SUPPORTING INFORMATION FOR

New Coumarin Dipicolinate Europium Complexes with a Rich Chemical Speciation and Tunable Luminescence

Figure S 1. ¹ H-NMR spectrum of compound 1
Figure S 2. ¹ H-NMR spectrum of compound 2
Figure S 3. ¹³ C-NMR spectrum of compound 2
Figure S 4. ¹ H-NMR spectrum of compound 3
Figure S 5. ¹³ C-NMR spectrum of compound 3
Figure S 6. ¹ H-NMR spectrum of compound 4
Figure S 7. ¹³ C-NMR spectrum of compound 4 10
Figure S 8. ¹ H-NMR spectrum of compound 5 11
Figure S 9. ¹³ C-NMR spectrum of compound 5 12
Figure S 10. ¹³ C-NMR spectrum of the triethylammonium salt of HL ₁
Figure S 11. HMRS spectrum of compound HL ₁ 14
Figure S 12. HPLC chromatogram of the triethylammonium salt of HL ₁
Figure S 13. ¹ H-NMR spectrum of compound HL ₂
Figure S 14. ¹³ C-NMR spectrum of compound HL ₂ 17
Figure S 15. HMRS spectrum of compound HL ₂
Figure S 16. HPLC chromatogram of the triethylammonium salt of HL ₂
Figure S 17. HRMS spectrum of $Na_3[Eu(L_1)_3]$ complex (above) with the relative calculated one
(below)
Figure S 18. HPLC chromatogram of Na ₃ [Eu(L ₁) ₃] complex
Figure S 19. ¹ H-NMR spectrum of Na ₃ [Eu(L2) ₃] complex
Figure S 20. HRMS spectrum of $Na_3[Eu(L_2)_3]$ complex (above) with the relative calculated one
(below)

Figure S 21. HPLC chromatogram of Na ₃ [Eu(L ₂) ₃] complex
Figure S 22. ¹ H-NMR titration (400 MHz, D_2O) of L_1 (triethylammonium salt) with Eu ³⁺ (chloride hexahydrate salt)
Figure S 23. ¹ H-NMR titration (400 MHz, DMSOd) of L_1 (triethylammonium salt) with Eu ³⁺ (chloride hexahydrate salt), particular of the counterion dynamic
Figure S 24. Fluorescence titration spectra of L_1^{2-} in Tris HCl with Eu^{3+} (above) and titration curve monitoring the fluorescence at 615 nm (below)
Figure S 25. Fluorescence decay fitting of L_1^{2-} in Tris HCl with increasing amounts of Eu^{3+} monitoring at 615 nm and exciting at 360 nm
Figure S 26. Fluorescence decay fitting of L_1^{2-} in Tris HCl with increasing amounts of Eu^{3+} monitoring at 615 nm and exciting at 360 nm: 0.05 eq
Figure S 27. Fluorescence decay fitting of L_1^{2-} in Tris HCl with increasing amounts of Eu^{3+} monitoring at 615 nm and exciting at 360 nm: 0.1 eq
Figure S 28. Fluorescence decay fitting of L_1^{2-} in Tris HCl with increasing amounts of Eu^{3+} monitoring at 615 nm and exciting at 360 nm: 0.15 eq
Figure S 29. Fluorescence decay fitting of L_1^{2-} in Tris HCl with increasing amounts of Eu^{3+} monitoring at 615 nm and exciting at 360 nm: 0.2 eq
Figure S 30. Fluorescence decay fitting of L_1^{2-} in Tris HCl with increasing amounts of Eu^{3+} monitoring at 615 nm and exciting at 360 nm: 0.25 eq
Figure S 31. Fluorescence decay fitting of L_1^{2-} in Tris HCl with increasing amounts of Eu^{3+} monitoring at 615 nm and exciting at 360 nm: 0.35 eq
Figure S 32. Fluorescence decay fitting of L_1^{2-} in Tris HCl with increasing amounts of Eu^{3+} monitoring at 615 nm and exciting at 360 nm: 0.4 eq
Figure S 33. Fluorescence decay fitting of L_1^{2-} in Tris HCl with increasing amounts of Eu^{3+} monitoring at 615 nm and exciting at 360 nm: 0.45 eq
Figure S 34. Fluorescence decay fitting of L_1^{2-} in Tris HCl with increasing amounts of Eu^{3+} monitoring at 615 nm and exciting at 360 nm: 0.5 eq

Figure S 35. Fluorescence decay fitting of L_1^{2-} in Tris HCl with increasing amounts of Eu^{3+}
monitoring at 615 nm and exciting at 360 nm: 0.6 eq
Figure S 36. Fluorescence decay fitting of L_1^{2-} in Tris HCl with increasing amounts of Eu^{3+}
monitoring at 615 nm and exciting at 360 nm: 0.7 eq 50
Figure S 37. Fluorescence decay fitting of L_1^{2-} in Tris HCl with increasing amounts of Eu^{3+}
monitoring at 615 nm and exciting at 360 nm: 2 eq
Figure S 38. Fluorescence spectra comparison (excitation at 360 nm) in DMSO between
$Eu3+/L_2^{2-}$ in 1:2 (black), 1:3 (blue) and 1:4 (red) molar ratios
Figure S 39. HRMS spectra of DMSO mixture $Eu^{3+}:L_1^{2-}$ in 1:2 molar ratio
Figure S 40. HMRS spectrum of DMSO mixture $Eu^{3+}:L_2^{2-}$ in 1:2 molar ratio
Figure S 41. HMRS spectrum of DMSO mixture $Eu^{3+}:L_1^{2-}$ in 1:4 molar ratio
Figure S 42. Fluorescence decay fitting of isolated $Na_3[Eu(L_1)_3]$ in water, monitoring at 615 nm
and exciting at 360 nm
Figure S 43. Fluorescence decay fitting of isolated Na ₃ [Eu(L ₂) ₃] in water, monitoring at 615 nm
and exciting at 360 nm
Figure S 44. Phosphorescence spectrum of $Na_3[Eu(L_1)_3]$ complex in water with 200µs of delay
time
Figure S 45. Quantum yields plot of isolated tris complexes in water solution (above) and fitting
details (below)
Figure S 46. Quantum yields plot of isolated tris complexes in DMSO solution (above) and
fitting details (below)
Figure S 47. Fitting details of quinine sulfate in 0.5 M H ₂ SO ₄

Figure S 1. ¹H-NMR spectrum of compound 1.

Figure S 2. ¹H-NMR spectrum of compound 2.

Figure S 3. ¹³C-NMR spectrum of compound 2.

Figure S 4. ¹H-NMR spectrum of compound 3.

Figure S 5. ¹³C-NMR spectrum of compound 3.

Figure S 6. ¹H-NMR spectrum of compound 4.

Figure S 7. ¹³C-NMR spectrum of compound 4.

Figure S 8. ¹H-NMR spectrum of compound 5.

Figure S 9. ¹³C-NMR spectrum of compound 5.

Figure S 10. ¹³C-NMR spectrum of the triethylammonium salt of HL₁.

Figure S 11. HMRS spectrum of compound HL₁.

Figure S 12. HPLC chromatogram of the triethylammonium salt of HL₁.

Figure S 13. ¹H-NMR spectrum of compound HL₂.

Figure S 14. ¹³C-NMR spectrum of compound HL₂.

Figure S 15. HMRS spectrum of compound HL₂.

Figure S 16. HPLC chromatogram of the triethylammonium salt of HL₂.

Figure S 17. HRMS spectrum of $Na_3[Eu(L_1)_3]$ complex (above) with the relative calculated one (below).

Figure S 18. HPLC chromatogram of Na₃[Eu(L₁)₃] complex.

Figure S 19. ¹H-NMR spectrum of Na₃[Eu(L2)₃] complex.

Figure S 20. HRMS spectrum of Na₃[Eu(L₂)₃] complex (above) with the relative calculated one (below).

Figure S 21. HPLC chromatogram of Na₃[Eu(L₂)₃] complex.

Figure S 22. ¹H-NMR titration (400 MHz, D₂O) of L₁ (triethylammonium salt) with Eu³⁺ (chloride hexahydrate salt).

 $\label{eq:Figure S 23. } \mbox{1H-NMR$ titration (400 MHz, DMSOd) of L_1 (triethylammonium salt) with Eu^{3+} (chloride hexahydrate salt), particular of the counterion dynamic.}$

Figure S 24. Fluorescence titration spectra of L_1^{2-} in Tris HCl with Eu^{3+} (above) and titration curve monitoring the fluorescence at 615 nm (below).

Figure S 25. Fluorescence decay fitting of L₁²⁻ in Tris HCl with increasing amounts of Eu³⁺ monitoring at 615 nm and exciting at 360 nm.

Figure S 26. Fluorescence decay fitting of L₁²⁻ in Tris HCl with increasing amounts of Eu³⁺ monitoring at 615 nm and exciting at 360 nm: 0.05 eq

Figure S 27. Fluorescence decay fitting of L₁²⁻ in Tris HCl with increasing amounts of Eu³⁺ monitoring at 615 nm and exciting at 360 nm: 0.1 eq

Figure S 28. Fluorescence decay fitting of L₁²⁻ in Tris HCl with increasing amounts of Eu³⁺ monitoring at 615 nm and exciting at 360 nm: 0.15 eq

Figure S 29. Fluorescence decay fitting of L₁²⁻ in Tris HCl with increasing amounts of Eu³⁺ monitoring at 615 nm and exciting at 360 nm: 0.2 eq

Figure S 30. Fluorescence decay fitting of L1²⁻ in Tris HCl with increasing amounts of Eu³⁺ monitoring at 615 nm and exciting at 360 nm: 0.25 eq

Figure S 31. Fluorescence decay fitting of L₁²⁻ in Tris HCl with increasing amounts of Eu³⁺ monitoring at 615 nm and exciting at 360 nm: 0.35 eq

Figure S 32. Fluorescence decay fitting of L₁²⁻ in Tris HCl with increasing amounts of Eu³⁺ monitoring at 615 nm and exciting at 360 nm: 0.4 eq

Figure S 33. Fluorescence decay fitting of L₁²⁻ in Tris HCl with increasing amounts of Eu³⁺ monitoring at 615 nm and exciting at 360 nm: 0.45 eq

Figure S 34. Fluorescence decay fitting of L₁²⁻ in Tris HCl with increasing amounts of Eu³⁺ monitoring at 615 nm and exciting at 360 nm: 0.5 eq

Figure S 35. Fluorescence decay fitting of L₁²⁻ in Tris HCl with increasing amounts of Eu³⁺ monitoring at 615 nm and exciting at 360 nm: 0.6 eq

Figure S 36. Fluorescence decay fitting of L1²⁻ in Tris HCl with increasing amounts of Eu³⁺ monitoring at 615 nm and exciting at 360 nm: 0.7 eq

Figure S 37. Fluorescence decay fitting of L1²⁻ in Tris HCl with increasing amounts of Eu³⁺ monitoring at 615 nm and exciting at 360 nm: 2 eq

Figure S 38. Fluorescence spectra comparison (excitation at 360 nm) in DMSO between Eu³⁺/L₂²⁻ in 1:2 (black), 1:3 (blue) and 1:4 (red) molar ratios.

Figure S 39. HRMS spectra of DMSO mixture Eu³⁺:L₁²⁻ in 1:2 molar ratio.

Figure S 40. HMRS spectrum of DMSO mixture Eu³⁺:L2²⁻ in 1:2 molar ratio.

Figure S 41. HMRS spectrum of DMSO mixture Eu³⁺:L₁²⁻ in 1:4 molar ratio.

Figure S 42. Fluorescence decay fitting of isolated Na₃[Eu(L₁)₃] in water, monitoring at 615 nm and exciting at 360 nm.

Figure S 43. Fluorescence decay fitting of isolated Na₃[Eu(L₂)₃] in water, monitoring at 615 nm and exciting at 360 nm.

Figure S 44. Phosphorescence spectrum of $Na_3[Eu(L_1)_3]$ complex in water with 200µs of delay time.

	А	В	С	D
1	Equation	y = a + b*x		
2	Weight	No Weighting		
3	Residual Sum of Squares	25.31818	858.61091	228267.4124
4	Pearson's r	0.99995	0.9983	0.99564
5	Adj. R-Square	0.99987	0.99547	0.98839
6			Value	Standard Error
7	EuL1	Intercept	0	
8		Slope	3573.43801	20.29393
0	EuL2	Intercept	0	
10		Slope	3188.71511	107.44075
11	L1 Residual	Intercept	0	
12		Slope	35618.79804	1926.95606

Figure S 45. Quantum yields plot of isolated tris complexes in water solution (above) and fitting details (below).

	А	В	С	D
1	Equation	y = a + b*x		
2	Weight	No Weighting		
3	Residual Sum of Squares	23754.20021	682.19915	5694.37765
4	Pearson's r	0.99349	0.98258	0.99497
5	Adj. R-Square	0.98269	0.95394	0.98744
6			Value	Standard Error
7	L1 residual	Intercept	0	
8		Slope	8865.68405	587.03511
9		Intercept	0	
10		Slope	910.95335	99.48313
11	E	Intercept	0	
12		Slope	4560.45093	229.68249

Figure S 46. Quantum yields plot of isolated tris complexes in DMSO solution (above) and fitting details (below).

	А	В	С	D
1	Equation	y = a + b*x		
2	Weight	No Weighting		
3	Residual Sum of Squares	2.62986E7		
4	Pearson's r	0.99931		
5	Adj. R-Square	0.99827		
6			Value	Standard Error
7	Quining Sulfate	Intercept	0	
8		Slope	4.05511E6	75478.94658

Figure S 47. Fitting details of quinine sulfate in 0.5 M H₂SO₄.