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Abstract: Probing protein surfaces to accurately predict the binding site and conformation of a
small molecule is a challenge currently addressed through mainly two different approaches: blind
docking and cavity detection-guided docking. Although cavity detection-guided blind docking has
yielded high success rates, it is less practical when a large number of molecules must be screened
against many detected binding sites. On the other hand, blind docking allows for simultaneous
search of the whole protein surface, which however entails the loss of accuracy and speed. To bridge
this gap, in this study, we developed and tested BLinDPyPr, an automated pipeline which uses
FTMap and DOCK6 to perform a hybrid blind docking strategy. Through our algorithm, FTMap
docked probe clusters are converted into DOCK6 spheres for determining binding regions. Because
these spheres are solely derived from FTMap probes, their locations are contained in and specific to
multiple potential binding pockets, which become the regions that are simultaneously probed and
chosen by the search algorithm based on the properties of each candidate ligand. This method yields
pose prediction results (45.2–54.3% success rates) comparable to those of site-specific docking with
the classic DOCK6 workflow (49.7–54.3%) and is half as time-consuming as the conventional blind
docking method with DOCK6.

Keywords: blind docking; ftmap; dock6; pipeline

1. Introduction

Computer-aided drug design (CADD) comprises in silico methods for simulation,
visualization, and prediction of biological phenomena. Such methods facilitate, accelerate,
and even enable drug discovery. To this end, it is of great importance to accurately predict
possible interactions between protein targets and small organic molecules. In this field,
molecular docking and virtual screening are valuable tools which allow for fast binding
pose prediction and scoring of the protein–ligand complexes [1].

It is generally accepted that binding affinity prediction and scoring present greater
challenges than pose generation (posing) [2], thus pose prediction remains critical for
interaction studies and directly impacts scoring and ranking. Furthermore, when the ideal
protein binding site is not known or specified, pose prediction becomes a greater challenge,
since in these cases computer methods must search the entire protein surface for the correct
binding pose through the strategy known as blind docking.

In light of this, two main distinct strategies to perform blind docking have arisen: (i) In
conventional blind docking, the docking box is extended to encompass the whole protein,
and the docking algorithm itself must probe the whole receptor surface when performing
pose prediction [3–5]. (ii) In cavity detection-guided blind docking, a separate algorithm
identifies and ranks possible binding pockets a priori. Docking is then performed at the
site(s) identified as most probable [6,7].

Most commonly, blind docking has been performed using established docking pro-
grams such as AutoDock [8], AutoDock Vina [9], GOLD [10], and Glide [11] and molecular
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docking servers such as DockThor [12] whose algorithms were not specifically developed
to tackle blind docking challenges. Nevertheless, these tools have been employed in blind
docking with relative success in situations where the docking box encompasses the whole
receptor surface [4,5]. Furthermore, to aid in cavity detection-guided blind docking, many
methods for cavity detection and characterization have been developed to this date, such as
FTSite [13], CavityPlus [14], DoGSiteScorer [15], DeepSite [16], FPocket [17], and PocketZe-
bra [18]. Recently, tools and servers which are specifically tailored to perform and automate
blind docking, such as SwissDock [19], COACH-D [6], PatchDock (for rigid docking) [20],
BSP-SLIM [21], QuickVina-W [3], and CB-Dock [7], have also been developed.

Conventional blind docking is most challenging accuracy-wise, because of the in-
creased amount of binding possibilities the docking algorithm must account for and
evaluate. However, especially in a virtual screening circumstance, this method carries a
big advantage: it may be able to determine, for each candidate ligand, the best binding
pocket in a single docking run. Cavity-detection guided blind docking greatly increases
pose prediction performance, since cavity selection reduces the search space required of
the docking algorithm. On the other hand, if more than one of the detected sites is required
for interaction studies, one docking or virtual screening run must be performed for each
of the desired sites [6,7,22]. This can be computationally expensive and time consuming,
especially in situations where the candidate ligands are numerous. Furthermore, in these
cases, more intense post-processing is necessary to merge the results and thus final analysis
may be less comprehensive [3,7].

Interestingly, the SwissDock web server [19], with EADock DSS [23], implements
a method which unites traits from both approaches by employing a cavity detection
algorithm which singles out the most promising cavity points for pose prediction. Its
context as a web server, however, makes it not amenable for screening larger ligand
libraries.

Hence, there is a gap of accuracy versus speed and practicality between approaches,
especially for screening larger libraries, which often requires a compromise in accuracy
which hinders ranking enrichment. To aid in bridging this gap, we seek to unite the
speed and practicality of blind docking with the advantages of cavity detection in a single
automated pipeline. In this study, we develop a hybrid approach in which multiple
potential cavities are detected and specified in a cavity-detection guided manner, thus
reducing the search space; however, such cavities can be sampled simultaneously for each
candidate ligand, in a conventional blind docking manner. The pipeline, called BLinDPyPr
(blind ligand docking through preliminary probing), is freely available for download at
https://github.com/PaulaJLR/BLinDPyPr (accessed on 11 December 2020).

2. Methods
2.1. Pipeline Components

BLinDPyPr consists of a python program which automates a pipeline to access well
established computational tools; and to combine them with conversion scripts in order
to perform hybrid blind docking. The FTMap server [24] is used to probe the target
protein’s surface and determine the most probable binding pockets. Schrödinger PyMOL is
employed to perform conversions between molecular formats (such as .pdb to .mol2) and
UCSF Chimera [25] is operated by BLinDPyPr to prepare receptor files for docking. UCSF
DOCK6 [26] (versions 6.8 or later are compatible) is employed for obtaining pharmacophore
definitions and for the molecular docking process.

2.2. Pipeline Workflow
2.2.1. File Preparation

Users must provide BLinDPyPr with a ligand .mol2 file (or a multi .mol2, for virtual
screening) ready for docking. As for the receptor, BLinDPyPr can receive a protein .pdb
file and submit it to FTMap through scripted online access. All the result files generated
by FTMap are downloaded to the working directory and are automatically forwarded
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to the docking phase. On the other hand, it is also possible to previously run FTMap
independently and provide BLinDPyPr with the resulting .pdb file, which contains the
target protein as well as the docked probe crossclusters. This option is required for site-
specific docking calculations, where it is necessary to visually select crossclusters in pockets
of interest on the receptor surface (cf. Section 2.2.2).

The docking-ready receptor .mol2 file will be automatically generated from the FTMap
pdb result: the protein is separated from the probes and is submitted to Chimera DockPrep
tool. In the case the user prefers to use a tailored receptor file, containing, for instance,
specific charges or nonstandard residues, BLinDPyPr can be configured to use such .mol2
file for docking. However, it is important to note that such characteristics will not be taken
into consideration by FTMap, since its protocol automatically adds hydrogens and charges
and removes nonstandard atoms. Therefore, the probes will be docked in these conditions,
even if the ligand is docked in the custom, user-defined receptor.

2.2.2. Cavity Definition

DOCK6 employs a sphere-based method to define the docking space. Spheres are
described in an .sph file and can be placed anywhere in the receptor surface. They can
be created automatically by DOCK6 tool sphgen, selected in a specific radius around a
reference point by the tool sphere_selector, or added by hand in the .sph file. In a DOCK6 run,
the docking box is created around all the spheres present in a receptor surface; however,
ligands are only docked where there are spheres, even if the docking box encompasses the
entire protein.

Using the concept of spheres, BLinDPyPr provides different options to specify the
regions and pockets for docking. The spheres can be classified into two groups: the FTMap
sphere group, which is the new method introduced by BLinDPyPr, and the classic sphere
group, which is created using sphgen and is automated with BLinDPyPr.

FTMap Derived Spheres

Here, FTMap probe crossclusters (the probe groups output by FTMap after final clus-
tering) are converted into spheres, referred to in this manuscript as FTspheres. This means
that the spheres will be restricted to the regions FTMap chooses as potential binding pock-
ets. This increases the specificity of the search for a docking pose, therefore increasing the
chance of an accurate pose prediction. The conversion is carried out as follows (Figure 1).

The BLinDPyPr script separates the probes from the main FTMap .pdb file and con-
verts them into .mol2 format using PyMOL. These are then provided as input to the DOCK6
scoring function Pharmacophore Similarity Score (FMS), which is used to calculate the
various pharmacophore definitions of the probes and to output them into a text file. The
BLinDPyPr main conversion routine then converts the pharmacophore text file into a
DOCK6 sphere file, along with information translated from the pharmacophore definitions
themselves. If desired, chemical matching may be used to process this information and fur-
ther orient the ligand: BLinDPyPr will replicate the pharmacophore parameter file utilized
by FMS and provide it as input to DOCK6 so that it may find, in the candidate ligands, the
same pharmacophore patterns it found for the FTMap probes. Additionally, it will create a
correlation table instructing DOCK6 to match ligand pharmacophores to the ones found
in the docking spheres’ labels. This matching occurs by discarding ligand conformations
which produce unfavourable matches (i.e., a ligand pharmacophore overlaps with a sphere
labeled for a different pharmacophore) [27].
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Figure 1. Schematic for the main conversion routine, which allows for multiple cavity guided blind docking with DOCK6.
The figure also illustrates the chemical matching process which may be used to further orient the ligand. The docked
probe crossclusters from FTMap PDB file are converted into mol2 format and fed to DOCK6 scoring function FMS to
calculate pharmacophores. These are converted into the docking spheres necessary for a DOCK6 run, whose labels match
the pharmacophores from which they were generated. If the user chooses not to perform chemical matching, BLinDPyPr
will create a DOCK6 input with the chemical_matching flag turned off.
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Furthermore, users may choose any combination of FTMap crossclusters they wish by
passing their numbers to BLinDPyPr. Only the desired crossclusters will be converted into
spheres, guiding DOCK6 towards site-specific docking, multiple-site docking, or, if none
are specified, BLinDPyPr will select all of them in order to perform blind docking.

This type of approach cannot be categorized in either of the previously mentioned
blind docking approaches. The type of blind docking prepared by BLinDPyPr with FT-
spheres guides DOCK6 towards multiple potential binding sites robustly identified by
FTMap, which prevents it from probing the whole protein surface, while at the same time
allowing it to evaluate each candidate ligand in all the FTMap defined pockets, simultane-
ously, in a single virtual screening or docking run.

Classic Spheres

BLinDPyPr can also generate default spheres using the DOCK6 sphere generator
(sphgen), which calculates spheres throughout the whole receptor surface and automatically
clusters them, thus sphere Cluster 1 is the most probable to overlap with the real receptor
binding site, while Cluster 0 is equivalent to the whole sphere set.

If the sphgen flag is passed to BLinDPyPr, it will refrain from generating spheres from
the FTmap probes and will instead use the classic spheres. Users can select any sphgen
sphere cluster. If Cluster 0 is selected, all spheres will be used for docking, which will
consequently happen in a conventional blind docking manner, as previously discussed.

It is also possible to automatically select spheres using DOCK6 sphere_selector through
BLinDPyPr. If the user analyses the FTMap results and identifies crossclusters of interest
but needs classic spheres in that region, the numbers of the selected crossclusters may be
passed in addition to the sphgen flag. In this case, BLinDPyPr will select spheres within a
three Angstrom radius around them.

Independently of the sphere type created, BLinDPyPr runs DOCK6 program show-
sphere, which creates a .pdb from the sphere .sph file, so that it can be observed by the user
through a visualization program.

2.2.3. Docking Preparation

DOCK6 tool sphgen requires a receptor surface file, which BLinDPyPr will generate
automatically through UCSF Chimera if the user opts for DOCK6 classic method. It is
noteworthy that the surface component calculation with UCSF Chimera is challenging
for some proteins. If there is an error in these calculations, impacting the integrity of the
surface file, sphgen will not run successfully. Such errors do not occur with FTMap spheres
since they are converted from the docked probe pharmacophores and their creation does
not require surface file generation.

Following sphere generation, BLinDPyPr will define the docking box using the
DOCK6 tool showbox, with a default margin of five Angstroms around the generated
spheres. If desired, users can alter this value to any value of interest.

The grid calculations for the electrostatic and Van der Waals potentials in the dock-
ing box are automatically run through DOCK6 grid, with an input file bearing default
parameters. This can be time-consuming depending on the size of the docking box and the
computational power employed. To save time, if this calculation was already performed
previously, the “grid” flag can be passed to BLinDPyPr so that the script does not need-
lessly run this step again. The grid.bmp and grid.nrg files must be placed on the working
directory.

2.2.4. Docking Run

By default, BLinDPyPr creates a docking input file containing the default parameters
defined in the DOCK6 manual. However, the user can provide a custom input file. In
this case, BLinDPyPr will only alter the parameters defined for the BLinDPyPr run. For
instance, if chemical matching is to be used, BLinDPyPr will toggle this parameter in the
custom input file, so that the user does not have to do so. BLinDPyPr writes a log file
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detailing all the steps performed in the docking run as well as all the parameters used to
define it. The complete pipeline workflow can be visualized in Figure 2.
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Main inputs
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Figure 2. The complete workflow. for the BLinDPyPr program. Highlighted in blue are the decisions
which must be made by the user. The files that may be provided to BLinDPyPr are marked with
dashed orange lines.

2.3. Benchmarking

PDBbind core version 2013 and Astex Diverse benchmarking sets were used to assess
the pipeline’s pose prediction accuracy and compare it with the classic DOCK6 methods,
also automated by BLinDPyPr. The receptor PDB files were manually edited to remove the
redundant identical chains from the original crystal structures. They were then submitted
to FTMap with default configuration parameters. The ligands were prepared with gasteiger
charges and minimized using UCSF Chimera with 1000 steepest descent steps and 100
conjugate gradient steps. All benchmarking calculations were run serially on an Intel Core
i9-9900K processor.
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2.3.1. PDBbind Core Set

To assess the performance of the novel BLinDPyPr pipeline methods with FTMap-
derived spheres and compare those with classic docking methods, different protocols were
explored with the PDBbind set:

• FT+Chem: Docking is performed on spheres derived from FTMap probe crossclusters,
with chemical matching to further orient the ligands. This method was employed for
blind and site-specific docking.

• FT: Docking is performed on spheres derived from FTMap probe crossclusters; how-
ever, chemical matching is turned off and the spheres pharmacophore labels do not
influence pose prediction. This method was employed for blind and site-specific
docking.

• Manual site-specific: It is a classic DOCK6 site-specific docking run. The accessory
tool sphgen is used to generate classic spheres from a receptor surface file. DOCK6
sphere selector is then employed to select those in a radius of three Angstroms around
the selected probe crossclusters,

• Cavity-detection guided (Cluster 1): It is a classic DOCK6 run using the first sphere
cluster, defined by sphgen as the most likely to overlap with the real binding site.

• Blind: It is a classic DOCK6 blind run using all the generated spheres (sphere Cluster
0). This is the only case where DOCK6 must evaluate docking poses throughout the
whole protein surface.

For each docking run, BLinDPyPr was prepared and run automatically with the default
parameters described in Section 2.2, with two exceptions. In the test sets used to assess
site-specific docking accuracy with the spheres derived from FTMap, we manually selected
probe crossclusters present in the binding site. Moreover, for all the docking situations
except Blind (Cluster 0), we altered the docking box default value to 10 Angstroms. This
margin was increased in order to ensure that all ligands would fit in the docking box, thus
avoiding possible growth errors for bigger ligands with many rotatable bonds.

Both FT and FT+Chem were separately benchmarked for site-specific and blind
docking. To create the site-specific datasets, we visually selected only the FTMap probe
clusters present in the protein binding site. The blind docking datasets were automatically
prepared: by selecting no probe crossclusters, BLinDPyPr converts all docked probes into
spheres. Table 1 describes the benchmarking groups and their variations.

Table 1. Docking protocols employed in the PDBbind benchmarking studies (header) and the
conditions with which they were tested (index row). CL, cluster; X, impossible combination.

FT+Chem FT Classic Classic CL0 Classic CL1

Site-specific 3 3 3 7 7
Blind 3 3 7 3 3

The groups’ performances were assessed by calculating the RMSD, in Angstroms,
between the docked poses of the ligands and their respective experimental conformations.
Statistical analyses between the groups’ RMSD distributions were performed separately
for the blind and site-specific categories using the Kruskal–Wallis method in conjunction
with the Dunn post-hoc test. These calculations were performed using the JASP statistical
software [28]. Furthermore, any RMSD under two Angstroms was considered a pose
prediction success.

2.3.2. Astex Diverse Set

This set was employed in order to further analyze the blind docking accuracy of
BLinDPyPr. In the Astex studies, the protocols benchmarked were:
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• FT+Chem Blind
• FT Blind
• Cavity-detection Blind (Cluster 1)

Therefore, the Astex set was employed to determine the accuracy of the new method
of FTMap-derived spheres on the blind docking capacity, and to compare these with the
results from classic DOCK6 cavity detection. Table 2 describes the benchmarking protocol
groups for Astex in comparison to those employed with PDBbind.

Table 2. Docking protocols employed in the Astex benchmarking studies (header) and the conditions
with which they were tested (index row), in comparison with the protocol groups used with PDB-
bind. Black checkboxes: protocols performed with both Astex and PDBbind sets; Gray checkboxes,
protocols performed with the PDBbind set only; CL, cluster; X, impossible combination.

FT+Chem FT Classic Classic CL0 Classic CL1

Site-specific 3 3 3 7 7
Blind 3 3 7 3 3

3. Results and Discussion
3.1. PDBbind Core Set

All seven protocols described in Section 2.3.1 were tested against PDBbind’s protein–
ligand complexes. As per the BLinDPyPr protocol, all receptors were submitted to FTMap.
In eight of those, no FTMap probes could be found in the crystal ligand’s binding site, which
made it impossible for those to be included in the site-specific benchmarking protocols.
Furthermore, the classic DOCK6 benchmarking protocols require surface files for classic
sphere generation, as explained in Section 2.2.3. As mentioned, this method tends to yield
more errors since surface calculations may fail if the protein is very big and/or challenging.
Therefore, classic protocols yielded fewer successful dockings than the protocols with
FTspheres. For this reason, to ensure comparability, the final analyses were performed
using only the protein–ligand complexes with successful dockings in all benchmarking
protocols, totalling 157 complexes. A description of the RMSD distribution in all protocols
can be found in Table 3 and it is visualized in Figure 3.

Table 3. Description of the distribution of RMSDs in each benchmarking protocol for PDBbind.

FT+Chem Blind FT Blind Clsc cl1 Blind Clsc cl0 Blind FT+Chem FT Classic

count 157 157 157 157 157 157 157
mean 6.324 6.426 14.989 14.459 3.926 3.925 4.283
std 7.867 8.084 12.229 11.190 4.001 3.988 4.567
min 0.229 0.296 0.346 0.252 0.236 0.305 0.199
25% 1.252 0.997 2.822 3.411 1.042 0.916 0.997
50% 2.491 2.243 12.944 14.103 1.931 2.039 2.056
75% 8.549 9.211 26.607 23.375 6.050 6.276 6.692
max 40.300 34.995 49.174 37.683 20.547 17.142 22.646

Figure 3 shows that blind docking with classic DOCK6 methods with classic spheres
(Clsc Cl0 Blind and Clsc cl1 Blind) achieve distributions which are more spread out if
compared to site-specific protocols. This effect is less expressive on FT+Chem Blind and
FT Blind. These novel methods with FTMap-derived spheres yield higher densities on
lower RMSD values, achieving distributions similar to the non-blind datasets. Table 3
indicates the same trend: median RMSD values for FT+Chem Blind and FT Blind are
2.49 and 2.24, respectively, substantially closer to non-blind values (1.93, 2.04, and 2.06)
than blind docking with classic spheres, whose median RMSD values were 12.9 for sphere
Cluster 1 and 14.10 for sphere Cluster 0. Figure 4A condenses the distribution information,
shown in Table 3 and Figure 3, and presents stripplots and boxplots for each protocol.
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Figure 3. Kernel Density Estimate (KDE) plots for each benchmarking protocol.

Success rates for top ranked poses were calculated, as shown in Figure 4B. In these
analyses, two subsets of each benchmarking protocol were compared: (all) the original
results, comprising the 157 previously mentioned protein–ligand complexes; and (no het.)
a filtered subset which excludes receptors with nonstandard atoms in their structures.
FTMap removes nonstandard atoms before docking the probes on the receptor surface.
In this benchmarking study, BLinDPyPr uses this edited receptor file for the subsequent
DOCK6 steps to ensure consistency between FTMap and docking results. Proteins with
nonstandard atoms, especially those with such atoms located at the ligand binding site,
will go through docking without them. However, the RMSD calculations are performed
between the docked ligand (which was placed without regard to nonstandard atoms) and
the experimental ligand, whose pose may have been influenced by the atom’s presence. To
account for the negative impact this may exert on the success rates, we also calculate these
rates for the filtered subset (no het.) which excludes proteins with nonstandard atoms.
Another general concern is regarding the inverse correlation between docking accuracy
and ligand size. To evaluate this, we separated the success rates into different categories of
ligand size. In all ligand size categories, BLinDPyPr consistently had superior performance
than classic blind approaches for all size categories analyzed (Figure S1).

There is no significant difference between protocols belonging to the site-specific
docking category: FTMap derived spheres with chemical matching, without chemical
matching, and classic DOCK6 spheres (p = 0.947, Kruskal-Wallis test). There is also no
significant difference between FTspheres with chemical matching and its counterpart
without chemical matching within the blind docking category (Table 4). However, there
is a significant difference (p < 0.001) between blind docking with FTspheres and classic
blind docking (Clusters 0 and 1) groups (Table 4). The Kruskal-Wallis test for the blind
docking group returns p < 0.001 (statistic = 82.989). Figure 4 shows that docking using
FTMap-derived spheres was able to elevate DOCK6 blind docking accuracy to the same
level achieved by classic site-specific DOCK6 runs, therefore, the same accuracy yielded
by site-specific classic DOCK6 runs can be expected from a blind docking run with the
novel BLinDPyPr pipeline. Furthermore, the pipeline allows for evaluation of the best
binding site for each candidate ligand, which makes it advantageous in a virtual screening
campaign in which the receptor binding site is not exclusive.
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Figure 4. Summary of the benchmarking results with the PDBbind core set. (A) Boxplots combined with stripplots illustrate
the distribution of the RMSD results for each benchmarking protocol. (B) Success rates at a 2.0 Å cutoff. Numbers printed
inside the bars indicate success rates expressed in percentage rounded to three significant digits. Light bars (all) represent
success rates for the whole datasets, while dark bars (no het.) represent success rates for the datasets with a filter to exclude
receptors with nonstandard atoms.

Table 4. Dunn post-hoc test for the RMSD distributions between the benchmarking protocols belonging to the blind docking
group in the PDBbind benchmarking studies.

Comparison z Wi Wj p pbon f pholm

Clsc cl0 Blind-Clsc cl1 Blind 0.069 381.140 379.736 0.473 1.000 0.848
Clsc cl0 Blind-FT Blind 6.570 381.140 246.599 <0.001 <0.001 <0.001
Clsc cl0 Blind-FT+Chem Blind 6.378 381.140 250.525 <0.001 <0.001 <0.001
Clsc cl1 Blind-FT Blind 6.502 379.736 246.599 <0.001 <0.001 <0.001
Clsc cl1 Blind-FT+Chem Blind 6.310 379.736 250.525 <0.001 <0.001 <0.001
FT Blind-FT+Chem Blind −0.192 246.599 250.525 0.424 1.000 0.848
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To the best of our knowledge, the highest accuracy in the cavity detection-guided
approach was achieved by Liu et al. with CB-dock [7], which yielded a success rate of
69.4% against Astex diverse set. Building from the conventional blind docking approach,
Hassan et al. achieved with QuickVina-W [3] a 46% success rate of top ranked poses
against PDBbind Core Set 2015. BLinDPyPr success rates for FT+Chem Blind and FT Blind
through FTspheres in the no het. category were, respectively, 54.3% and 53.2%. This fits
with BLinDPyPr’s initially intended purpose: in being a hybrid between the blind docking
approaches, it also yields results intermediary to both.

3.2. Astex Diverse Set

BLinDPyPr was further benchmarked with the Astex Diverse set. In these analyses,
only blind docking accuracy was assessed. For this reason, no verification was applied
to the FTMap probes’ position in relation to the receptors’ binding sites. However, as
described in Section 3.1, the final analyses were performed using only the protein–ligand
complexes with successful dockings in all benchmarking protocols, totalling 75 out of the
85 protein–ligand complexes.

The same trend previously identified with the PDBbind Set can also be observed in
the Astex results (Table 5 and Figure 5): blind docking with FTspheres greatly reduces the
median value in comparison to blind docking with DOCK6 sphere Cluster 1. Differently
from what was observed for PDBbind, the FT+Chem Blind protocol was able to achieve a
median value (1.87) lower than the established cutoff of 2.0 Å (Table 5). The Kruskal-Wallis
test for these distributions returns p < 0.001 with statistic = 27.441. Post-hoc analyses for
the Astex benchmarking group can be found in Table 6.

Table 5. Description of the distribution of RMSDs in each benchmarking protocol for Astex Diverse.

FT+Chem Blind FT Blind Clsc cl1 Blind

count 75 75 75
mean 6.241 6.438 14.085
std 9.720 9.375 11.999
min 0.246 0.272 0.236
25% 0.958 1.005 3.065
50% 1.877 2.238 10.235
75% 6.804 6.996 22.936
max 42.148 42.713 41.307

Table 6. Dunn post-hoc test for the RMSD distributions between the benchmarking protocols on the Astex benchmarking
studies.

Comparison z Wi Wj p pbon f pholm

Clsc cl1 Blind-FT Blind 4.277 145.013 99.553 <0.001 <0.001 <0.001
Clsc cl1 Blind-FT+Chem Blind 4.758 145.013 94.433 <0.001 <0.001 <0.001
FT Blind-FT+Chem Blind 0.482 99.553 94.433 0.315 0.945 0.315

Figure 5A shows that indeed FTspheres protocols are able to achieve higher conver-
gence of data points in lower RMSD values than the classic blind protocol. Success rates
for unfiltered datasets FT+Chem Blind and FT Blind are 50.7% and 46.7%, respectively, also
higher than the values achieved by the unfiltered datasets in the PDBbind analysis. The
extension of benchmarking with the Astex Diverse Set reproduced and confirmed the blind
docking accuracy trends determined initially through the PDBbind experiments.
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A B

50.7

46.7

22.7

Figure 5. Summary of the benchmarking results with the Astex Diverse set. (A) Boxplots combined with stripplots illustrate
the distribution of the RMSD results for each benchmarking protocol. (B) Success rates at a 2.0 Å cutoff. Numbers printed
inside the bars indicate success rates expressed in percentage rounded to three significant digits.

3.3. Docking Elapsed Time

The elapsed time for docking, as output by DOCK6, was extracted from every docking
run in each benchmarking protocol. The mean elapsed time for docking on these datasets
from PDBbind and Astex can be found in Figure 6. Dataset “Clsc cl0 Blind”, which
corresponds to blind docking with DOCK6, demanded approximately double the running
time as the other protocol datasets within the PDBbind group. This was expected, since the
DOCK6 algorithm in this dataset is required to search the whole receptor surface.

A B

61.4 59.1
65.6

130.7

68.3 66.1 69.9

39.9

35.1
38.4

Figure 6. Mean elapsed time for each individual benchmarking protocol for docking in: (A) PDBbind Core Set; and (B)
Astex Diverse Set.
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Surprisingly, the FTsphere blind docking protocols demanded a mean amount of time
that was very similar to the other datasets which are required to search in a more restricted
docking box, even though FTsphere blind protocols compel DOCK6 to search for binding
conformations in more than one potential binding site simultaneously.

On the other hand, although elapsed time for docking on FTsphere groups is similar to
site-specific, the previous steps on the FTMap server and grid calculations (which are more
computationally expensive for larger docking boxes) make the receptor preparation phase
in these groups more time consuming in comparison to site-specific and classic sphere
groups.

4. Conclusions

In this work, we present BLinDPyPr (Blind Ligand Docking through Preliminary Prob-
ing), a pipeline which associates automation and conversion scripts with well established
programs such as FTMap and DOCK6 in order to introduce a hybrid approach to blind
docking.

This method involves using the robust FTMap probing capabilities to guide DOCK6 to
perform molecular docking on the specific regions defined by FTMap, restricting the search
space to potential binding sites while allowing such sites to be simultaneously assessed for
each candidate ligand.

The novel blind docking protocol’s accuracy was found to be similar to site-specific
docking results achieved by classic DOCK6 runs, while expending the same mean time
for docking. With FTMap guidance, our pipeline achieves 45.9% success rates on the
PDBbind benchmarking set, while a classic DOCK6 blind docking run yields 20.4% and
classic DOCK6 site-specific docking achieves 49.7%.

BLinDPyPr is an attractive alternative approach to virtual screening with larger ligand
sets when such ligands need to be docked blindly or to receptors with more than one
potential binding site, which need to be evaluated simultaneously.
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