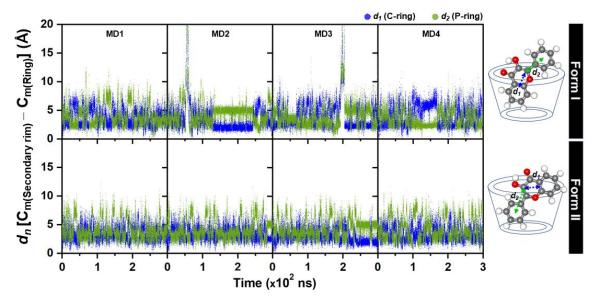

Supplementary Materials

Effect of Water Microsolvation on Excited-State Proton Transfer of 3-Hydroxyflavone Enclosed in γ -Cyclodextrin


Khanittha Kerdpol ¹, Rathawat Daengngern ^{2,3}, Chanchai Sattayanon ⁴, Supawadee Namuangruk ⁴, Thanyada Rungrotmongkol ^{5,6,7}, Peter Wolschann ^{8,9}, Nawee Kungwan ^{10,11,*} and Supot Hannongbua ^{1,7,*}

- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- ² Department of Chemistry, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
- Integrated Applied Chemistry Research Unit, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
- ⁴ National Nanotechnology Center (NANOTEC), NSTDA, 111 Thailand Science Park, Pahonyothin Road, Klong Luang, Pathum Thani 12120, Thailand
- 5 Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- ⁶ Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- ⁷ Molecular Sensory Science Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- 8 Department of Pharmaceutical Chemistry, University of Vienna, 1090 Vienna, Austria
- ⁹ Institute of Theoretical Chemistry, University of Vienna, 1090 Vienna, Austria
- ¹⁰ Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- ¹¹ Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
- * Correspondence: naweekung@gmail.com (N.K.); supot.h@chula.ac.th (S.H.); Fax: +66-53-892277 (N.K.); Fax: +66-22-187598 (S.H.)

Molecules **2021**, 26, 843

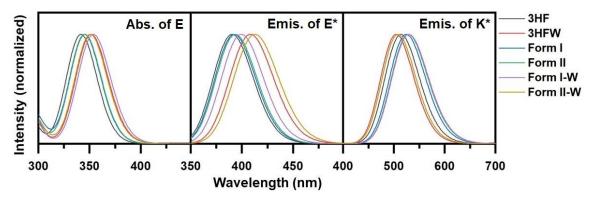


Figure S1. RMSD plots for all atoms and $R_{\rm gyr}$ of the two orientations of C-ring insertion (Form I), and P-ring insertion (Form II) inclusion complexes for four different MD runs of each system.

Figure S2. The plots of distance measured from the C_m of each 3HF ring to the C_m of the secondary rim of γ-CD (all 7 O2 atoms) for the four MD simulations MD1-MD4 with different initial structures of complexes in Form I and Form II.

Molecules **2021**, 26, 843

Figure S3. The simulated absorption spectra of E, and the simulated emission spectra of E^* and K^* for all studied compounds computed at TD-PBE0/def2-SVP level of theory.

Table S1. Electron density $\rho(r)$, the Lagrangian kinetic energy G(r), potential energy density V(r), the Hamiltonian kinetic energy density H(r), the Laplacian of the electron density $\nabla^2 \rho(r)$, the electron delocalization index (DI), and hydrogen-bonded energy (EhB) at selected BCPs in the S1 state (a.u.) for all compounds.

Cluster	BCPs	$\rho(\mathbf{r})$	G(r)	V(r)	H(r)	∇²ρ(r)	DI	Енв
3HF	O2···H1	0.0516	0.0418	-0.0448	-0.0031	0.1549	0.6756	0.0224
3HFW	Ow···H1	0.1007	0.0764	-0.1298	-0.0534	0.0918	0.0054	0.0649
	O2···Hw	0.0633	0.0538	-0.0634	-0.0096	0.1769	0.1481	0.0317
Form I	O2···H1	0.0414	0.0342	-0.0350	-0.0009	0.1330	0.0826	0.0175
Form II	O2···H1	0.0249	0.0218	-0.0221	-0.0003	0.0860	0.0346	0.0111
Form I-W	Ow···H1	0.0575	0.0435	-0.0505	-0.0070	0.1461	0.0000	0.0253
	O2···Hw	0.0636	0.0553	-0.0646	-0.0093	0.1837	0.0159	0.0323
Form II-W	Ow···H1	0.1052	0.0785	-0.1391	-0.0606	0.0717	0.0077	0.0696
	O2···Hw	0.0618	0.0528	-0.0612	-0.0084	0.1774	0.0000	0.0306