Supporting information

Scheme S1. - Molecular networking fractions on negative polarity.

Table S2. Collision energy.

Mass	Z1	Z2	Z3	Z4	Mass	Z1	Z2	Z3	Z4
100	30	28	25	25	100	30	28	25	25
300	35	32	30	30	300	35	32	30	30
500	40	38	35	35	500	40	38	35	35
700	50	48	45	45	700	50	48	45	45
1000	60	58	55	55	1000	60	58	55	55

Fragmentation mechanism propose to dereplicated compounds.

Apigenin (1).

Narigenin (2).

Eriocdictyol (4).

Catechin/epicatechin (5a/5b).

Apometzgerin (7).

Chrysoeriol (8).

3-(arabinofuranosyloxy)-2,3-dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one (11).

Afzelin (12).

naringenin 3-O-glucoside (13).

Taxifolin 3-O-xyloside (14)

Quercetrin (15).

Astilbin (16).

quercetin 3-galactoside (isoquercetrin) (17).

Isovitexin (20).

3-O-caffeoylshikimic acid (23).

3-O-p-coumaroylquinic acid (24).

[M-H]⁻=353.0870 m/z=179.04

chlorogenic acid (25).

3,5-dicaffeoylquinic acid (27).

Phyllocoumarin (29).

Cinchonain l (33).

apocynin (34).

triterpene esterified with ferulic acid I (40)

Supporting information of mass spectrometry data (MS¹ and MS²)

Figure S2. MS² spectra data from [M – H][–] = 269.0451, apigenin (1).

Figure S3. MS¹ spectra data from [M – H][–] = 271.0610, naringenin (**2**).

Figure S4. MS¹ expansion spectra data from $[M - H]^- = 271.0610$ naringenin (2).

Figure S5. MS² spectra data from [M – H]⁻ = 271.0610, naringenin (2).

Figure S6. MS^1 spectra data from $[M - H]^- = 285.0399$, kaempferol (3).

Figure S7. MS^2 spectra data from $[M - H]^- = 285.0399$, kaempferol (3).

Figure S8. MS¹ spectra data from [M – H]⁻ = 287.0551, eriodictyol (4).

Figure S9. MS^2 spectra data from $[M - H]^- = 287.0551$, eriodictyol (4).

Figure S10. MS¹ spectra data from [M – H][–] = 289.0720, catechin (**5a**)/epicatechin (**5b**).

Figure S11. MS² spectra data from [M – H][–] = 289.0720, catechin (5a)/epicatechin (5b).

Figure S12. MS¹ spectra data from [M – H][–] = 303.0506, taxifolin (6).

Figure S13. MS² spectra data from [M – H][–] = 303.0506, taxifolin (6).

Figure S14. MS¹ spectra data from [M – H][–] = 331.0808, apometzgerin (7).

Figure S15. MS² spectra data from $[M - H]^- = 331.0808$, apometzgerin (7).

Figure S16. MS¹ spectra data from [M – H][–] = 301.0704, chrysoeriol (8).

Figure S17. MS² spectra data from $[M - H]^- = 301.0704$, chrysoeriol (8).

Figure S18. MS1 Spectra from [M – H][–] = 285.0397, luteolin (9).

Figure S19. MS2 Spectra from [M – H][–] = 285.0397, luteolin (9).

Figure S22. MS¹ spectra data from $[M - H]^- = 419.0980$, $3-(\alpha-L-arabinofuranosyloxy)-2,3-dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one ($ **11**).

621.2714

87.1784

903.2125

543.2564

509.2227

419.0980 ([C20 H20 O10]-

341.0661

0.2

0.15 0.1 0.05

Figure S23. MS² spectra data from $[M - H]^- = 419.0980$, 3-(α -L-arabinofuranosyloxy)-2,3-dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one (**11**).

Figure S24. MS¹ spectra data from [M – H][–] = 431.0977, afzelin (**12**).

Figure S25. MS² spectra data from [M – H][–] = 431.0977, afzelin (**12**).

Figure S26. MS¹ spectra data from [M – H]⁻ = 433.1136, naringenin 7-O-glucoside (hyperoside) (**13**).

Figure S27. MS² spectra data from [M – H][–] = 433.1136, naringenin 7-O-glucoside (hyperoside) (**13**).

Figure S28. MS^1 spectra data from $[M - H]^- = 435.0930$, taxifolin 3-xyloside (14).

Figure S29. MS² spectra data from $[M - H]^- = 435.0930$, taxifolin 3-xyloside (14).

Figure S31. MS¹ expansion spectra data from [M – H][–] = 447.0926, quercetrin (15).

Figure S32. MS² spectra data from [M – H][–] = 447.0926, quercetrin (15).

Figure S34. MS² spectra data from [M – H][–] = 449.1083, astilbin (16).

Figure S35. MS¹ spectra data from [M – H][–] = 463.0873, quercetin 3-galactoside (isoquercetrin) (17).

Figure S36. MS¹ expansion spectra data from [M – H]⁻ = 463.0873, quercetin 3-galactoside (isoquercetrin) (17).

Figure S37. MS² spectra data from [M – H]⁻ = 463.0873, quercetin 3-galactoside (isoquercetrin) (17).

Figure S38. MS¹ spectra data from [M – H]⁻ = 739.1657, 3",6"-di-O-p-coumaroyltrifolin (18).

Figure 41. MS2 spectra data from [M+H]+=447.1269, kaempferide 3-rhamnoside (19).

220 240 260 280 300 Counts vs. Mass-to-Charge (m/z) 320 340 360

420

440

400

380

200

160 180

0

80

100

120 140

Figure 42. MS¹ spectra data from [M – H]– = 431.0980, isovitexin (20).

Figure 44. MS¹ spectra data from [M – H]– = 571.1230, 3^{III}-O-methylfukugetin (**21**).

Figure S46. MS1 spectra data from [M-H]=577.1333, procyanidin (22).

Figure S48. MS1 spectra data from [M-H]=335.0764, 3-O-caffeoylshikimic acid (23).

Figure S50. MS¹ spectra data from [M-H]=337.0923, 3-O-*p*-coumaroylquinic acid (24).

Figure S53. MS² spectra data from [M-H]=353.0871, chlorogenic acid (25).

Figure S54. MS1 spectra data from [M-H]=367.1027, 3-O-caffeoyl-4-O-methylquinic acid (26).

Figure S55. MS² spectra data from [M-H]=367.1027, 3-O-caffeoyl-4-O-methylquinic acid (26).

Figure S56. MS¹ spectra data from [M-H] =515.1183, 1,3-dicaffeoylquinic acid (27).

Figure S57. MS² spectra data from [M-H]=515.1183, 1,3-dicaffeoylquinic acid (27).

Figure S58. MS¹ spectra data from [M-H]=339.0721, aesculin (28).

Figure S59. MS² spectra data from [M-H] =339.0721, aesculin (28).

Figure S60. MS1 spectra data from [M-H]=341.0661, phyllocoumarin (29).

Figure S61. MS² spectra data from [M-H]=341.0661, phyllocoumarin (29).

Figure S62. MS1 spectra from [M+Na]+=393.0794, fraxin (30).

Figure S65. MS2 Spectra from [M+H]+=223.0599, fraxidin (31).

Figure S66. MS¹ spectra data from [M-H]=447.0717, naringenin-(3→8)-5,7-dihydroxychromone (32).

Figure S67. MS² spectra data from [M-H][−]=447.0717, naringenin-(3→8)-5,7-dihydroxychromone (32).

Figure S68. MS¹ spectra data from [M-H]⁼=451.1030, cinchonain l (33).

Figure S71. MS² spectra data from [M-H]=467.0980, apocynin (34).

Figure S72. MS1 spectra data from [M-H]=583.1444, cinchonain l derivative I (35).

Figure S73. MS² spectra data from [M-H]=583.1444, cinchonain l derivative I (35).

Figure S74. MS1 spectra data from [M-H] =613.1349, cinchonain l derivative II (36).

Figure S75. MS² spectra data from [M-H] =613.1349, cinchonain l derivative II (36).

Figure S76. MS¹ spectra data from [M-H]=901.1961, cinchonain l derivative III (37).

Figure S77. MS² spectra data from [M-H]=901.1961, cinchonain l derivative III (37).

Figure S79. MS2 spectra data from [M-H]-=739.1650, cinchonain ll (38).

Figure S81. Expansion of MS¹ spectra data from [M-H]=471.3459, 11-oxooleanolic acid (39).

Figure S83. MS1 spectra data from [M-H]=647.3941, triterpene esterified with ferulic acid (40).

Figure S84. MS² spectra data from [M-H]=647.3941, triterpene esterified with ferulic acid (40).

Figure S85. MS1 spectra data from [M-H]=617.3826, triterpene esterified with caffeic acid I (41).

Figure S86. MS² spectra data from [M-H]=617.3826, triterpene esterified with caffeic acid I (41).

Figure S88. MS² spectra data from [M-H]=633.3788, triterpene esterified with caffeic acid II (42).

Figure S89. MS1 Spectra from [M+Na]+=395.1313, syringin (43).

Figure S92. MS2 spectra from [M+Na]+=469.1314, gaultherin (44).

Figure S1. MS2 Spectra from [M+H]+=365.1055, sucrose (45).

Figure S94. MS1 Spectra from [M+H]+=593.2750, pheophorbide A (46).

Figure S95. MS2 Spectra from [M+H]+=593.2750, pheophorbide A (46).

Figure S96. MS spectra (GC-MS) from palmitic acid (methyl ester) (47).

Figure S97. MS spectra (GC-MS) from linoleic acid (methyl ester) (48).

Figure S98. MS spectra (GC-MS) from stearic acid (methyl ester) (49).

Figure S99. MS spectra (GC-MS) from vaccenic acid (methyl ester) (50).