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Abstract: Neurodegenerative diseases are chronic, progressive disorders that occur in the central
nervous system (CNS). They are characterized by the loss of neuronal structure and function and are
associated with inflammation. Inflammation of the CNS is called neuroinflammation, which has been
implicated in most neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s
disease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS). Much evidence indi-
cates that these different conditions share a common inflammatory mechanism: the activation of the
inflammasome complex in peripheral monocytes and in microglia, with the consequent production
of high quantities of the pro-inflammatory cytokines IL-1$ and IL-18. Inflammasomes are a group of
multimeric signaling complexes that include a sensor Nod-like receptor (NLR) molecule, the adaptor
protein ASC, and caspase-1. The NLRP3 inflammasome is currently the best-characterized inflam-
masome. Multiple signals, which are potentially provided in combination and include endogenous
danger signals and pathogens, trigger the formation of an active inflammasome, which, in turn, will
stimulate the cleavage and the release of bioactive cytokines including IL-1f and IL-18. In this review,
we will summarize results implicating the inflammasome as a pivotal player in the pathogenesis of
neurodegenerative diseases and discuss how compounds that hamper the activation of the NLRP3
inflammasome could offer novel therapeutic avenues for these diseases.
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1. Introduction

Neuroinflammation plays a key role in the onset and the progression of several
neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD),
multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS) [1-3].

Nevertheless, it has to be considered that, in primary neurodegenerative diseases
characterized by the accumulation of misfolded proteins like AD and PD, it is not clear if
inflammation might be the primary cause of disease or a reaction to pathology. Indeed, the
pathophysiological hypothesis of neurodegenerative diseases relies on the fact that some
proteins, changing their conformations, aggregate into fibrils or oligomers, resulting in neu-
rotoxicity and leading to neurodegeneration and inflammation [4-7]. Neuroinflammation
is a physiological response to exogenous and endogenous insults that target the central
nervous system (CNS) and represents a protective response in the brain, but excessive
inflammatory responses are detrimental to the CNS. Several inflammation-inducing stimuli,
such as damage-associated molecular patterns (DAMPs) or pathogen-associated molecu-
lar patterns (PAMPs), are recognized by multiprotein complexes, called inflammasomes.
This elicits a pro-inflammatory response mediated by the release of the inflammatory
cytokines IL-13 and IL-18 [8]. The nucleotide-binding oligomerization domain leucine-
rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome, one of the
most intensively investigated inflammasomes, has been reported to play a key role in
neurodegenerative diseases.
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Inflammasomes are a group of cytosolic multiprotein complexes that consist of a sensor
molecule (NLR, AIM2-like receptors, ALR, and pyrin receptors), the adaptor apoptosis-
associated speck-like protein, which contains a caspase recruitment domain (ASC), and
pro-caspase-1 [9,10]. Inflammasome-inducing stimuli trigger the oligomerization of pattern
recognition receptors (PRR) and the recruitment of pro-caspase-1 into the complex, leading
to the generation of active caspase-1 that, consequently, will cleave inactive pro-peptides
pro-IL-1p and pro-IL-18 into mature cytokines. Importantly, caspase-1 can also induce
a pro-inflammatory form of cell death, pyroptosis, that features early plasma membrane
rupture, thereby releasing the soluble intracellular fraction that fuels the inflammatory
response [9,11]. NLRP3, as shown in Figure 1, is the best-characterized inflammasome;
its activation involves a two-step process. A first signal, or “priming” signal, results
in the NF-kB-dependent transcriptional upregulation of NLRP3 and pro-IL-1§3, but also
controls post-translational modifications of NLRP3 [12]. This initial trigger is followed by a
second “activation” signal that induces the oligomerization and activation of the NLRP3
inflammasome. Besides this “canonical” NLRP3 inflammasome activation pathway, a
“noncanonical” NLRP3 activatory pathway has been described. This pathway involves
the activation of caspase-11 in mice (or its human orthologs caspase-4 and caspase-5) by
cytosolic LPS, the induction of pyroptosis through the cleavage of gasdermin D (GSDMD),
and the release of high mobility group box 1 protein (HMGB1), resulting in the production
of IL-1$3 [9,13]. In both cases, the activation of NLRP3 inflammasome results in the cleavage
of the pro-inflammatory IL-1f and IL-18; this leads to the generation of the biological
active form of these proteins that initiates inflammatory signaling cascades, contributing to
neuronal injury, cell death, and neuroinflammation [14,15].
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Figure 1. Inflammasome activation process and signaling mechanism: A Two-Signal Model for
NLRP3 Inflammasome Activation. The priming signal (signal 1, left) is provided by damage-
associated molecular patterns (DAMP) or by pathogen-associated molecular patterns (PAMP), lead-
ing to the activation of the transcription factor NF-kB and subsequent upregulation of NLRP3,
pro-interleukin-1f (pro-IL-1f), and pro-interleukin-IL-18 (pro-IL-18). The activation signal (signal 2,
right) is provided by a variety of stimuli including 3-amyloid, x-synuclein, and Monosodium Urate
Crystals (MSU), leading to the assembly and formation of the NLRP3 inflammasome through the
combination of NLRP3, ASC, and procaspase-1, and leading to the production of caspase-1, which
catalyzes the transformation from pro-IL-1f3 and pro-IL-18 into IL-13 and IL-18.
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We will briefly summarize data suggesting that the inflammasome plays a pivotal role
in the pathogenesis of neurodegenerative diseases.

2. Alzheimer’s Disease

AD is a highly prevalent form of dementia characterized by the accumulation of
extracellular amyloid beta (A{3) plaques in the brain, neuronal cell death, and neuroinflam-
mation. The immunological scenario of AD-associated neuroinflammation includes an
increased production of pro-inflammatory cytokines, a reduced activity of Treg lympho-
cytes, and the dysregulation of immune-mediated mechanisms of tolerance. Activation of
the NLRP3 inflammasome is strongly suggested to play a role in AD-associated neuroin-
flammation, as shown by results indicating that the concentration of IL-13 and IL-18 is
increased in this disease [16-19].

The NLRP3 inflammasome activation by fibrillar A was initially described in 2008
by Halle et al., who demonstrated that a concentration of 5 mM of fibrillar Af3 induced
the production of IL-13 in a NLRP3- and ASC-dependent manner [20]. This result was
confirmed by Heneka and colleagues, who showed that NLRP3-deficiency in the transgenic
APP/PS1 double-transgenic mouse models of AD, which overexpressed mutated forms
of the gene for human amyloid precursor protein (APP) and presenilin 1 (PS1), decreased
neuroinflammation, reducing A accumulation and improving neuronal function [21].
Results from other groups showed that NLRP3 or caspase-1 deletion in APP/PS1 mice
promoted the differentiation of microglia to an anti-inflammatory M2 phenotype, with
decreased secretion of caspase-1 and IL-1f3 [22]. Further support to the involvement of the
NLRP3 inflammasome in the pathogenesis of AD was offered by results showing that A3
induced the processing of pro-IL-13 into mature IL-1{ in the microglia via activation of
NLRP3 inflammasome [23].

The NLRP3 inflammasome may, however, not be the only inflammasome that con-
tributes to the pathogenesis of AD [24,25]. Thus, Kaushal and colleagues showed that
NLRP1 mRNA was increased in AD neurons and colocalized with caspase-6. Notably,
these authors demonstrated that the NLRP1-caspase-1-caspase-6 pathway was involved in
the accumulation of A4, in serum-deprived neurons [26]. Additional results indicating
that NLRP1 mRNA was significantly increased in sporadic and familial AD hippocampal
and cortical neurons offer further support to the hypothesis that the NLRP1 inflammasome
plays an important pathogenetic role in AD [26].

It is important to underline that, in addition to the inflammatory responses mediated by
reactive astrocytes and by activated microglia in the CNS, an activation of the peripheral im-
mune response is also observed and is suggested to contribute to neuroinflammation [27-29].
Such peripheral immune response is possibly an attempt to contrast the formation or the
extension of Af3 plaques [30-39] and is associated with the stimulation of peripheral mono-
cytes that are recruited to the CNS. Once these cells reach the CNS, though, they can
contribute to the activation of the NLRP3 inflammasome [15]. To further underline the com-
plexity of the immunological impairment that accompanies AD, recent results suggested
that alterations of the microbiota might be involved in the generation of the AD-associated
inflammatory milieu. Thus, a positive correlation between abundance of the inflammatory
bacteria belonging to the taxon Escherichia/Shigellain in stool samples and blood levels
of NLRP3 and IL-1f3 was observed in cognitively impaired elderly individuals with brain
amyloidosis [40]. These data thus put forward the hypothesis that dysbiosis results in
peripheral inflammation, which is mediated by the activation of the NLRP3 inflammasome
and reverberates into the CNS.

Notably, recent in vitro studies conducted in human leukemia monocytic cell line
(THP1)-derived macrophage stimulated with A indicated that Leishmania infection down-
regulates NLRP3 inflammasome activation, significantly reducing ASC-speck formation,
thus favoring the generation of an anti-inflammatory milieu, possibly protecting against
AD development [41]. This finding could explain why, despite its strong association with
AD risk in industrialized populations, the Apolipoprotein E4 (ApoE4) allele was shown to
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be associated with improved cognitive functions in members of remote Amazonian tribes.
In these populations, the E4 allele has been demonstrated to confer survival in response to
infection by parasites that, in turn, could reduce inflammation by reducing the activation
of NLRP3 [42].

3. Multiple Sclerosis

MS is an autoimmune demyelinating disease of the CNS characterized by immune
cell infiltration from the periphery into the CNS as well as by the activation of the microglia
and astrocytes, which together promote neuroinflammation and neurodegeneration [43].
A number of studies have suggested the involvement of the NLRP3 inflammasome in the
pathogenesis of MS. Gris and colleagues, in 2010 [44], were the first to suggest the critical
role of Nlrp3 gene in the development of experimental autoimmune encephalomyelitis
(EAE), the most commonly used experimental model for human MS [45]. Results from
their study showed that the absence of Nirp3 gene resulted in diminished Th1l and Th17
encephalitogenic responses [44]. In line with this evidence, Peelen et al. reported that the
expression level of the inflammasome-related genes NLRP3, IL-1$3, and caspase-1, was
increased in peripheral blood mononuclear cell (PBMC) from relapsing-remitting (RR) MS
patients compared to healthy controls [46].

Results from other groups showed the up-regulation of caspase-1 and IL-1f3 proteins
in PBMCs and cerebrospinal fluid (CSF) of MS patients [47,48]. Moreover, caspase-1
expression was shown to be elevated in MS plaques and PBMC of MS patients [49,50];
taken together these observations lead to the proposal of using serum caspase-1 and ASC
protein concentrations as candidate biomarkers for MS onset [51]. IL-18 concentration was
observed to be augmented, as well, in serum, CSF, and PBMCs of MS patients [44,52-54].
Furthermore, a study by de Jong et al. showed that the increase of IL-13 in CSF was
concomitant with a depletion of the IL-1 receptor antagonist (IL-1Ra), an anti-inflammatory
protein that antagonizes the binding of IL-1f to its receptor [55]. An indirect support
to the role played by IL-13—a prototypical NLRP3 inflammasome activation-derived
cytokine—in the pathogenesis of MS stems from the observation that successful treatment
of disease relapses in MS patients with glatiramer acetate or IFNf results in the increase of
endogenous IL-1Ra concentration [56,57]. Notably, IL-18 and IL-13 promote, respectively,
IFNYy and IL-17 production by Th1 cells and Th17 cells, two functional T helper lymphocyte
subsets that we repeatedly described to play a pivotal role in MS pathogenesis.

The canonical NLRP3 inflammasome requires caspase-1 activation for IL-13 and IL-18
processing. Recent results nevertheless indicated that T cell intrinsic inflammasome activity
could drive IL-13 and IL-18 production via caspase-8 activation independently from
caspase-1 activation [58,59]. Recent results reinforced a central role for the NLRP3/caspase-
8 inflammasome pathway in MS by showing that stimulation of PBMCs from primary
progressive MS (PPMS) patients with Monosodium Urate Crystals (MSU) resulted in a
significant increase in the expression of NLRP3 and ASC-speck protein and in IL-18 and
caspase-8 production. The NLRP3/caspase-8 inflammasome pathway is activated in PPMS,
possibly as a consequence of hyperuricemia. Thus, levels of uric acid are upregulated in the
CSF of MS patients [60], and the serum uric acid level in patients is potentially associated
with susceptibility of MS [61]. Taken together, these results support the hypothesis of
hyperuricemia as a common detrimental condition that characterizes MS via the activation
of the NLRP3/caspase-8 inflammasome pathway [62].

Finally, the expression of P2X7R, a purinergic receptor that detects and amplifies the
release of ATP and, as a consequence, the activation of NLRP3 inflammasome, was shown
to be elevated in spinal cords of MS patients [63,64]. In line with this evidence, other
studies have shown an association between gain-of-function single nucleotide polymor-
phisms in the P2X7 receptor gene and MS [65]. On the other hand, glatiramer acetate, one
the immunomodulator drugs used for MS, was shown to reduce P2X7R expression [66],
suggesting the contribution of extracellular ATP to the pathogenesis of MS. Taken together,
these results seem to suggest that endogenous metabolic danger signals, ATP, and uric
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acid are likely to all be involved in the activation of the NLRP3 inflammasome pathway
observed in MS.

4. Parkinson’s Disease

PD is a progressive neurodegenerative disorder characterized by the depletion of
dopaminergic (DA) neurons in the substantia nigra (SN) and by the accumulation of
cytoplasmatic inclusions of fibrillar x-synuclein (o-syn), also called Lewy bodies [67].
Different intracellular mechanisms allow the release of x-syn outside of the cell [68], but
the common endpoint of x-syn accumulation is the activation of astrocytes and microglia
to produce IL-1p [68,69]. Notably, this phenomenon also facilitates the recruitment of
immune cells from the periphery into the CNS [70].

A possible involvement of the NLRP3 inflammasome in the pathogenesis of PD was
initially suggested in 2013 by Codolo et al., who demonstrated in vitro that, while both
monomeric and fibrillary «-syn increased pro-IL-1f levels via toll-like receptor (TLR)-2
signaling, the fibrillary form of «-syn, alone, stimulated the inflammasome by activat-
ing caspase-1, resulting in IL-13 production [71]. The result of this study was further
confirmed in vivo using an animal model of PD. Thus, injections of neurotoxin 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP) caused the loss of dopaminergic neurons in the
substantia nigra and a PD-like pathology. Nirp3 deficient mice were shown to be resistant to
PD, strongly suggesting an important role of the NLRP3 inflammasome in the pathogenesis
of PD [72]. Further results showed that miR-7, a microRNA known to regulate a-syn
gene expression [73], was present in the midbrain of the MPTP-induced PD mice model.
Notably, as Nirp3 is a target gene of miR-7, the stereotactic injection of miR-7 mimics in the
mouse brain was demonstrated to inhibit the NLRP3 inflammasome activation, reducing
neuroinflammation [74]. Additional results indicated that the exogenous administration of
IL-1Ra attenuated the MPTP-induced PD phenotypes in mice [75]. Further support to the
possible role of the NLRP3 inflammasome in PD is based on the knowledge that dopamine
neurons negatively regulate NLRP3 by the dopamine D1 receptor (DRD1)-cyclic adenosine
monophosphate (cCAMP) signaling pathway. Based on this information, it was observed
that DRD1—/ — mice were less resistant to MPTP-induced neuroinflammation, as shown
by the increased IL-18 and IL-1f3 production and the more extensive damages inflicted on
dopaminergic neurons [76].

Whereas the overall consensus of results obtained in the animal model strongly
supports an association between the NLRP3 inflammasome and PD, data stemming from
analyses performed in patients with a diagnosis of PD are much less convincing. To
summarize, in PD patients compared to healthy controls, (1) CSF concentration of IL-
1$ and IL-18 was found to be higher [77]; (2) serum concentration of IL-13 as well as
caspase-1 activity were shown to be increased [78]; and (3) protein levels of NLRP3,
caspase-1, and IL-1f3 were seen to be augmented in PBMCs [78]. Nevertheless, results from
other groups showed that, whereas NLRP3 serum levels were increased in PD patients
compared to healthy controls (HC), no differences in IL-1p and IL-18 serum levels could be
detected [77]. Even more recently, we observed that stimulation of PBMC with monomeric
or aggregated «-syn induced a comparable NLRP3 and ASC-speck expression, as well as
IL-18 and caspase-1 production in cells of PD patients and healthy controls, indicating that
a-syn does not stimulate the NLRP3 inflammasome activity. Interestingly, IL1(3 and IL-6
production was increased, whereas that of IL-10 was reduced in x-syn-stimulated cells of
PD patients, suggesting that PD-associated neuroinflammation is not the consequence of
the activation of the NLRP3 inflammasome but rather of an imbalance between pro- and
anti-inflammatory cytokines.

In conclusion, although several studies have shown that «-synuclein can elicit activa-
tion of inflammasome in monocyte and microglial cell lines and in PD animal models, the
possible role of NLRP3 in patients with a diagnosis of PD still needs to be clarified.
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5. Amyotrophic Lateral Sclerosis

ALS is a neurodegenerative disease characterized by the selective loss of motor neu-
rons in the motor cortex, the brainstem, and the spinal cord. The vast majority of ALS cases
are sporadic, (SALS), but a small fraction (about 5-10%) of cases are familiar (fALS). In this
situation, mutations in a number of genes, the most frequent of which is the mutation in
Cu?* /Zn** superoxide dismutase (SOD1), are known to associate with the disease.

Increasing evidence has proposed an important role for neuroinflammation in the
pathogenesis of ALS, as demonstrated by the infiltration of lymphocytes and macrophages
in the CNS, the activation of the microglia, and the presence of reactive astrocytes in the
same anatomical sites where motor neuron injuries are observed. Recent studies have sug-
gested that a dysregulated and excessive inflammasome activation contributes to the neu-
roinflammation observed in ALS [79,80]. Thus, data obtained in the G93A-SOD1 transgenic
mice, the most common animal model for ALS, showed the activation of caspase-1 and IL-
1$ in the microglia by ALS-linked mutant SOD1 and demonstrated that caspase-1 or IL-13
genes knockout or the use of recombinant IL-1Ra resulted in a reduction of inflammation.
Notably, augmented caspase-1 and IL-13 production appeared to be NLRP3-independent
in this model, suggesting the possible involvement of other inflammasome complexes [81].
In partial contrast with these results, other analyses performed in the SOD1 transgenic
mice showed an upregulation of NLRP3 and ASC in the anterior dorsal thalamic nucleus
(AD) of G93A- [82] and of the transactive response DNA-binding protein-43 (TDP-43) in
the microglia [83]. Other results showed that in G93A-SOD1 transgenic mice and in human
tissues, spinal cord astrocytes were activated, expressed NLRP3-inflammasome proteins,
and contributed to inflammation in ALS by releasing proinflammatory cytokines [84]. In
the same work, the authors noticed the microglial expression of ASC but not that of NLRP3,
suggesting that other inflammasome sensor molecules may play a role in microglia-driven
neuroinflammation in ALS.

Fewer results are available in humans; in ALS patients, serum concentration of IL-18,
but not of IL-1(3, was observed to be increased [85], and NLRP3 and caspase-1 expression
was shown to be augmented in brain tissues [86]. It is also important to underline that
clinical studies using the Interleukin-1 receptor antagonist Anakinra have not demonstrated
a reduction in the neuroinflammation in ALS, suggesting that NLRP3 inflammasome might
not play a major role in ALS or that this disease is mainly driven by IL-18 and not IL-
13 [87]. To further augment the uncertainty of the possible role of the inflammasome in
ALS, data show that 17(3-estradiol, a steroid hormone that down-regulates inflammasome
activation, improves motor neuron survival in a humanized animal model of ALS that
carries the human SOD1 (G93A) mutation [88]. However, a conclusion has still not been
reached; extensive analyses will be needed to dissect the possibility that the inflammasome
is involved in the pathogenesis of ASL.

Literature data concerning expression of inflammasome proteins and effector cells in
neurodegenerative disease are summarized in Table 1.
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Table 1. Changes in levels of inflammasome components and effectors in cells and tissues from human samples in

neurodegenerative diseases.

Disease System Inflammasome Component/Effector References

T 1IL-1B, 1 1L-18 Awad et al., 2017 [16]

Heneka et al., 2013 [17]

. , La Rosa et al., 2017 [18]
Alzheimer’s Human Saresella et al., 2017 [19]
1T NLRP1, T ASC, 1 caspase-1 Kaushal et al., 2015 [26]
1 NLRP3, 1" IL-13 Cattaneo et al., 2016 [40]

1T NLRP3, 1 IL-1p3, Tcaspase-1 Peleen et al., 2015 [46]

T caspase-1, T IL-13 Inoue & Shinohara, 2013 [47]
Mamik&Power, 2017 [48]

1 caspase-1 Furlan R et al., 1999 [49]

Ming X et al., 2002 [50]

Multiple Sclerosis Human T1IL-18 Losy J et al., 2001 [52]

Nicoletti F et al., 2001 [53]

Chen YC et al., 2012 [54]

Gris D et al., 2010 [44]

TIL-1B de Jong et al., 2002 [55]
1T NLRP3, 1+ ASC, 1 IL-18, 1 caspase-8 Piancone et al., 2018 [62]

T IL-1B3 Codolo et al., 2013 [71]

. P TIL-1p3, 1 IL-18 Zhang et al., 2016 [77]
Parkinson’s Disease Human +1L-1B, 1 caspase-1 Zhou Y et al., 2015 [74]

1T NLRP3, 1 IL-183, 1 caspase-1 Fan et al., 2020 [78]
Amvotrophic 1 1L-18 Ttaliani et al., 2014 [85]
yotrop Human T NLRP3, 1+ ASC, 1 1IL-18, 1 caspase-1 Johann et al., 2015 [84]

Lateral Sclerosis

1T NLRP3, 1 caspase-1 Kadhim et al., 2016 [86]

6. Pharmacological Modulation of the Inflammasome

Given the role of the NLRP3 inflammasome in neuroinflammation, a number of
studies has been conducted in the exploration of possible therapeutic pathways for neu-
rodegenerative diseases through the inhibition of the NLRP3 inflammasome.

To date, NLRP3 inhibitors can be divided into those that directly inhibit NLRP3 or
those that mediate NLRP3 inactivation as a consequence of the inhibition of inflammasome
components or related signaling events. Available compounds act mainly by inhibiting the
products of inflammasome activation, for example, by impeding the biological effects of
IL-1f3 via the use of either anti-IL-1$3 antibodies or IL-1Ra; notably, no effective anti-IL-18
therapies are currently available [89]. Three biologics are approved by the US Food and
Drug Administration (FDA) for multiple inflammatory diseases: canakinumab, an IL-1f3-
neutralizing antibody; anakinra, a recombinant IL-1 receptor antagonist; and rilonacept, a
decoy receptor that binds IL-1(3 and IL-1x. Nevertheless, although their efficacy has been
demonstrated for autoinflammatory diseases, there no report of their use in clinical trials
in neurodegenerative diseases [90]. Because IL-13 production can be mediated by other
inflammasomes, specific inhibitors that directly target the NLRP3 inflammasome could
be a better option for treatment of diseases in which inflammation is the consequence of
NLRP3 activation.

Some compounds have shown an inhibitory effect in vitro on NLRP3 inflammasome
activation, including MCC950 [91], B-hydroxybutyrate (BHB) [92], Bay 11- 7082 [93],
dimethyl sulfoxide (DMSO) [94], and type I interferon [95]. However, most of these
inhibitors are relatively nonspecific and have low efficacy. Among the direct NLRP3
inhibitors, the diarylsulfonylurea compound MCC950 (originally reported as CRID3/CP-
456773) is the most potent and specific for NLRP3. MCC950 demonstrated therapeutic effi-
cacy against several preclinical immunopathological models, including EAE [91], AD [22],
and PD [96]. However, this compound is currently not approved by the FDA for the
therapy of neurodegenerative disease.
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Using a different approach, Stavudine (d4T), an antiviral nucleoside reverse tran-
scriptase inhibitor (NRTIs) designed to target HIV, was recently shown to down-modulate
NLRP3 inflammasome activation in mice [97]. Additional data confirmed the ability of
this compound to hamper NLRP3 inflammasome activation in an in vitro model of AD
by reducing NLRP3 assembly as well as IL-18 and caspase-1 production and stimulating
amyloid-beta autophagy by macrophages [18].

Given the lack of effective drugs in the therapy of chronic neurodegenerative con-
ditions and the role of NLRP3 inflammasome in the pathogenesis and progression of
these diseases, efforts should be made to develop effective therapeutic strategies, possibly
including those targeting the NLRP3 inflammasome.
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