic stirring for 3 h at room temperature, and then the hydrothermal
step was started under the same conditions as HTC. The obtained product was washed
three times with ultrapure water and ethanol (95%), respectively. The finally obtained
products, named HTC-NH2, were dried at 110 ◦C for 12 h for further use.
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2.3. Characterization

The samples were characterized by FT-IR (VERTEX 70, Bruker, Germany), BET (ASAP
2020, micromeritics company, Norcross, GA, USA), elemental analysis (vario EL cue,
Elementar, Frankfurt, Germany), XPS (ESCALAB 250Xi, Thermo Fisher, Waltham, MA,
USA), and SEM (Merlin, Zeiss, Jena, Germany). The adsorption test of samples was
performed using ultraviolet–visible spectrophotometry (UV/Vis) (UV-1800, Shimadzu,
Kyoto, Japan).

2.4. Adsorption Experiments

The adsorption capacity of the hydrothermal carbon materials was tested according
to the previous literature [30]. The Cr(VI) solutions with different concentrations were
prepared by diluting the stock solution (1 g/L). Typically, 0.1 g of sample was dispersed in
40 mL of Cr(VI) solution with different concentrations in a 150 mL conical flask. The adsorp-
tion experiment was performed in a water-bathing vibrator (Jintan Instrument Factory).
After adsorption, the carbon materials were separated using a hydrophilic polytetrafluo-
roethylene PTFE syringe filter (0.22 um), and the concentration of Cr(VI) was detected with
UV–Vis. The pH of the Cr(VI) solutions, ranging from 1.0 to 6.0, was adjusted with 1 mol/L
HCl and 1 mol/L NaOH solution. The influence of adsorption parameters (including time
(0–12 h), concentration of Cr(VI) solution (10–200 mg/L), and the dosage of adsorbent
(0.5–10 g/L)) on the adsorption process was also investigated.

The adsorption capacity of the carbon materials was calculated according to the
following equation:

Qe =
(C0 − Ce) V

m
where Qe (mg/g) is the adsorption capacity; C0 (mg/L) and Ce (mg/L) are the concentration
of Cr(VI) in the solution before and after the adsorption experiments, respectively; V (L) is
the volume of potassium dichromate solution in reaction; and m (g) is the dry weight of
carbon materials.

3. Results
3.1. SEM and BET Analysis

The microstructures of HTC and HTC-NH2 were observed by SEM. As shown in
Figure 1, the SEM images of HTC presented a homogeneous spherical structure with aver-
age diameter at 1–6 µm, while HTC-NH2 exhibited an irregular massive shape. The specific
area of HTC is 3.06 m2/g, which is three times higher than that of raw hemicelluloses
(Table S1, In Supplementary Materials). In the sample HTC-NH2, there are lots of stacked
particles with a uniform size of 30–50 nm dispersed on the surface of the sample, which led
to the high specific surface area of HTC-NH2 (134.51 m2/g). The surface morphology of
HTC-NH2 probably resulted from the lower degree of hydrolysis of the raw material due
to the lack of H+, similar to the surface etched by KOH, and that might increase the active
sites of HTC-NH2 for Cr(VI) adsorption [31].
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Figure 1. Scanning electron microscopy (SEM) images of samples: hemicelluloses hydrothermally
treated with citric acid (HTC) (a) and HTC-NH2 (b).

3.2. FT-IR Analysis

FT-IR is a useful method to study the functional groups on the surface of samples.
The FT-IR spectra of samples (HTC and HTC-NH2) are shown in Figure 2. According to
the previous literature [32], the band around 3400 cm−1 corresponds to the –OH bending
vibrations, while the band at 1638 cm−1 is attributed to the vibration of the –COOH and the
C=O in the carbonyl, respectively. The existence of these peaks suggested that there were
large numbers of carboxylic groups in HTC. In the spectrum of HTC-NH2, the absorption
bands at 1430 and 1254 cm−1 are assigned to C–N and N–H groups [11], respectively,
and the two peaks at 897 and 645 cm−1 are related to the out-of-plane N–H deformation
vibration. These indicated the formation of chemical bonds between nitrogen and carbon
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atoms in HTC-NH2. Besides, the peaks at 2912 and 2990 cm−1 are attributed to the vibration
of the C–H in the carbonyl, indicating the incomplete hydrolysis process in the ammonia
aqueous solution.
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Figure 2. Fourier transform-infrared spectro-scope (FT-IR) spectra of HTC and HTC-NH2.

3.3. XRD Analysis

The structural properties of HTC and HTC-NH2 were studied. In Figure 3, the XRD
curves of HTC and HTC-NH2 both showed only one broad diffraction peak at about
20◦, corresponding to the (002) inter-plane of graphite. This suggested the low degree
of graphitization and the existence of abundant amorphous carbon in HTC and HTC-
NH2 [33,34]. This could explain the obvious fluorescence interference, as presented in
Figure S1, further confirming the low degree of crystallinity in the hydrothermal carbon
materials.
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Figure 3. X-ray diffraction (XRD) curves of HTC and HTC-NH2.

3.4. XPS and Elements Analysis

Elemental analysis and XPS spectra could provide the elemental compositions and
typical functional groups information of samples, as shown in Table 1 and Figure 4. As shown
in Table 1, the content of nitrogen in the sample HTC-NH2 is higher than that in HTC.
This indicated that nitrogen was dopped into HTC-NH2 during the hydrothermal process.
In Figure 4b,c, the content of C–O/C–N in HTC-NH2 is also much higher than that in HTC,
while the content of C=C/C–C in HTC-NH2 is much lower than that in HTC. These suggested
the degree of carbonization of HTC-NH2 is lower than that of HTC. Figure 4d shows that there
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were some pyrrole and pyridine nitrogen in HTC-NH2, while pyrrole and pyridine nitrogen
could not be distinguished from HTC. This resulted from some amino groups attached on the
surface of HTC-NH2 during the hydrothermal carbonization reaction [35].

Table 1. Elements contents of hemicelluloses hydrothermally treated with citric acid (HTC) and
HTC-NH2 by elemental analysis.

Sample
Elements Content (%)

AAsh (%)
C H O N S

HTC 63.59 4.45 31.71 0 0.253 0.22
HTC-NH2 44.35 6.38 47.71 1.35 0.216 0.43
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3.5. Effect of pH and Adsorbent Dosage

The initial pH of solution and the dosage of adsorbent could affect the adsorption
capacity of carbon materials. Among these factors, it is particularly important to control
pH of the adsorption process, because the pH of solution can exert influence on the form
of Cr(VI) species and the surface charge of adsorption materials [36,37]. In this study,
the Cr(VI) adsorption capacity affected by the different pH of the two carbon materials is
shown in Figure 5. The initial Cr(VI) concentration was 50 mg/L, the dosage of adsorbent
was 2.5 g/L, and the adsorption temperature was 298 K. Because the potassium dichromate
solution exists in acidic form in nature, the pH range in adsorption of Cr(VI) was adjusted
from 1.0 to 6.0 [29,38]. The results showed that the adsorption capacity of the two samples
decreased with the pH increase, and the maximum adsorption amount was achieved
when the pH reached 1.0 (HTC at 14.98 mg/g and HTC-NH2 at 17.77 mg/g), and almost
decreased by 90% when the pH was up to 6 (0.40 mg/g for HTC and 1.76 mg/g for HTC-
NH2), which is similar to the previous works [39–41]. According to the previous reports [29],
Cr(VI) mainly exists in the form of CrO4

2− when pH > 6, and gradually changed to the
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form of HCrO4
− and Cr2O7

2− as the pH value decreased. Compared with HTC, HTC-NH2
displayed a higher adsorption capacity under the same pH. The higher adsorption capacity
of HTC-NH2 was due to its larger specific area and amino groups (–NH2), which were
the active adsorption sites for Cr(VI). When the solution is acidic, the functional groups
–NH– and –NH2 could be protonated to –NH2

+ and –NH3
+, which leads to a strong affinity

between the sample HTC-NH2 and Cr2O7
2− through electrostatic interaction, about 18%

higher than the adsorption capacity of HTC [42].
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The dosage of adsorbent in waste water can also affect the adsorption process [43].
In this work, the dosage gradient of adsorption materials was set as 0.5 g/L, and the
adsorption temperature was 298 K. As shown in Figure 6, the removal rates of the two
materials both increased with the increase of dosage. When the weight of adsorbent HTC-
NH2 went from 0.5 g/L up to 5.0 g/L, 99.34% of Cr(VI) was removed, while the adsorption
capacity of the adsorbent decreased by almost 60%. When the dosage of HTC increased to
7.5 g/L, 93.98% of Cr(VI) could be removed. Similar to HTC-NH2, the adsorption capacity
of HTC also decreased to 6.37 mg/g. This is probably because more adsorption sites are
exposed in solution, thus the increase of adsorbent dosage. However, the utilization rate for
adsorption sites decreased with the increased adsorbent dosage, which led to the decreased
adsorption capacity of the sample [44].
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3.6. Adsorption Kinetics

The adsorption reaction will change with the time of contact between the adsorbent
and the adsorbate solution until the adsorption reaches equilibrium. The kinetic exper-
iments were carried out at the dosage of 2.5 g/L in a 50 mg/L Cr(VI) solution at 298 K,
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and the results are shown in Figure 7. The adsorption data were collected at 5, 10, 20, 40,
60, 120, 240, 480, and 720 min, respectively. The pseudo-first-order kinetic model and the
pseudo-second-order kinetic model were used to fit the adsorption rate curves, respectively.
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In the initial stage, there were more unoccupied active sites in the adsorbents, and the
concentration of Cr(VI) in the solution was the highest, which resulted in adsorption
quantity increasing rapidly. After the first 60 min, the Qt reached 5.84 mg/g for HTC
and 15.96 mg/g for HTC-NH2, accounting for 43% and 87% of the equilibrium adsorption
capacity, respectively. This is because of the protonation of amino groups under acidic
conditions making the adsorption easier for HTC-NH2. With the extension of the adsorp-
tion time, Qt increased slowly until reaching adsorption equilibrium, and the time to reach
equilibrium for HTC-NH2 was about 4.0 h, and that for HTC was about 8.0 h.

As shown in Table 2, the pseudo-second-order kinetics model with a higher correlation
coefficients value (R2 = 0.96, 0.80) fitted better than the pseudo-first-order kinetics model
(R2 = 0.89, 0.68), suggesting that the adsorption behavior of HTC-NH2 towards Cr(VI)
corresponded to pseudo-second-order kinetics. These results indicated that the adsorption
rate of Cr(VI) onto adsorbent was mainly determined by the chemical adsorption process,
consistent with the previous results [45–47]. This is showed that the adsorption capacity of
HTC-NH2 was up to 18.33 mg/g, which is much higher than that of HTC (13.68 mg/g).

Table 2. Kinetic parameters for the adsorption process of Cr(VI).

Sample
Pseudo-First-Order Pseudo-Second-Order

qe (mg/g) k1 (min−1) R2 qe (mg/g) k2 (g/(mg min−1)) R2

HTC 12.01 0.011 0.68 13.68 67.82 0.80
HTC-NH2 17.41 0.18 0.89 18.33 3.74 0.96

3.7. Adsorption Isotherms

In order to gain insight into the surface properties and binding interactions between
HTC-NH2 or HTC and Cr(VI), Langmuir and Freundlich isotherm models were utilized
to analyze the adsorption isotherms of samples, The fitting curve was showed in Figure 8
and isothermal adsorption parameters was showed in Table 3. The adsorption behaviors
of the adsorbent were studied at 298 K, 308 K, and 318 K, respectively. The initial pH
was 1.0 and the adsorbent concentration of solution was 2.50 g/L. As shown in Table 3,
the R2 values of the Langmuir model are slightly higher than those of the Freundlich model,
which means the Langmuir model is more fitted to describe the adsorption of adsorbents in
this work. There are abundant functional groups on the surface of adsorbents, which could
be used as active sites for adsorption. These active sites can easily carry out electron
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transfer and present chemisorption in the adsorption process. Similar results have also
been reported previously [48,49]. Besides, chemisorption is usually related to single-layer
adsorption (Langmuir model) [50]. According to Section 3.6 adsorption kinetics analysis,
the adsorbents in this work also present single-layer adsorption behaviors. Therefore,
it is more reasonable to describe the adsorption behaviors of the adsorbents with the
Langmuir model in this work. Based on the nonlinear Langmuir model, the maximum
adsorption capacities of Cr(VI) onto HTC-NH2 and HTC were 74.60 mg/g and 61.25 mg/g,
respectively. Compared with HTC, the adsorption capacity of HTC-NH2 was obviously
higher, which was also related to the much larger specific area of HTC-NH2 (134.51 m2/g).
This meant that the physical adsorption mainly depending on the specific area and chemical
adsorption depending on the functional groups on the surface of adsorbent both played
important roles in the Cr(VI) removal process. Compared with some hydrothermal carbon
materials as reported in Table 4, HTC-NH2 showed excellent adsorption capability, and is
more economical in hydrothermal additives.
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Table 3. Isothermal adsorption parameters for Cr(VI) adsorption of samples.

Samples
Langmuir Model Freundlich Model

qmax (mg/g) b (L/mg) R2 k 1/n R2

HTC (298 K) 61.25 0.0051 0.9597 90.37 0.71 0.9588

HTC (308 K) 46.19 0.0014 0.9668 60.37 0.96 0.9563

HTC (318 K) 46.68 0.0002 0.9417 51.21 1.40 0.9176

HTC-NH2 (298 K) 74.60 0.0030 0.9995 110.18 0.77 0.9992

HTC-NH2 (308 K) 75.38 0.0018 0.9960 116.17 0.80 0.9937

HTC-NH2 (318 K) 88.57 0.0017 0.9989 148.75 0.75 0.9978

Table 4. Comparison of adsorption capacities with similar carbon materials.

Adsorbent Treatment pH/T (◦C) qmax (mg/g) Ref

Salix hydrochar hydrothermal 1/20 48.3 [51]
Magnetic biochar pyrolysis 1/25 27.2 [41]

Nano-magnetite modified biochar microwave treatment 3/25 26.7 [16]
Tectona grandis tree sawdust biochar pyrolysis 3/30 83.5 [52]

Amino-functionalized magnetic biochar Hydrothermal 2/25 142.86 [53]
biochar modified with nitric acid and nicotinamide Hydrothermal 2/25 132.74 [54]

HTC Hydrothermal 1/25 61.25 This study
HTC-NH2 Hydrothermal 1/25 74.60 This study
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4. Conclusions

In this work, two hydrothermal carbon materials (HTC-NH2 and HTC) from hemi-
celluloses were synthesized and used for Cr(VI) adsorption in solution. HTC has a good
spherical morphology with a specific surface area of 0.97 m2/g. HTC-NH2 is an amorphous
carbon with a spongy structure that has good pore structure with a specific surface area of
134.51 m2/g. The adsorption isotherms indicated that the adsorption capacities of HTC
and HTC-NH2 for Cr(VI) were obtained from Langmuir model to be 74.60 mg/g and
61.25 mg/g, respectively. The adsorption processes of the samples were described by the
pseudo-second order equation at pH 1.0. Compared with HTC, HTC-NH2 showed a higher
adsorption capability, which was related to the relatively high surface area and the amino
groups (-NH2). This facile route developed here may offer a possibility for producing
economical biomass-based carbon materials for waste water treatment and great promises
for industrialization.

Supplementary Materials: The following are available online, Figure S1: Raman spectra of the
hydrothermal carbon materials, Figure S2: FT-IR spectra of the raw hemicelluloses, Table S1: Spectra
surface area, pore volume, and pore size distribution of samples, Table S2: Elements contents of HTC
and HTC-NH2 by XPS analysis.
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