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Abstract: Ultraviolet B (UVB) exposure activates various inflammatory molecules of keratinocytes
in the epidermis layer. Such UVB-mediated skin inflammation leaves post-inflammatory hyperpig-
mentation (PIH). Reports show a close relationship between PIH and high-mobility group box 1
(HMGB1) and its receptors. General clinical treatments of PIH, such as oral medication and laser
treatment, have reported side effects. Recent studies reported the effects of radiofrequency (RF)
irradiation on restoring dermal collagen, modulating the dermal vasculature, and thickening the
basement membrane. To validate how RF regulates the inflammatory molecules from UVB-irradiated
keratinocytes, we used UVB-radiated keratinocytes and macrophages, as well as animal skin. In
addition, we examined two cases of RF-irradiated skin inflammatory diseases. We validated the ef-
fects of RF irradiation on keratinocytes by measuring expression levels of HMGB1, Toll-like receptors
(TLRs), and other inflammatory factors. The results show that the RF modulates UVB-radiated ker-
atinocytes to secrete fewer inflammatory factors and also modulates the expression of macrophages
from HMGB1, TLRs, and inflammatory factors. RF irradiation could alleviate inflammatory skin
diseases in patients. RF irradiation can regulate the macrophage indirectly through modulating the
keratinocyte and inflammatory molecules of macrophages reduced in vitro and in vivo. Although
the study is limited by the low number of cases, it demonstrates that RF irradiation can regulate skin
inflammation in patients.
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1. Introduction

Skin absorption of ultraviolet B (UVB; 290–320 nm) can lead to skin inflammation [1],
prompt DNA mutations [2], suppress the immune system [3], and cause melanogenesis [4].
When skin is exposed to UVB, melanocytes located in the stratum basale of the epider-
mis layer produce melanin in melanosomes, which is transferred from melanocytes to
keratinocytes [4]. In another reaction, inflammatory processes are initiated through the
secretion and production of inflammatory mediators, such as chemokines, cytokines, and
prostaglandins in keratinocytes. Furthermore, macrophages and neutrophils infiltrate the
damaged site [5,6].

In the UVB-exposed epidermis, epidermal growth factor receptor is increased to
suppress apoptosis and to lead keratinocyte proliferation, which in turn leads to epider-
mal hyperplasia associated with increased cyclin D expression [7]. Interestingly, skin
stress due to UVB exposure can trigger systemic neuroendocrine responses with direct
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hormonal, neural, and chemical consequences [8]. UVB exposure stimulates the secretion
of β-endorphins, corticosterone, urocortin, and adrenocorticotropic hormones through
the hypothalamic–pituitary–adrenal axis, all of which are related to immunosuppressive
effects [9,10]. In contrast, the nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-κB), a prototypical pro-inflammatory regulator, is also activated and controls cell
growth through activation of cyclin D1 expression [11].

UVB-radiated keratinocytes secrete various kinds of inflammatory molecules, includ-
ing high-mobility group box 1 (HMGB1), interleukin (IL)-1α, IL-1β, IL-6, IL-8, and tumor
necrosis factor-alpha (TNF-α) [12–14]. Under normal conditions, the HMGB1 is localized in
the nucleus [15]. However, when the cell is damaged or exposed to inflammatory cytokines,
HMGB1 migrates to the cytoplasm and is finally secreted from the cell. The process of
HMGB1 synthesis and secretion has been characterized in UVB-exposed keratinocytes, and
HMGB1 is important for the initiation and progression of UVB-induced skin inflamma-
tion [16]. As the released HMGB1 interacts with its receptors, such as Toll-like receptor
(TLR) 2 or TLR4, or with advanced glycation end products of the macrophages or monocyte,
the inflammatory process is accelerated by monocyte and macrophage recruitment and
by the secretion of inflammatory factors, including IL-6, cyclooxygenase (COX)-2, and
TNF-α through NF-κB expression [16,17]. In addition, lipopolysaccharide (LPS) induces
TLR4/nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain-
containing-3 (NLRP3) inflammasome signaling. The LPS and TLR4 binding activates
NF-κB and leads to NLRP3 assembly and hyperactivation. Finally, the inflammasome
complex activates caspase-1, pro-IL-1β, and pro-IL-18, providing a precursor to the de-
velopment of the mature forms of these factors. These signals excessively increase the
secretion of pro-inflammatory cytokines [17].

Among various skin inflammatory diseases, post-inflammatory hyperpigmentation
(PIH) results either from the irregular dispersion of melanin (for example, pigmentary in-
continence) or from melanin overproduction following skin inflammation [18]. Pigmentary
incontinence results from the destruction of the basal epidermis layer [19], which allows
the upper dermis to accumulate macrophages that phagocytize degenerating keratinocytes
and melanocytes. Melanin secretion from these melanocytes is believed to be the cause of
hyperpigmentation [20]. Various inflammatory cytokines, including IL-1α, IL-6, COX-2,
and TNF-α, as well as TLRs and HMGB1, are associated with PIH [21].

Clinical approaches to PIH treatment include topical bleaching cream, oral medi-
cation, chemical peels, and laser treatment. But most of the treatment modalities have
side effects, so other treatment options are needed. Radiofrequency (RF) irradiation with
micro-invasive electrodes is effective for improving pigmentation disorders, thickening
the basement membrane, providing vascular modulation, and increasing dermal collagen
production [22,23]. One study has shown the effectiveness of RF irradiation for the treat-
ment of skin inflammation, but only a few studies have explored the mechanism of RF’s
effects on skin [24]. Therefore, in this study’s UVB-radiated mouse model, we examined
whether RF irradiation can attenuate inflammatory signals by reducing the expression
of HMGB1 and inflammatory factors in keratinocytes and by migrating macrophages in
cultured cells. Finally, we also examined whether RF irradiation could clinically alleviate
the inflammatory skin diseases of patients.
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2. Results
2.1. Inhibitory Effect of RF on Inflammatory Cytokine Secreted by UVB-Effected Keratinocytes

The inflammatory cytokines are expressed by UVB radiation [25,26]. In this study,
UVB-radiated keratinocytes were used to validate the inhibitory effects RF had on the
expression of the inflammatory cytokines. The results showed the secretion expression
levels of HMGB1, IL-6, IL-8, and prostaglandin E2 (PGE2) were higher in the UVB-radiated
human primary keratinocytes (UVB group) than in normal controls (Con group) and
were significantly decreased in UVB radiation of RF-irradiated cells (UVB/RF group;
Figure 1A–D). These results are comparable to those from an animal model of UVB inflam-
mation (Figure 1E–H).
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Figure 1. The inhibitory effects of radiofrequency (RF) irradiation on the expression of inflammatory cytokines from
ultraviolet B (UVB)-radiated keratinocytes. The graphs show mRNA levels of inflammatory-related genes, including
high-mobility group box 1 (HMGB1), interleukin (IL)-6, IL-8, and prostaglandin E2 (PGE2), in UVB-radiated (A–D) human
primary epidermal keratinocytes (HEKn) and (E–H) mouse skin. All levels were confirmed by qRT-PCR. ** p < 0.01 vs.
Con group; $ p < 0.05 and $$ p < 0.01 vs. UVB group. Results are presented as means ± standard deviations. Con, sham
control; HEKn, human primary epidermal keratinocytes; HMGB1, high-mobility group box 1; IL, interleukin; mRNA,
messenger RNA; PGE2, prostaglandin E2; qRT-PCR, quantitative real-time polymerase chain reaction; RF, radiofrequency;
UVB, ultraviolet B.

2.2. Inhibition Effect on Macrophage Activation by RF-Irradiated Keratinocytes

Keratinocytes radiated with UVB secrete inflammatory cytokines, which activate the
macrophages in the dermis layer [26–28]. In this study, we evaluated whether the inflam-
matory cytokines secreted by UVB-radiated keratinocytes affect macrophage activation
(Figure 2A). The results show the activation of macrophages decreased statistically with
increased RF irradiation on keratinocytes (Figure 2B). Similar results were shown in an
animal model of UVB radiation. The number of activated macrophages in the dermis layer
of the UVB group was higher than that in the Con group and was decreased in the UVB/RF
group by Iba1 staining (Figure 2C and Figure S1). The messenger RNA (mRNA) expres-
sion level of CD163 was higher in the UVB group than in the Con group and decreased
significantly in the UVB/RF group (Figure 2D).
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Figure 2. Inhibitory effects of RF irradiation on macrophage activation through keratinocyte modulation. (A) Diagram of an
in vitro model to examine the effects of micro needling RF irradiation to UVB-radiated keratinocytes on the inflammatory
response in macrophages. After exposing keratinocytes to UVB or UVB/RF, the cell culture supernatants were used to treat
macrophages. (B) The mRNA levels of CD163, a dermal macrophage marker, were measured in macrophage-affected UVB-
radiated keratinocytes. (C) The level of Iba1 protein, a macrophage activation marker, was detected in the skin dermis of
UVB-radiated mice. (D) The mRNA levels of CD163 were detected in the skin of a UVB-radiated mouse. Scale bar = 100 µm.
Magnification, ×40. ** p < 0.01 vs. Con group; $$ p < 0.01 vs. UVB group. Results are presented as means ± standard
deviations. Con, sham control; mRNA, messenger RNA; qRT-PCR, quantitative real-time polymerase chain reaction; RF,
radiofrequency; UVB, ultraviolet B.

2.3. Inhibitory Effects on the TLR Pathway of Macrophages Affected by
RF-Irradiated Keratinocytes

When activated macrophages are affected by UVB-irradiated keratinocytes, they ac-
tivate the TLR2 and TLR4 pathways and cause inflammatory skin diseases [29,30]. We
confirmed the inhibitory effects of macrophages on TLRs by controlling UVB-radiated ker-
atinocytes using RF. The TLR2 and TLR4 expression was significantly higher in macrophages
affected by UVB-radiated keratinocytes than in those in the Con group, but the expres-
sion was significantly lower in macrophages affected by both UVB and RF (Figure 3A,B).
Likewise, the mRNA expression levels of inflammatory factors NF-κB, TNF-α, IL-6, and
interferon-gamma (IFN-γ) related to TLR2 and TLR4 also decreased significantly in the
UVB/RF group compared to the UVB group (Figure 3C). We also validated the mRNA
expression level in skin tissue in a UVB-radiated animal model (Figure 3D,E). The mRNA
expression levels of TLR2 and TLR4 were higher in the UVB group than in the Con group
and decreased in the UVB/RF group. Similar results were also seen in immunostaining
(Figure S2). The skin mRNA and protein expression levels of inflammatory factors NF-
kB, TNF-α, IL-6, and IFN-γ related to TLR2 and TLR4 also decreased significantly in the
UVB/RF group compared to the UVB group (Figure 3F and Figure S4).
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Figure 3. Inhibitory effects of RF irradiation on Toll-like receptor 2 (TLR2) and TLR4 expression in activated macrophages
through keratinocyte modulation. The graphs show mRNA levels of TLR2, TLR4, and inflammation-related factors,
including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), necrosis factor-alpha (TNF-α), IL-6, and
interferon-gamma (IFN-γ), measured in (A–C) macrophages affected by UVB-radiated keratinocytes and (D–F) the skin
dermis of a UVB-radiated mouse. ** p < 0.01 vs. Con group; $$ p < 0.01 vs. UVB group. Results are presented as means ±
standard deviations. Con, sham control; IL-6, interleukin 6; IFN-γ, interferon-gamma; mRNA, messenger RNA; NF-κB,
nuclear factor kappa-light-chain-enhancer of activated B cells; RF, radiofrequency; TLR, Toll-like receptor; TNF-α, tumor
necrosis factor-alpha; UVB, ultraviolet B.

2.4. The Inhibitory Effects of RF Irradiation on Macrophages Affect Keratinocyte Proliferation and
Pigment Accumulation

UVB causes melanin accumulation, induced by keratinocyte proliferation and skin
inflammation [25,31]. In this study, we confirmed the keratinocyte proliferation is caused
not only by UVB radiation directly but by the activated macrophages and RF irradiation
that inhibit keratinocyte proliferation in the cell model. UVB-radiated macrophages and cell
supernatants from the macrophages were used to treat keratinocytes for 24 h (Figure S3A).
The mRNA expression levels of cell cycle-related genes, such as p21, p53, and cyclin
D1, increased in the UVB group and decreased in the UVB/RF group (Figure S3B). The
mRNA expression of Bcl2 as an anti-apoptotic regulator increased in the UVB group
and decreased in the UVB/RF group (Figure S3C). Furthermore, expression levels of the
inflammatory factors inducible nitric oxide synthase (iNOS) and prostaglandin E2 (PGE2)
were higher in the UVB group than in the Con group and were lower in the UVB/RF
group (Figure S3D). Based on the results in our animal model, we validated epidermal
keratinocyte proliferation in the skin from inflammation induced by UVB. We confirmed
that the number of PCNA-positive cells was highest in the UVB group and was lower in
the UVB/RF group (Figure 4A). Similar results were seen in the skin tissue for the mRNA
expression levels in cell cycle-related genes p21, p53, and cyclin D1. Likewise, Bcl2 and
iNOS, PGE2 inflammatory factors secreted from keratinocytes, showed similar results to
those seen in the cell (Figure 4B–D). We confirmed that the effects of RF inhibited melanin
accumulation in the inflammation model (Figure 4E), and we saw the attenuating effect on
melanin accumulation in patients (Figure 4F).
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Figure 4. RF irradiation-induced macrophage activation, which had inhibitory effects on keratinocyte proliferation and
pigmentation. (A) Keratinocyte proliferation in the epidermis of mouse skin was confirmed by detecting a proliferating
cell marker (PCNA). The number of PCNA-positive cells was calculated from representative images. Scale bar = 100 µm.
Magnification, ×40. (B–D) The graphs show mRNA levels of cell cycle-related genes (p21, p53, and cyclin D1), an apoptosis
regulator gene (Bcl2), and pro-inflammatory factors in the skin dermis of a UVB-radiated mouse. (E) The melanin amount
was confirmed in the epidermis by Fontana Masson staining and by quantifying the melanin amounts from representative
images. Scale bar = 100 µm. Magnification, ×40. (F) In case 1, on the left, post-laser toning induced the development
of post-inflammatory hyperpigmentation (PIH); melasma with background hyperpigmentation can be seen on the face.
After RF irradiation, PIH disappeared, although melasma remained. In case 2, on the right, chronic dermatitis with
hyperpigmentation in the forehead, periorbital, perioral, and neck areas was seen before RF irradiation. After RF irradiation,
the hyperpigmentation decreased. ** p < 0.01 vs. Con group; $ p < 0.05 and $$ p < 0.01 vs. UVB group. Results are presented
as means ± standard deviations. Con, sham control; mRNA, messenger RNA; PCNA, proliferating cell nuclear antigen;
PIH, post-inflammatory hyperpigmentation; RF, radiofrequency; UVB, ultraviolet B.

3. Discussion

Although UVB-induced PIH and atopic dermatitis animal models are not well es-
tablished, UVB-radiated animal models are widely used for studying skin inflammatory
diseases. In this study, UVB exposure increased keratinocyte proliferation and expres-
sion of keratinocyte-derived inflammatory cytokines. In one study, RF irradiation had
anti-proliferative effects on human breast cancer cells by regulating the expression of the
cell cycle-related proteins p53, p21, cyclin A, cyclin B1, and cyclin D1 [32]. RF irradia-
tion significantly impairs G2/M arrests in the cell cycle progression. In line with these
data, those results showed the increased expression of p21, p53, and cyclin D1 in UVB-
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radiated mouse skin and UVB-radiated keratinocytes and their reduced expressions in a
UVB/RF-irradiated mouse model and cultured cells (Figure S3).

The anti-proliferative effects of RF irradiation can decrease inflammatory cytokine
expression in skin inflammation. The results show that expression levels of the inflam-
matory cytokines IL-6, IL-8, and HMGB1 were significantly increased in UVB-radiated
mouse skin and keratinocytes and significantly decreased when UVB was supplemented
by RF irradiation (Figure 1). In addition, the expression levels of HMGB1 receptors, such
as TLR2 and TLR4, were also increased in UVB-radiated mouse skin but were statistically
decreased in UVB/RF-irradiated mouse skin (Figure 3). The results are comparable to
previous findings that RF irradiation reduced TNF-α expression in an acne-induced rabbit
ear model, but there are few studies showing that RF modulates the expression of HMGB1
and TLRs, which are key molecules in skin inflammation [33].

We designed an in vitro model to validate how RF irradiation attenuates the inflam-
matory process and activates macrophages through modulating keratinocytes. In the
model, the supernatants of RF-irradiated, UVB-radiated keratinocytes were used to treat
macrophages. After 24 h of this treatment, the inflammatory cytokine levels of macrophages
and the expression levels of TLRs were decreased in the human monocyte cell line (THP-1).
Interestingly, UVB-radiated macrophages secreted some factors which can induce ker-
atinocyte proliferation, and proliferative keratinocytes expressed inflammatory factors,
such as iNOS and PGE2 (Figure S3). Therefore, RF irradiation can both directly regulate
macrophage activation and indirectly regulate macrophage activation by modulating ker-
atinocytes (Figure 2 and Figure S3). The results show that RF irradiation not only alleviates
secreting cytokines in UVB-radiated keratinocytes but also attenuates the inflammatory
process caused by macrophages.

PIH can be treated medically or non-medically; the latter group of treatments includes
chemical peels and laser treatment [34,35]. But PIH patients usually suffer from long-
lasting symptoms, with treatments resulting in only slow improvement and with frequent
treatment having side effects. Thus, a safe and effective therapeutic modality is needed.
Usually, PIH is induced via sequential events. Basement membrane damage is caused by
inflammation through various external or internal stimuli, then epidermal inflammatory
changes develop, and melanocytes are displaced downward into the dermis so that dermal
macrophages phagocytose melanin-laden melanocyte in the dermis. Treatment of PIH
should include (1) avoiding causative factors, for example allergens and infection sources;
(2) removing inflammatory factors; (3) decreasing melanin content; (4) repairing the dam-
aged basement membrane; and (5) improving the dermal environment. As far as we know,
RF treatment for PIH (1) reduces pigmentation; (2) thickens the basement membrane; (3) in-
duces dermal collagen production; and (4) modulates the dermal vasculature [23,34]. Our
results also show that RF irradiation for PIH treatment is very effective and appropriate
to the pathophysiology of PIH (Figure 4). After laser treatment, many doctors encounter
PIH side effects. Dark skin color and chronic dermatitis are especially high-risk factors for
PIH [36]. Ablative, high-power laser treatment also has high risks for PIH. In most cases,
PIH improves spontaneously, but epidermal PIH lasts for at least 6 months, so its treatment
is very important.

Chronic dermatitis not only induces hyperpigmentation but also leads to long-term
usage of antihistamine drugs, steroid ointments, or other drugs. RF irradiation treatment is
advantageous because it improves hyperpigmentation and allows patients to discontinue
the use of antihistamine and steroid drugs or ointments.

4. Materials and Methods
4.1. UVB-Induced Skin Inflammation Models
4.1.1. Animal Model (In Vivo)

We maintained male, HRM-2, melanin-possessing hairless mice (6 weeks old) in a
temperature-controlled room (24 ◦C, 50% humidity) under a 12/12-h light–dark cycle.
For this research, we used 6 mice per group. This research was approved by Gachon
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University and executed in accordance with the guidelines of the Institutional Animal Care
and Use Committee (IACUC; No. LCDI-2018-0094). To induce skin inflammation, mice
were regularly exposed to UVB for 5 min every 2 days for 10 days and then for 5 min every
day for the following 4 days. At 14 days after exposure began, the mice were RF-irradiated
(2 MHz, 10 W for 100 ms), after which they were exposed to UVB every 2 days. The skin
tissues were collected after 28 days of RF irradiation.

4.1.2. Cell Model (In Vitro)

Human primary epidermal keratinocytes (HEKn; ATCC, Manassas, VA, USA) and
a human monocyte cell line (THP-1; ATCC) were used. The HEKn were cultivated with
a growth cell medium (ATCC) and a keratinocyte growth kit (ATCC). The THP-1 were
cultivated with high-glucose Dulbecco’s Modified Eagle Medium (Welgene, Gyeongsan-si,
Korea) with 10% fetal bovine serum (Millipore, Burlington, MA, USA) and 1% peni-
cillin/streptomycin (Welgene). All cells were maintained at 37 ◦C under 5% CO2. For the
in vitro model, the cells were exposed to UVB for 5 min, were RF irradiated (2 MHz, 10 W,
100 ms), and were cultured for 24 h.

4.2. RF Irradiation Conditions for Patients

In case 1, RF irradiation was performed 2 times with insulated microelectrodes, with
a 2-week interval. The irradiation consisted of 2 MHz of a bipolar alternating-current RF
with 16 needle-tipped, insulated electrodes at a depth of 0.75 mm with an on time of 50 ms
and an off time of 30 ms at 5 W in consecutive pulses, with 10 shots to each side.

In case 2, RF irradiation was performed 10 times with micro invasive electrodes, with
a 2-week interval. The irradiation consisted of 2 MHz of a bipolar alternating-current RF
with 16 needle-tipped, insulated electrodes at a depth of 0.75 mm with an on time of 50 ms
and an off time of 30 ms at 5 W in consecutive pulses, for about 400 shots to the full face
and neck.

4.3. Devices for RF Irradiation

The microneedling system (Potenza, Jeisys medical Inc. Seoul, Korea) used for animal
experiments and clinical treatment is a bipolar pulsed-type electrode array RF device that
allows the user to select the number of pulses, 1 MHz or 2 MHz, monopolar or bipolar. The
impedance matching system was applied to measure the compensation value by measuring
the impedance “automatically,” and proper output was irradiated through 16 needle tips.
Pulsed-type, bipolar, alternating current oscillations, emitting 2 MHz RF, were used in the
animal experiment (type A) and clinical treatment (type B). Single pulse-type bipolar RF
devices were used for the animal experiment (type A): 100 ms was used for the on-time
pulse duration at a power density of 10 W/pulse. Dual pulse-type bipolar RF devices
were used for clinical treatment (type B): 50 ms was used for the on-time pulse duration,
with 30 ms for the off-time pulse duration, at a power density of 5 W/pulse. The duty
cycle was 130 ms. We conducted the investigation and treatment with disposable tips (size:
10 mm × 10 mm) comprising 16 invasive micro needle electrodes that were designed to a
length of 13.6 mm, diameter of 250 mm, and needle-to-needle distance of 1.3 mm. This tip
type was approved by the North American Science Associates (NAMSA, Northwood, OH,
USA) via a biological compatibility test.

4.4. Cell Proliferation Measurement

To measure the viability of HEKn cells, they were maintained on a 96-well multi-
plate (104 cells/well) overnight, then exposed to UVB for 5 min, subjected to RF irradi-
ation overnight, and cultured for 24 h. The HEKn cells were washed with calcium and
magnesium-free phosphate-buffered saline (PBS), and a water-soluble tetrazolium salt-1
solution (DoGenBio, Seoul, Korea) was added (100 µL/well) for 4 h while the cells were in
a cell incubator. Absorbance was measured at 450 nm in a VERSAmax tunable microplate
reader (Molecular Devices, San Jose, CA, USA).
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4.5. Sample Preparation
4.5.1. Paraffin-Embedded Tissue Section Processing

Mice skin tissues were washed with cold PBS and stored in 4% paraformaldehyde
(Biosesang, Seongnam-si, Korea) at 4 ◦C for 12 h. The fixed tissue was washed for 12 h
for embedding, and a paraffin block was processed using a tissue processor (Shandon;
ThermoFisher Scientific, Waltham, MA, USA). The blocks were cut into sections 10 µm
thick using a microtome (Leica, Wetzlar, Germany) and dried at 45 ◦C overnight. The
paraffin blocks were passed through xylene and four concentrations of ethanol (100%, 95%,
80%, and 70%) to prepare them for staining.

4.5.2. RNA Extraction and cDNA Synthesis

In skin tissue, total RNA was isolated using RNAiso Plus (Takara, Shiga, Japan)
according to the manufacturer’s instructions. The extracted RNA pellets were finally
washed with a high-quality wash of 70% ethanol, were dried for 5 min, and were dissolved
in 30 µL of diethyl pyrocarbonate-treated water. The extracted RNA was quantified using
a Nanodrop 2000 (ThermoFisher Scientific) and was synthesized using a cDNA synthesis
kit (Takara) according to the manufacturer’s instructions.

4.6. Quantitative Real-Time Polymerase Chain Reaction

The synthesized cDNA was used for quantitative real-time polymerase chain reaction
(qRT-PCR). The qRT-PCR mixtures contained 5 µL SYBR Green reagent (Takara), 1 µg
cDNA template in 2 µL, and a 10 pmol primer in 0.8 µL and were dispensed in each well
of a 384-well multi-plate and then analyzed using CFX386 Touch (Bio-Rad, Hercules, CA,
USA). Validated genes are listed in Table S1 of the Supplementary Materials.

4.7. Immunostaining Using 3,3-Diaminobenzidine

To block endogenous peroxidase, skin tissue slides were incubated in 0.3% hydrogen
peroxide at room temperature for 30 min. The slides were rinsed 3 times with PBS and
then incubated in normal animal serum with antibodies overnight to prevent antibody
non-specific binding. The slides were then incubated with a proliferating cell nuclear
antigen (PCNA) antibody and an ionized calcium-binding adaptor molecule 1 (Iba1)
antibody for 12 h and washed three times with PBS. Tissue slides were treated with a
biotinylated secondary antibody using the ABC kit (Vector Laboratories Inc, Burlingame,
CA, USA) for 2 h, then washed 3 times with PBS. The tissue slides were incubated with
3,3’-diaminobenzidine (Sigma–Aldrich, St. Louis, MO, USA) for 15 min and washed with
running water. To stain nuclei, tissue slides were immersed in hematoxylin solution for
1 min, then mounted with a Dibutylphthalate polystyrene xylene (DPX) mounting solution
(Sigma–Aldrich). The stained tissues were photographed under an optical microscope
(Olympus Optical Co., Korea) and analyzed with the Image J (NIH, Bethesda, MD, USA)
software.

4.8. Statistical Analysis

SPSS version 22 (IBM Corporation, Armonk, NY, USA) was used to calculate sig-
nificant differences between groups. Data were analyzed using a Kruskal–Wallis test
(non-parametric statistics) and a Mann–Whitney U test for post hoc data; p values ≤ 0.05
were considered to indicate statistical significance.

Supplementary Materials: The following are available online, Figure S1: Inhibitory effects of RF
irradiation on Iba1 activation in UVB-radiated mouse skin in vivo, Figure S2: Inhibitory effects of
RF irradiation on TLR2 and TLR4 expression in activated macrophage in vivo, Figure S3: Inhibitory
effects of RF irradiation on keratinocyte proliferation, apoptosis regulator, and pro-inflammatory
factor expression through macrophage modulation in vitro, Figure S4: Inhibitory effects of RF
irradiation on inflammatory mediator expression in vivo, Table S1: List of primer for Quantitative
polymerase chain reaction (qRT-PCR).
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