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benzyl alcohol.

Figure S1. Proposed mechanism for bipy-CTF-catalyzed aerobic oxidation of benzyl alcohol.

Figure S2. The GC-MS spectra of the a, B-unsaturated nitriles.
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1. Mechanistic studies

To obtain an insight of the function of the bipy-CTF material in oxidation catalysis, a set of control
experiments was performed (Table S1). In this regard, a control experiment was performed using the
pristine bipy-CTF material. A conversion of 39% was obtained using the pristine bipy-CTF as the catalyst
in the presence of Cs,COs as the base. (Table S1, entry 1). To obtain more insight into the role of the base,
the influence of different bases was investigated. The obtained results are outlined in Table S1 below. As
can be observed, the reaction without any basic additive resulted in no conversion of benzyl alcohol (Table
S1, entry 2). However, the addition of a variety of bases, such as Na,COs, K,COs, and Cs,COs, improved the
catalytic activity, with the highest activity obtained using Cs,COs. In general, carboxylates with bigger
counter cations are more dissociated in aprotic solvents and consequently more reactive. Similar trend is
observed for the Ru""@bipy-CTF catalyst (Table 2, entries 1-4 of the manuscript). We believe that the
applied base can facilitate the deprotonation of benzyl alcohol and boosts the catalytic activity. The
conversion of benzyl alcohol towards benzaldehyde dramatically lowered to 3% under Ar atmosphere,
proving the essential role of oxygen as the oxidant (Table S1, entry 5). Another control experiment was
done using p-benzoquinone (Table S1, entry 7). The addition of p-benzoquinone as superoxide (*O3)
scavenger into the reaction system containing bipy-CTF as the catalyst completely suppressed the
oxidation of benzyl alcohol (conversion < 1%). This observation indicates that bipy-CTF activates molecular
oxygen to superoxide, which acts as oxidant species in the catalytic cycle.

Table S1. Various control experiments to obtain insights into the reaction mechanism for the
oxidation of benzyl alcohol.

Entry Catalyst base Conversion (%)
1 bipy-CTF Cs2C03 39

2 bipy-CTF No base 3

3 bipy-CTF K2CO3 18

4 bipy-CTF Na2COs 10

52 bipy-CTF Cs2C03 3

6P bipy-CTF Cs2C0s 14

7¢ bipy-CTF Cs2C03 <1

Reaction conditions: 17 mg bipy-CTF, 0.33 mmol benzyl alcohol, 0.4 mmol base, 500 ul toluene, O,
100 °C, 12 h. 2Under Ar atmosphere. PReaction was done at 50°C. °p-benzoquinone (0.33 mmol) was
added.

So far, many experimental and theoretical investigations have shown the applicability of N-doped carbon-
based materials for adsorption and activation of molecular 0,.> Based on our observations and previous
reports,®* we propose that the oxygen activation occurs on the surface of bipy-CTF and the generated
superoxide reacts with benzyl alcohol to generate PhCH,0" and subsequently PhCH,0® and benzaldehyde.
Although the exact mechanism on the aerobic oxidation using [Ru(acac)2(CHsCN),]PFs complex has been
remained unknown in the previous reports, it can be expected that the generated PhCH,0" on the surface
of bipy-CTF reacts with the Ru centers in the reaction system. The obtained results thus corroborate each
other, unveiling the promotional impact of bipy-CTF in activating oxygen and benzyl alcohol in our reaction
system. A reaction mechanism is proposed based on the obtained results and previous studie3*, as shown
in Figure S1.
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Figure S1. Proposed mechanism for bipy-CTF-catalyzed aerobic oxidation of benzyl alcohol.

2. Catalytic reactions

Conversion, yield and selectivity are calculated through equations S1, S2 and S3 respectively. Dodecane
was used as the internal standard. The conversion, yield and selectivity are calculated based on the
observed peak area using a TRACE GC x GC (Thermo, Interscience) coupled to a TEMPUS TOFMS detector
(Thermo, Interscience). The pure starting material (alcohols) and products (a, B-unsaturated nitriles) were
injected to the GC as the reference peaks.

Area of 151 o Area of S2
Areaof S1  Areaof IS2

(S2) Yield = mmol of S1 —mmol of S2 « 100
e = mmol of S§1

(51) Conversion=1— ( ) x 100

($3) Selectivity = — ¢4 PX 100
srectivity = Area of all products

IS1=Internal standard at time zero; S1= Substrate at time zero; S2= Substrate at time X; IS2= Internal
standard at time X; PX= Product X.

The GC-MS spectra of the a, B-unsaturated nitriles are presented below.
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Figure S2. The GC-MS spectra of the a, B-unsaturated nitriles.
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