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Abstract: Generally, bacteriochlorophyllides were responsible for the photosynthesis in bacteria.
Seven types of bacteriochlorophyllides have been disclosed. Bacteriochlorophyllides a/b/g could be
synthesized from divinyl chlorophyllide a. The other bacteriochlorophyllides c/d/e/f could be syn-
thesized from chlorophyllide a. The chemical structure and synthetic route of bacteriochlorophyllides
were summarized in this review. Furthermore, the potential applications of bacteriochlorophyllides
in photosensitizers, immunosensors, influence on bacteriochlorophyll aggregation, dye-sensitized
solar cell, heme synthesis and for light energy harvesting simulation were discussed.

Keywords: bacteriochlorophyllides; bacterochlorophylls; photosensitizers; immunosensors; dye-
sensitized solar cell

1. Introduction

Bacteriochlorophyllides are involved in photosynthesis without production of oxygen
in bacteria. Chlorophototrophic bacteria employ chlorophylls or bacteriochlorophylls to
capture light as the source of energy for chemical synthesis [1]. The similar structures or
relative compounds to bacteriochlorophyllides are shown in Figure 1. The structure features
of bacteriochlorophyllide a were with tetrapyrroles, a dicarboxylic acid, a methyl ester, a
methyl ketone and magnesium ion. Among them, tetrapyrroles are one of the macrocyclic
compounds which existed in nature and played an important role in living organisms [2–5].
Previous study exhibited that bacteriochlorophyllides were found and accumulated in
mutant strains of Rhodopseudomonas spheroids [6]. Bacteriochlorophyllides are the esterifying
alcohol-free form of bacteriochlorophyll. In 1954, the preparation and conversion of
bacteriochlorophyll into bacteriochlorophyllide in methanol by chlorophyllase was firstly
described [7].

1.1. A Brief History of Bacteriochlorophylls

It is well known that the hydrolysis of bacteriochlorophyllase could remove a long
alkyl chain (e.g., phytyl group) from bacteriochlorophyll a to generate bacteriochlorophyl-
lide a [8–10] (Figure 2). For better understanding the precursor of bacteriochlorophyllides,
a discovery history of bacteriochlorophylls was descripted. Generally, bacteriochlorophylls
a to f were named by the order of discovery. The first isolation of bacteriochlorophyll a was
reported in 1935 by Hans Fischer and Johann Hasenkamp [11]. Later, they also proposed
the chemical structure and formulation of bacteriochlorophyll a in 1937 [12]. The discovery
of bacteriochlorophyll b was isolated in 1963 from Rhodopseudomonas sp. photosynthetic
bacterium by paper chromatography [13]. The bacteriochlorophylls c and d originally were
called the Chlorobium chlorophyll-660 and -650, respectively [14]. Bacteriochlorophyll e was
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found and isolated from Chlorobium phaeobacteroides and Chlorobium phaeovibrioides by thin-
layer chromatography in 1975 [15,16]. Then, the nomenclature of the bacteriochlorophylls
c, d and e were further clarified in 1994 [17]. Although, the name bacteriochlorophyll f was
proposed in 1975 due to the similarity with bacteriochlorophyll e [15]. The existence of bac-
teriochlorophyll f in nature from Chlorobaculum limnaeum was reported until 2012 [18–20].
Bacteriochlorophyll g was firstly found in Heliobacterium chlorum (heliobacteria) [21,22].
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1.2. The Chemical Structure of Bacteriochlorophyllides

Seven types of bacteriochlorophyllides were found from different bacteria [1]. For
example, bacteriochlorophyllides a/b/g which have bacteriochlorin ring structure were
found in the purple phototrophic bacteria [23–25]. In addition, bacteriochlorophyllides
c/d/e/f which have chlorin ring structure were found in green bacteria [2,26–29]. The
unique structural features allow bacteriochlorophyllide c/d/e/f to form the supramolecular
structures and self-assemble within chlorosomes.

The molecular formula, molecular weight and structure of bacteriochlorophyllides are
summarized in Table 1. Bacteriochlorophyllide a (C35H36MgN4O6) was the most abundant
bacteriochlorin. It was found in green bacteria, most purple bacteria and Gemmatimonas pho-
totrophica [1,30]. Bacteriochlorophyllide a possessed a bacteriochlorin ring and an acetyl
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group in C3 [6,31]. Bacteriochlorophyllide b (C35H34MgN4O6) possessed a bacteriochlorin
ring and an ethylidene group at C8 [10]. Bacteriochlorophyllide c (C31H28MgN4O4(R1)(R2))
was different from bacteriochlorophyllide a in a α-hydroxyethyl group at C3, R1 group at
C8, R2 group at C12, a hydrogen at C132 and a methyl group at C20. The R1 group of bacte-
riochlorophyllide c could be isobutyl, n-propyl or ethyl group, while that of the R2 group
could be ethyl or methyl group. Saga and Yamashita studied the esterifying alcohols to the
precursor of bacteriochlorophyll c and named this precursor as bacteriochlorophyllide c in
green sulfur bacteria [32]. Bacteriochlorophyllide c exhibited a major pigment involved in
light-harvesting in the green sulfur bacterium Chloroflexus aurantiacus and Chlorobaculum
tepidum [33,34]. Bacteriochlorophyllide d (C33H30MgN4O3(R1)(R2) was analogous to bacte-
riochlorophyllide c, except that the C20 has a methyl group [15]. Bacteriochlorophyllide e
(C31H26MgN4O5(R1)(R2) was different from bacteriochlorophyllide c by the presence of a
formyl group at the C7 position of the chlorin ring. Bacteriochlorophyllide f was different
to bacteriochlorophyllide e at C20 without methyl group [35]. Bacteriochlorophyllide g
(C35H34MgN4O5) was bacteriochlorins with C3-vinyl group and C8-ethylidene group [36].

Table 1. The molecular formula, molecular weight and structure of bacteriochlorophyllides.

Name Molecular Formula Molecular Weight
(g/mol) Ring Structure Structure

Bacteriochlorophyllide a C35H36MgN4O6 633 Bacteriochlorin
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Table 1. Cont.

Name Molecular Formula Molecular Weight
(g/mol) Ring Structure Structure

Bacteriochlorophyllide d C33H30MgN4O3(R1)(R2) 545 (#) Chlorin
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2. Biosynthetic Routes of Bacteriochlorophyllides

The biosynthesis, regulation and functions progress of bacteriochlorophyllides have
been disclosed [2,4,28,29]. The biosynthetic route of bacteriochlorophyllides was shown
in Figure 3. Generally, the biosynthesis of bacteriochlorophyllides could be classified
into two pathways; one of the pathways bring about bacteriochlorophyllides b and g and
were derived from divinyl chlorophyllide a. The conversion of divinyl chlorophyllide
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a to bacteriochlorophyllide g proceeded via reduction of the double bond at C7 and C8.
At the same time, this reduction generated a C8 ethlidene group in bacteriochlorophyl-
lide g. For bacteriochlorophyllide b generation, two reactions were performed by C31

hydratase and dehydrogenase from bacteriochlorophyllide g. The C3-vinyl side chain of
bacteriochlorophyllide g was converted into a C3-acetyl group in bacteriochlorophyllide b.

Another pathway giving rise to the synthesis of bacteriochlorophyllides a, c, d, e or
f was derivative from chlorophyllide a. Generally, chlorophyllide a could be converted
into bacteriochlorophyllides a and d, and then bacteriochlorophyllide d could be employed
to the synthesis of bacteriochlorophyllides c, e and f. The conversion of chlorophyllide
a to bacteriochlorophyllide a proceeded via reduction, hydration and subsequent dehy-
drogenation, respectively. The reduction of the double bond occurred at C7 and C8 of
chlorophyllide a. The hydration of the vinyl group proceeded to form a hydroxyethyl
group at C3. The dehydrogenation of the hydroxyethyl group at C3 generated an acetyl
group that resulted in the synthesis of bacteriochlorophyllide a.
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For bacteriochlorophyllide d generation, demethoxycarbonylation, methylation and
hydration of chlorophyllide a were occurred. The demethoxycarbonylation were occurred
at C132 to form a methylcarboxyl group. The C8 and C12 of chlorophyllide a was then
carried on the methylation. Finally, the hydration acted at C31 position, which produced a
mixture of methylated species of bacteriochlorophyllide d [4]. Furthermore, bacteriochloro-
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phyllide d could be the precursor for the synthesis of bacteriochlorophyllides c, e and f.
For bacteriochlorophyllide c generation, bacteriochlorophyllide d could be converted into
bacteriochlorophyllide c by a C20 methyltransferase [37,38]. For bacteriochlorophyllide e
generation, C7 methyl group of bacteriochlorophyllide c was converted into a C7 formyl
group by a radical S-adenosyl-l-methionine enzyme. As for bacteriochlorophyllide f gen-
eration, bacteriochlorophyllide d could be catalyzed by the same radical-SAM enzyme to
form a formyl group at C7.

3. Applications

The attractive properties of bacteriochlorophyllides were having an intense absorption
band in the long wavelength region, light sensitization, and photochemistry properties.
Those properties are highly useful in various applications of bacteriochlorophyllides [39].
Herein, the applications of bacteriochlorophyllides were summarized and classified into
six main types: photosensitizers, immunosensors, influence on bacteriochlorophylls aggre-
gation, dye-sensitized solar cell, heme synthesis and light energy simulation (Figure 4).
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3.1. For Photosensitizers Application

The favorable photophysical characters of bacteriochlorophyllides are their long-
wavelength absorption, which comply with the specification of excellent photosensitizers
in photodynamic therapy [39–41]. In recent years, there has been a growing interest in inves-
tigating of bacteriochlorophyllides derivatives with better photodynamic activity. However,
bacteriochlorophyllides has instability problems that affect the extensive biomedical ap-
plications [27,42]. In order to stabilize bacteriochlorophyllides, many studies are devoted
to the chemical modification or functional group substitutions of bacteriochlorophyllides.
The functional properties and mechanism of those bacteriochlorophyll derivatives have
been summarized and nicely discussed in several reviews and patents [39–41,43–51]. For
example, Palladium-bacteriochlorophyllide a such as WST09 and WST11 (trade name
TOOKAD® and TOOKAD® soluble) are excellent photosensitizers [47,52,53]. Noweski
et al. used TOOKAD® soluble WST11 and vascular-targeted photodynamic therapy to treat
patients with localized prostate cancer within 3.5 years’ follow-up stage [54]. The treatment
conditions were WST11 at 4 mg/kg, light energy at 200 J/cm, and a light density index ≥1.
The overall successful focal ablation was 75% and 50% of patients were cancer-free in
both the prostate lobes. Therefore, the authors summarized that this form of treatment
may become a potential therapy in low-risk cancer. In addition, a new complex contained
WST-11 and dextran (WST-D) was used to treatment of stiffening pathologically weakened
corneas [55]. WST-D was illuminated with near infrared and used to treat rabbit corneas.
The results indicated that the corneal thickness was increased at 1–4 days after treatment,
and the epithelium was fully healed after 6–8 days. Therefore, WST-D combined with near
infrared could safely stiffen the cornea. While with the research of natural-occurring bacte-
riochlorophyllides, the problem is the high cost of production. To gain access to the large
amount of bacteriochlorophyllides, a green technology trend that uses enzyme to synthesis
bacteriochlorophyllide was also reported [10]. A recombinant chlorophyllase named as
CyanoCLH was cloned from a photosynthetic bacterium (Cyanothece sp. ATCC 51142) to
produce bacteriochlorophyllide a. Then, bacteriochlorophyllide a could be converted into
bacteriopheophorbide a, which was used to synthesize different types of photosensizers.

3.2. For Immunosensing Application

Immunosensors are biosensing devices that include biorecognition element, transduc-
ers and the readout systems [56,57]. For immunosensing, bacteriochlorophyllides could
be applied in immunoassays or specific targeting of bacteria. The luminous feature of
bacteriochlorophyllide b was employed as a fluorescent labeled reagent in a fluora im-
munoassay system [58]. For example, bacteriochlorophyllide b was modified to form a
complex with thyroxin, triiodothyronine or diogoxin (US4707454A) (Figure 5). Biorecogni-
tion was formed between thyroxin present in patient blood and rabbit anti-thyroxin serum
pre-coated tubes. Bacteriochlorophyllide b- thyroxin as transducer was applied to convert
observed signal into the quantifiable electrical signals. A spectrofluorometer was then
used to measure the relative fluorescence for each sample (excitation: 400 nanometers;
fluorescence emission: 690 nanometers). This assay detected the presence of the labeling
agent comprising an excitation source illuminating a vessel with a photodetector directly
within the illuminated area. Therefore, three advantages of bacteriochlorophyllide b as a
fluorescent label agent (transducer) were used in an immunoassay: a relative high stoke
shift, a longer fluoresce wavelengths and less expensive. For the specific targeting of
bacteria, Scherz’s group investigated the phototoxicity of bacteriochlorophyllide-serine
(Bchl-Ser) or bacteriochlorophyllide-Immunoglobulin G (Bchl-IgG) [59]. The conjugates
were illuminated with light to determine the photodynamic efficiency. Results indicated
that the Bchl-IgG were a highly specific bind to protein A on the wall of Staphylococcus
aureus. The phototoxicity of Bchl-IgG conjugates was increased in a dose-dependent man-
ner with LD50 = 1.7 µM. The LD50 of Bchl-Ser was 0.07 µM. The photocytotoxicities of
Bchl-lgG and Bchl-Ser depend both on the concentration of sensitizer and light. However,
the binding ability of Bchl-IgG was 66,000 Bchl-IgG/bacterium compared to that of Bchl-Ser,
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which was 1900,000/bacterium at LD50. A 29-fold higher photoefficiency was observed in
Bchl-IgG compared to that of Bchl-Ser. This may be due to the specific binding between
Bchl-IgG and protein A on the bacterium. Therefore, the results demonstrated the higher
and specific efficacy of Bchl-IgG. In spite of its lower potency of binding, the preparation of
Bchl-Ser was patented (EP0584552B1) [60]. Moreover, this molecule Bchl-Ser was further
applied to study the photophysical behaviors, solubility in water, antivascular effect in
solid melanoma tumors and tumor microenvironment [61–63].
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3.3. Influence on Bacteriochlorophyll Aggregation

Bacteriochlorophyllides were used to study lamellar spacing in self-assembling aggre-
gates. Chlorosomes contained bacteriochlorophylls surrounded by a galactolipid mono-
layer, which are responsible for harvesting of light in green bacteria. To study the role of
esterifying alcohols of bacteriochlorophyllide c aggregation, different lengths of esterifying
alcohols (C1, C4, C8 and C12) were conjugated with bacteriochlorophyllide c [64]. Such
complexes were subjected to polar and nonpolar environments to study the aggregation
behavior. Results showed that the hydrophobic interactions formed between longer esterify-
ing alcohols in bacteriochlorophyllide c could drive the formation of bacteriochlorophyllide
c dimers, while the shorter esterifying alcohol preferred monomers. The other study pre-
pared different types of bacteriochlorophyllides (c, d, or e) to investigate lamellar spacing in
self-assembling aggregates in chlorosomes [65]. Results indicated that scattering features
of bacteriochlorophyllide c aggregates are similar to native chlorosomes. Self-assembling
bacteriochlorophyll c aggregates are fully encoded in lamellar structures. In addition,
bacteriochlorophyllides c, d, or e were trans-esterified with different alcohols to study the
correlations between the length of esterifying alcohol and the spacing of lamellar spacing.
Results showed that the lamellar spacing increased linearly in a length-dependent manner,
indicating that lamellar spacing is proportional to the length of esterifying alcohol [65].
Taken together, the esterifying alcohols as geranylgeranyl, farnesyl and phytyl groups
were observed in bacteriochlorophyllides. The variety of esterifying alcohols or lengths
provide the diversity of bacteriochlorophyllides aggregates in chlorosomes. The esterifying
alcohols may function as an anchor to lock bacteriochlorophyllides in the appropriate
positions. Therefore, both of the types of bacteriochlorophyllides and esterifying alcohols
in bacteriochlorophyllides affected the lamellar spacing in self-assembling aggregates.

3.4. For Dye-Sensitized Solar Cells Application

For applications in dye-sensitized solar cells, a patent (JP2014003938A) invented a
new enzyme and method for producing bacteriochlorophyllides b or g [66]. The inventors
described that bacteriochlorophyllides b or g have a longer wavelength shift than bacteri-
ochlorophyllide a, which is beneficial to dye-sensitized solar cells [67,68]. Dye-sensitized
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solar cells are used to convert solar radiation into electrical energy. Such a device contained
a transparent conducting oxide, dye sensitizer, a photo anode, electrolyte and a counter
electrode. A photoanode was developed from mesoporous metal oxide layer, such as
TiO2. Dye molecules as sensitizer anchoring on the surface of the photoanode absorb
photos. A counter electrode was a glass coated with platinum. Electrons were released
from excited dye molecules and finally migrated into external load circuit (Figure 6). Thus,
by applying bacteriochlorophyllides b or g in dye-sensitized solar cells, this could increase
the conversion efficiency of light energy and could extend the absorption wavelength to
the near-infrared region [69,70]. Therefore, bacteriochlorophyllides in dye-sensitized solar
cells provided a cost-effective alternative to traditional solar cells.
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3.5. For Heme Synthesis

The synthetic substituted heme was produced by bacteriochlorophyll derivatives, due
to the similar structure between heme and bacteriochlorophyllide. Generally, heme group
and apomyoglobin generated a complexed named myoglobin. Wright and Boxer prepared
zinc bacteriochlorophyllide a -apomyoglobin complexes as synthetic heme and determined
the solution properties [71]. Apomyoglobin causes shifts and intensity changes of zinc-
bacteriochlorophyllide a. The intensity of circular dichroism showed 3-6 folds increase
in zinc bacteriochlorophyllide a-apomyoglobin. Another group (Marković et al.) investi-
gated the stabilities between myoglobin, apomyoglobin and zinc-pheophorbide a, zinc-
bacteriopheophorbide a by thermal and chemical denaturation [72]. Marković et al. found
that the stability of zinc-pheophorbide-myoglobin is higher than zinc-bacteriopheophorbide-
myoglobin [72]. The thermal unfolding temperature of zinc-pheophorbide a was 83.9 ◦C,
while that of zinc-bacteriopheophorbide a was 82.6 ◦C. The recovery rate of zinc-pheophorb
ide was 92–98%, while that of zinc-bacteriopheophorbide was 40%. For the stability of syn-
thetic heme complexes, native heme was the best, followed closely by zinc-pheophorbide-
myoglobin, and zinc-bacteriopheophorbide-myoglobin. Therefore, bacteriochlorophyllides
stabilize the apoprotein and the complex of synthetic substituted heme.

3.6. For Light Energy Harvesting Simulation

For studying the light energy system, a system for harvesting natural light energy and
dissipation was designed as zinc-bacteriochlorophyllide dimers conjugated with four-helix
bundle proteins [73]. To search suitable bundle proteins in this system, heme, heme-binding
protein and its mutants were tested. The results indicated that zinc-bacteriochlorophyllide
preferred to bind heme-binding protein, heme-binding protein mutants, and then heme
itself. Zinc-bacteriochlorophyllide formed dimers within heme-binding protein and dra-
matically quenched the fluorescence of zinc-bacteriochlorophyllide. Therefore, this system
could mimic the natural photosynthetic system to study the properties of light harvesting
and dissipation [73].

3.7. Challenges and Future Perspectives

Bacteriochlorophyllides owned an intense electronic absorption in the red or near-
infrared range; this offer was a more valuable and interesting opportunity in its applications.
Although, it has been known that the feature of bacteriochlorophyllides is the reduced
stability [39]. This reduced stability is due to the two reduced pyrrole rings in the structure
of bacteriochlorophyllides. The problems of stability and high cost of production may
lead to its delay in the functional study. In recent years, researchers have focused on
the synthetic bacteriochlorophyllides derivatives that provided new opportunities for the
enhancement of stability. However, there is still a growing demand and challenges on
natural-occurring bacteriochlorophyllides due to the instability and production. To obtain
a large amount of and purified natural bacteriochlorophyllides, we propose potential
future perspectives:

a. New recombinant enzymes with high catalytic activity could be developed [10].
b. Extraction, isolation and purification of bacteriochlorophyllides could be optimized.
c. New preservation technology (nanotechnology) for bacteriochlorophyllides could

be developed.

4. Conclusions

This review summarized the chemical structures and applications of bacteriochloro-
phyllides. The structural differences were described between the members and deriva-
tives of bacteriochlorophyllide family. The source, correlation and synthesis route of all
bacteriochlorophyllides were also clarified. Divinyl-chlorophyllide a, as an interaction
hub, could be used to synthesize all bacteriochlorophyllides. The diverse applications
of bacteriochlorophyllides included photosensitizers, immunosensors, lamellar spacing,
dye-sensitized solar cell, synthetic substituted heme and light energy systems. To develop
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the extensive applications and gain access to the biological function of bacteriochloro-
phyllides, high purities of bacteriochlorophyllides are needed. This can be achieved by
improving the purification strategies of bacteriochlorophyllides. Combined with advanced
or cutting-edge technology, such as nanotechnology tools, the stability or bioavailabil-
ity of bacteriochlorophyllides can be achieved. Accordingly, the potential application of
bacteriochlorophyllide is increasing for extensive purposes. We suggest that the detailed
mechanism of bacteriochlorophyllides in medical therapy, disease prevention, and health
maintenance should for making bacteriochlorophyllides beneficial for human welfare.
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