Supporting Information

Keywords: rational design, inhibitors, docking, MD, p7, HCV production

Authors: Shukun Wei^{1,2‡}, Xiaoyou Hu^{2,3‡}, Lingyu Du¹, Linlin Zhao^{1,4}, Hongjuan Xue⁵, Chaolun Liu⁶, James J. Chou⁴, Jin Zhong^{2,3,6}, Yimin Tong^{3*}, Shuqing Wang^{7,*}, Bo OuYang^{1,2*}

Author Affiliations:

^{1.} State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201203, China; ouyang@sibcb.ac.cn (B.O.); weishukun2017@sibcb.ac.cn (S. W.); dulingyu@sibcb.ac.cn (L.D.)

² University of Chinese Academy of Sciences, Beijing, 100049, China; xyhu@ips.ac.cn (X. H.)

^{3.} CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; jzhong@ips.ac.cn (J. Z.)

^{4.} Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; lzhao@crystal.harvard.edu (L.Z.); james_chou@hms.harvard.edu (J.J.C.)

^{5.} National Facility for Protein Science in Shanghai, ZhangJiang lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; xuehongjuan@sari.ac.cn (H. X.)

^{6.} ShanghaiTech University, Shanghai 201210, China; clliu@ips.ac.cn (C. L.)

^{7.} School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; wangshuqing@tmu.edu.cn (S.W)

* Correspondence: ymtong@sibs.ac.cn (Y.T.); wangshuqing@tmu.edu.cn (S.W); ouyang@sibcb.ac.cn (B.O.)

1. Supplementary tables

Table S1. In-silico and in-vitro inhibitory effects of novel compounds.

Ligand	Linnals	<i>K</i> d (μM)	d (μM) Binding Affinity (kcal/mol) ^c				
Name	Liganda	GT5a ^b	GT1a	GT2a	GT3a	GT4a	GT5a
Rimantadine	H ₂ N CH ₃ HCl	98	-6.1	-5.6	-5.9	-5.7	-6.2
ARD1	HCI	487	-5.5	-5.6	-5.5	-6	-5.1
ARD2	HCI	334	-5.6	-5.7	-5.2	-5.2	-5.3
ARD6	OH HCL	344	-5.4	-5.8	-5.4	-5.7	-5.2
ARD8	HAN	707	-5.4	-5.8	-5.4	-5.6	-5.3
ARD9	HCI	418	-6	-6.1	-5.7	-6	-5.7

ARD10	HO H	932	-5.2	-5.8	-5.3	-5.2	-5.1
ARD13	N CO	414	-6.2	-6.6	-5.7	-5.9	-5.7
ARD14	HO NH2 NH2	269	-6.1	-5.9	-5.6	-6.6	-5.4
ARD15	HCI NH2 HCI	195	-5.7	-6	-5.5	-5.4	-5.4
ARD16		150	-6.7	-6.9	-5.9	-6.1	-6.4
ARD18	HN	588	-6.1	-6.6	-6.3	-6.3	-6.1
ARD19		333	-5.5	-5.9	-5.3	-5.6	-5.3
ARD20	HCL	436	-5.6	-6.7	-5.9	-5.9	-5.7
ARD22		285	-5.6	-5.8	-5.7	-5.8	-5.4
ARD23	NH2	2453	-6.1	-6.3	-5.9	-6.1	-5.8
ARD24		866	-6	-6.7	-5.8	-6.2	-5.8
ARD25	NNH2 HCl	7530	-6.2	-6.4	-5.7	-6.1	-6

ARD33	NH ₂	3209	-5.1	-5.3	-5.1	-5.2	-4.9
ARD37	HO	332	-5.2	-5.9	-5.3	-5.3	-5.3
ARD39	NH ₂	327	-5.5	-5.9	-5.8	-5.6	-5.3
ARD40	NH2	677	-5	-5.6	-5.1	-5.6	-5
ARD41	HCI HCI HCI	3298	-4.8	-5.4	-5	-5.4	-4.9
ARD42	OH	3077	-4.9	-5.6	-5.3	-5.4	-5
ARD49	HO	276	-6.3	-6.6	-6.1	-6.4	-5.9
ARD50	HONN	821	-6.1	-6.1	-5.6	-5.8	-6.1
ARD51	HOHI	477	-6	-6.1	-5.5	-6	-5.8
ARD58	HO	173	-6.5	-6.8	-5.8	-6.3	-6.5
ARD66	HO	128	-6.5	-6.6	-6.4	-6.7	-6.6
ARD68		202	-6.4	-6.6	-6	-6.3	-6.1

ARD71	H HCI	2458	-5.6	-6	-5.6	-5.9	-5.4
ARD80		102	-7.2	-5.7	-6.6	-6.3	-6.6
ARD81		81	-7.2	-7.2	-7.2	-6.9	-6.7
ARD83		70	-7.3	-7.5	-7.2	-6.9	-6.7
ARD84		58	-6.6	-7.7	-7.2	-7	-7
ARD87		43	-9.1	-7.9	-7.3	-7	-7.5
ARD88		397	-6.7	-7	-6.5	-6.5	-6.8
ARD89	ни с	112	-7.2	-7.1	-7.2	-7	-6.9
ARD98		102	-7.9	-7.6	-7.4	-7.1	-7.6
ARD99		852	-6.4	-6.8	-6.2	-5.9	-6.6
ARD100	HO	107	-7	-8.1	-7.4	-6.3	-6.9
ARD101		105	-7.4	-8.2	-7.6	-6.8	-7.2
ARD112		5	-8.5	-9.2	-8.5	-8.4	-9.4

^a The ligands used above are newly designed and synthesized except rimantadine.

^b The Kd values were calculated from the NMR titrations of p7 (5a).

^cThe binding affinities were newly calculated using ARD-series compounds.

Ligand Name	Ligand	MWa	logРь	logS¢	PSA ^d	H-don ^e	H-acc ^f
ARD1	HCI	243.8	2.17	-3.71	16.61	1	0
ARD2	HCI	243.8	2.17	-3.58	16.61	1	0
ARD6	OH HCI	245.78	0.76	-2.85	36.84	2	1
ARD8	H ₂ N H	222.33	0.25	-3.33	59.7	2	1
ARD9	H HCI	272.8	0.51	-3.22	45.71	2	1
ARD10	HO	223.35	1.15	-3.05	36.84	2	1
ARD13	HCI HCI	286.83	0.9	-3.11	45.71	2	1
ARD14	HO NH ₂	195.3	0.81	-2.77	47.87	2	1
ARD15	NH ₂ HCI HCI	267.22	0.06	-2.64	55.28	2	0

Table S2. ADME properties of ARD-series compounds

ARD16	NH HCI	257.79	1.16	-3.34	25.84	1	1
ARD18	HN NH	234.34	0.26	-3.37	45.71	2	1
ARD19	OH NH ₂	209.33	1.2	-3.1	47.87	2	1
ARD20	OH HCI	259.8	1.59	-3.3	47.87	2	1
ARD22	H ₂ N H _{Cl} NH ₂	281.2	0.45	-2.97	55.28	2	0
ARD23	NH2	245.36	1.98	-3.27	45.46	1	1
ARD24	NNN NH2	245.36	1.98	-3.1	45.46	1	1
ARD25	N NH ₂ HCl	282.8	1.37	-3.26	58.35	1	2
ARD33	NH ₂	165.28	1.44	-2.29	27.64	1	0
ARD37	OH	167.25	0.17	-1.05	47.87	2	1
ARD39	HO NH ₂	181.27	0.42	-1.76	47.87	2	1

ARD40	HONN	195.3	0.37	-1.83	36.84	2	1
ARD41	H ₂ N H ₂ N HCI HCI	253.2	-0.33	-1.63	55.28	2	0
ARD42	OH OH	181.3	0.42	-1.76	47.87	2	1
ARD49	HOTO	249.4	1.84	-3.51	49.33	2	2
ARD50	HONN	249.4	1.24	-3.53	24.67	2	1
ARD51	HONNHCI	299.7	1.63	-3.86	24.67	2	1
ARD58	HO	251.4	0.53	-3.14	46.07	2	2
ARD66	HOTH	265.4	1.08	-3.57	58.56	2	3
ARD68	O OH NH ₂	295.4	1.52	-4.16	74.17	2	2
ARD71	H HCI	251.74	2.08	-3.5	27.64	1	0
ARD80	and the second	602.85	1.7	-6.9	141.17	4	5
ARD81		646.9	1.72	-7.04	150.4	4	6
ARD83		735.01	1.75	-7.32	168.86	4	8

ARD84	HEN H	779.06	0.29	-7.1	153.43	4	9
ARD87		514.74	1.67	-6.61	122.71	4	3
ARD88	HNN	272.39	2.85	-3.34	42.64	1	1
ARD89	HN COH	273.37	2.4	-3.2	57.07	3	2
ARD98	HO N-O	352.47	3.11	-6	62.87	2	2
ARD99	HO	300.44	2.15	-3.86	49.73	2	2
ARD100	HO	300.44	2.15	-3.86	49.73	2	2
ARD101	HO N-O	316.44	2.32	-4.22	62.87	2	2
ARD112	CHNH H OH	354.46	2.43	-4.52	98.64	4	4

^aThe molecular mass (MW) should be less than 500 Da

^bThe predicted octanol/water partition coefficient (-0.4 to 5.6)

^cThe predicted aqueous solubility S (mol dm⁻³) is the concentration of the solute in a saturated solution

that is in equilibrium with the crystalline solid (– 6.5 to 0.5)

 $^d The van der Waals surface area (Å^2) of polar nitrogen and oxygen atoms (7.0–200)$

^eThe hydrogen-bond donors (H donor) should be no more than five

^rThe hydrogen-bond acceptors (H acceptor) should be no more than ten

			Bindir	ng Affinity (kcal	/mol) ^b	
Ligand Name	Ligand ^a	Gt1a	Gt2a	Gt3a	Gt4a	Gt5a
Amantadine	NH ₂	-5.5	-5.4	-5	-5.1	-4.9
Rimantadine	H2N CH ₅ HCl	-6.1	-5.6	-5.9	-5.7	-6.2
A1	NH (C) NH	-9.1	-7.3	-7.2	-7.1	-7.7
A2	NH (H ₂) NH	-8.7	-8	-7.3	-7.3	-7.5
A3	NH (H ₂) NH	-7.9	-7.7	-6.8	-7.3	-7.5
A4	NH (fiz) NH	-8.1	-7.8	-6.7	-7.3	-5.9
A5	NH (Pb) NH	-8.6	-8.1	-6.7	-7.4	-7.6
B1		-7.6	-6.9	-7.6	-7.9	-8.2
B2		-7.5	-7.2	-7.2	-6.6	-6.8
В3		-7.8	-7.6	-7.6	-7.6	-6.7
B4		-6.5	-5.5	-5.2	-7.3	-5.7
3		-8	-9.2	-7.7	-8.2	-8.3

Table S3. In-silico binding effects of published compounds

8	N CH ₃	-7.8	-7.5	-6.9	-7.9	-7.3
9	HONN	-7.5	-7.7	-6.8	-6.9	-7.4
10	HO N N N CH3	-6.9	-7.1	-6.5	-6.6	-7.2
12	CH3	-7.1	-7.3	-6.6	-7	-6.9
13	A A A A A A A A A A A A A A A A A A A	-7.7	-7.1	-7.2	-6.8	-6.5
15	Br-NF	-8.1	-8.3	-7.5	-8.1	-8.2
22	H ₃ C ₀ NO ₂	-7.7	-7	-6.6	-7.3	-6.9
24		-8.8	-7.3	-7.8	-7.8	-8.1
26	N OH	-7	-7.4	-6.6	-6.8	-6.3
32	О-М Н	-7.2	-7.5	-6.4	-7	-6.4
33	N-NH O	-6.9	-6.5	-6.1	-6	-6.2
36	N-NH N-NH	-7.4	-7.4	-7.3	-7.3	-6.7
37	N-N-N-O	-8.6	-8.7	-7.9	-8.1	-7.9
40		-8.2	-7.7	-8	-7.6	-8.2
48	CI-CH ₃ CH ₂ CH ₃	-6.6	-6.7	-5.9	-6.4	-6.1

51	HO CH3	-7.9	-7.3	-7.9	-6.9	-6.8
54	NH CH3	-6.2	-6.3	-5.8	-6.2	-5.8
55	CH3 OH	-5.9	-6.3	-5.6	-5.8	-5.8
56	Br-	-6.6	-6.6	-6.2	-7.1	-7.1
57	Br-	-6.5	-6.6	-6.1	-6.5	-6.8
58	Br-U-CH3	-6.6	-7.6	-6.5	-7.4	-7.4
60	H ₃ C	-8.5	-8.9	-8.2	-8.7	-8.7
61		-9.4	-9.1	-8.5	-9.1	-9
62	Br	-7.8	-6.9	-6.2	-6.8	-6.8
63		-7.2	-6.8	-5.9	-6.4	-6.3
64		-7.4	-7	-6	-6.8	-6.3
65	HN	-7.8	-7.3	-6.3	-7.3	-6.6
66	И ОН	-6.6	-6	-6	-6	-5.5
68	HON	-6.3	-6.2	-5.9	-6.7	-5.8
69	он но	-7.3	-6.7	-6.9	-6.6	-6.2

71	OF OH N CH3	-6.7	-7.2	-6.4	-6.5	-6.7
72	СН3	-7.2	-6.5	-6.5	-6.3	-6.1
73	O OH Cl- NH ₃ *	-6.8	-6.2	-5.5	-5.7	-5.9
74		-7.3	-6.7	-6.7	-6.4	-6.2
75		-7.6	-7.2	-6.5	-7.1	-7.6
76		-7.7	-7.6	-7.1	-7.3	-7.7
77	СН3	-6.5	-6.3	-6	-6.8	-6.1
78	OH OH OH Br	-5.8	-6.2	-5.5	-5.7	-5.4
79	H ₃ C N CH ₃	-6.6	-7.1	-6.2	-6.4	-6.5

^a The ligands used above are from the published papers [1,2]

^b The binding affinities were newly calculated using previously reported compounds [1,2]

Figure S1. The potential p7 inhibitor ARD87 can inhibit HCV production. (A)The inhibition of HCV production was determined. Huh7.5.1 cells infected by JFH1 at an MOI of 2 for 1 day and were treated with a serial dilution of Rim or ARD87. 12 hours later, the viral production was detected by titration assay. (B) After incubation with each compound, the cell viability and cytotoxicity were detected by CellTiter-Glo® Luminescent Cell Viability Assay reagent (Promega GS7570, Madison, WI, USA). (C) Time course of HCV production with the treatment of ARD87 and Rim at concentration of 20 μM. Data were expressed as the percentage of mock treatment control. The error bars were calculated from three individual measurements. (** refers to p<0.05, ns: no significance, ARD87 compared to Rim). Two independent experiments were repeated showing similar results.

Figure S2. Simulation interaction diagrams of ARD87 and p7 (5a). (A) Interaction energies of complexes ARD87 and p7 (5a). Energies are mostly negative through the whole process for their stableness. (B) The Root Mean Square Deviation (RMSD) shows the evolution of p7 (5a) and ARD87 with the changes of the order under 1 Å. (C) The Ligand Root Mean Square Fluctuation (L-RMSF) of ARD87 shows the internal atom fluctuations of the ligand with respect to the protein p7 (5a). (D) The Root Mean Square Fluctuation (RMSF) of residues characterizes local changes along the protein chains (backbone and sidechains) for complexes of ARD87 and p7 (5a).

Figure S3. The distribution of binding energies for all the ligands. The binding energies to the p7 channel variants, including (A) Gt 1a, (B) Gt 2a, (C) Gt 3a, (D) Gt 4a and (E) Gt 5a. (F) Total frequence of interaction forces between all the compounds and the p7 channels of 5 genotypes, the more red, the more frequent on interactions.

10 ARD1 1HNMR-CDCI3-400MHz

1-((3r,5r,7r)-adamantan-1-yl)-N-methylpropan-1-amine (ARD2)

2-((3r,5r,7r)-adamantan-1-yl)-2-(methylamino)acetamide (ARD8)

2-((3r,5r,7r)-adamantan-1-yl)-2-(methylamino)ethan-1-ol hydrochloride (ARD6)

2-((3r,5r,7r)-adamantan-1-yl)-N-methyl-2-(methylamino)acetamide (ARD9)

3-((3r,5r,7r)-adamantan-1-yl)-3-(methylamino)propan-1-ol (**ARD10**)

3-((3r,5r,7r)-adamantan-1-yl)-N-methyl-3-(methylamino)propanamide hydrochloride (ARD13)

2

ARD14 1HNMR-CDCI3-400MHz

3-((3r,5r,7r)-adamantan-1-yl)morpholine (ARD16)

2-((3r,5r,7r)-adamantan-1-yl)-2-aminopropan-1-ol (ARD19)

2-((3r,5r,7r)-adamantan-1-yl)propane-1,2-diamine dihydrochloride (ARD22)

2-((3r,5r,7r)-adamantan-1-yl)-2-aminobutan-1-ol (ARD20)

1-((3r,5r,7r)-adamantan-1-yl)-2-(1H-pyrazol-1-yl)ethan-1-amine (ARD24)

1-((3r,5r,7r)-adamantan-1-yl)-2-(1H-imidazol-1-yl)ethan-1-amine (ARD23)

(1s,3s,5R,7S)-2-methyladamantan-1-amine (ARD33)

(1s,3s,5R,7S)-1-aminoadamantan-2-ol (ARD37)

((1r,3r,5r,7r)-2-aminoadamantan-2-yl)methanol (ARD39)

((1r,3r,5r,7r)-2-(methylamino)adamantan-2-yl)methanol (ARD40)

(1r,3r,5r,7r)-2-(aminomethyl)adamantan-2-amine (ARD41)

(1r,3r,5r,7r)-2-(aminomethyl)adamantan-2-ol (ARD42)

5-((3r,5r,7r)-adamantan-1-yl)-5-(hydroxymethyl)pyrrolidin-2-one (ARD49)

(2-((3r,5r,7r)-adamantan-1-yl)-1-ethylpyrrolidin-2-yl)methanol (ARD51)

(2-((3r,5r,7r)-adamantan-1-yl)-1-methylpyrrolidin-2-yl)methanol (ARD50)

5-((3r,5r,7r)-adamantan-1-yl)-5-(hydroxymethyl)morpholin-3-one (ARD66)

1-((3r,5r,7r)-adamantan-1-yl)-2,2-difluoroethan-1-amine (ARD71)

N-(2-((1R,3r)-adamantan-1-yl)-2-aminoethyl)-3-(2-(2-(3-((2-(adamantan-1-yl)-2-aminoethyl)amino)-3-oxopropoxy)ethoxy)propanamide (**ARD80**)

N1-(2-((1R,3r)-adamantan-1-yl)-2-aminoethyl)-N16-(2-(adamantan-1-yl)-2-aminoethyl)-4,7,10,13-tetraoxahexadecanediamide (**ARD81**)

N1-(2-((1R,3r)-adamantan-1-yl)-2-aminoethyl)-N22-(2-(adamantan-1-yl)-2-aminoethyl)-4,7,10,13,16,19-hexaoxadocosanediamide (**ARD83**)

N1-(2-((1R,3r)-adamantan-1-yl)-2-aminoethyl)-N25-(2-(adamantan-1-yl)-2-aminoethyl)-4,7,10,13,16,19,22-heptaoxapentacosanediamide (**ARD84**)

3,3'-oxybis(N-(2-(adamantan-1-yl)-2-aminoethyl)propanamide) (ARD87)

Ø

((1r,3r,5r,7r)-2-((((5-phenylisoxazol-3-yl)methyl)amino)methyl)adamantan-2-yl)methanol (ARD98)

((1r,3r,5r,7r)-2-((((2-methylpyridin-4-yl)methyl)amino)methyl)adamantan-2-yl)methanol (ARD99)

((1r,3r,5r,7r)-2-((((6-methylpyridin-3-yl)methyl)amino)methyl)adamantan-2-yl)methanol (ARD100)

((1r,3r,5r,7r)-2-((((5-cyclopropylisoxazol-3-yl)methyl)amino)methyl)adamantan-2-yl)methanol (ARD101)

3,5-dihydroxy-N-(1-imino-2-(((1r,3r,5r,7r)-2-methyladamantan-2-yl)amino)ethyl)benzimidamide (**ARD112**)

References

- Shiryaev, V.A.; Radchenko, E.V.; Palyulin, V.A.; Zefirov, N.S.; Bormotov, N.I.; Serova, O.A.; Shishkina, L.N.; Baimuratov, M.R.; Bormasheva, K.M.; Gruzd, Y.A., et al. Molecular design, synthesis and biological evaluation of cage compound-based inhibitors of hepatitis C virus p7 ion channels. *Eur J Med Chem* 2018, *158*, 214-235, doi:10.1016/j.ejmech.2018.08.009.
- Mandour, Y.M.; Breitinger, U.; Ma, C.; Wang, J.; Boeckler, F.M.; Breitinger, H.G.; Zlotos, D.P. Symmetric dimeric adamantanes for exploring the structure of two viroporins: influenza virus M2 and hepatitis C virus p7. *Drug Des Devel Ther* 2018, *12*, 1019-1031, doi:10.2147/DDDT.S157104.