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Abstract: The purpose of this review is to summarize the importance of microwave (MW) irradiation
as a kind of catalyst in organophosphorus chemistry. Slow or reluctant reactions, such as the
Diels-Alder cycloaddition or an inverse-Wittig type reaction, may be performed efficiently under
MW irradiation. The direct esterification of phosphinic and phosphonic acids, which is practically
impossible on conventional heating, may be realized under MW conditions. Ionic liquid additives
may promote further esterifications. The opposite reaction, the hydrolysis of P-esters, has also
relevance among the MW-assisted transformations. A typical case is when the catalysts are substituted
by MWs, which is exemplified by the reduction of phosphine oxides, and by the Kabachnik-Fields
condensation affording a-aminophosphonic derivatives. Finally, the Hirao P-C coupling reaction
may serve as an example, when the catalyst may be simplified under MW conditions. All of the
examples discussed fulfill the expectations of green chemistry.

Keywords: microwave; organophosphorus chemistry; catalyst; catalyst- and solvent-free; green chemistry

The spread of the microwave (MW) technique opened a new chapter in organic
chemistry in whole [1-3], and also in its specialized fields, such as heterocyclic [3-5] and
organophosphorus chemistry [2,6]. MW irradiation makes possible more efficient syntheses
in terms of reaction time, selectivity, and purity [1,2]. The role of MWs in organic syntheses
provoked sharp disputes, however, today there is an agreement that thermal effects are
responsible for the beneficial effect of MWs [7,8]. A widely accepted concept is that the
efficiency of the MW irradiation is the consequence of the statistically occurring local
overheating in the bulk of the mixture [9-11].

During our work, we laid the stress on green chemical aspects within organophos-
phorus chemistry [12]. This will be summarized in this review article. Besides developing
efficient syntheses, we could enhance reluctant or slow reactions by applying the MW
irradiation (1). It was another option to promote further certain MW-assisted reactions
by performing them in the presence of an ionic liquid additive/catalyst (2). It is another
possibility to substitute certain catalysts by MW irradiation (3). Last but not least, MWs
may simplify catalytic systems/catalysts (4). In this paper, options (1)—(4) will be discussed
in detail, placing the particular reactions into literature context.

1. Microwave Irradiation Allowing the Inverse-Wittig Type Reaction That Is Reluctant
on Conventional Heating

The Diels—-Alder reaction of 1-phenyl-1,2-dihydrophosphinine oxide 1 with dienophiles,
like N-phenylmaleimide and dimethyl acetylenedicarboxylate (DMAD), resulted in the
formation of the respective phosphabicyclo[2.2.2]octene derivatives (2) and (3). The mi-
crowave (MW) technique was useful in shortening the reaction times and making the
syntheses efficient. The MW-promoted reactions were 25 times faster than the thermal
variations (Scheme 1) [13].
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Scheme 1. [4 + 2]Cycloadditions of a 1,2-dihydrophosphinine oxide (1) with dienophiles.

However, the 1-(2,4,6-triisopropylphenyl-1,2-dihydrophosphinine) oxide (4) [14] un-
derwent an inverse-Wittig type transformation in reaction with DMAD to afford the
corresponding 3-oxophosphorane 5 (Scheme 2) [15,16].
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A
O4P * |‘| T MeOC P
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MeO,C~ YO
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Scheme 2. The inverse Wittig-type reaction of a P-aryl 1,2-dihydrohosphine oxide with dimethyl
acetylenedicarboxylate (DMAD).

Then, the new protocol seemed to be of a more general value [17]. The use of the
MW technique was advantageous not only in the inverse Wittig-type reaction of 2,4,6-
triisopropylphenyl-3-phospholene oxide but also in the reaction of 2,4,6-triisopropylphenyl
phospholane oxide and 2,4,6-triisopropylphenyl-1,2-dihydrophosphinine oxide (all repre-
sented by formula 6) to afford (-oxophosphoranes 7 (Scheme 3) [18,19].

CO;Me MW O
O .l 150 °C/3h ~rdcooMe
>PL solvent-free ~ Ar I
A CO,Me

O-cf (5"

Ar = 2,4 6-tri-PrPh

0~ “CoOMe
7 (80-92%)

Scheme 3. The inverse Wittig-type reaction of P-aryl ring phosphine oxides with DMAD.

In the novel inverse Wittig-type reactions, MW irradiation made possible reactions at
150 °C for 3 h that were rather reluctant on conventional heating. Hence, MW acted as a
kind of catalyst.

Theoretical calculations suggested a mechanism involving an oxaphosphete interme-
diate [20,21].

In the above case, the nature of the 1,2-dihydrophosphinine oxide determined its
reactivity towards DMAD. Moreover, both the Diels—Alder cycloaddition and the inverse-

Wittig type reaction took place efficiently on MW irradiation without the application of
any catalyst.
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2. Microwave-Assisted, Ionic Liquid-Catalyzed Direct Esterification of P-Oxoacids
That Is Otherwise Impossible under Thermal Conditions

Phosphinic and phosphonic acids cannot be involved in direct esterification under
common conditions. Only a few examples are known for the direct esterification of P-acids.
These reactions required forcing conditions and were not efficient [22-26]. However, it was
found by us that the P-acids can be esterified on MW irradiation.

The esterification of 1-hydroxy-3-phospholene oxide (8) with a series of alcohols at
180-235 °C afforded the alkyl phosphinates (9) in yields of 71-95% (Scheme 4/B vs. A,
Table 1/Entries 1, 3, 5, 7, 9 and 11) [27-29]. The esterifications were less efficient with
volatile and sterically hindered alcohols. The relatively high temperature required means a
limitation that may be overcome by applying ionic liquids (ILs) as catalysts. It was found
that in the presence of 10% of [bmim][PF¢] as an additive, the esterifications took place
at a lower temperature, and became faster and more efficient in shorter reaction times
(Scheme 4/D, Table 1/Entries 2, 4, 6, 8, 10 and 12) [30]. The thermal direct esterifications
were also somewhat promoted by the ionic liquid additive (Scheme 4/C).

Conversion  Yield

[bmim][PFg] = MeN@) o

(%) (%)
A, 200 °C, 2 h (A) . -
MW, 200 °C, 16 bar, 2h (B
:  16bar, 2h (B) Me g 58
ROH A, 180 °C,0.5h / ;
i bmim][PF C _P
(15 equiv.) [ 1[PFel (C) R 19 B
MW, 180 °C, 14 bar, 0.5 h 9a
[bmim][PFg] (D)

90 83

NBu

PFo

Scheme 4. The MW-assisted catalytic direct esterification 1-hydroxy-3-methyl-3-phospholene 1-oxide (8).

Table 1. Esterification with other alcohols.

Me Me
<:§ T/2-15.5bar / t <=S
+ ROH .
OéP\OH [bmim][PFg] O//P\OR
8 9
Entry R [bmim][PFs] T (C) t (h) C"“;{,Zr)sm Yield (%)
1 Pr - 180 4 40 30
2 Pr 10% 180 3 98 68
3 Pent - 220 25 100 82
4 Pent 10% 180 0.5 100 94
5 Pent - 235 3 100 * 76
6 Pent 10% 180 0.5 100 95
7 Oct - 220 2 95 * 71
8 Oct 10% 180 0.33 100 85
9 iOct - 220 1 100 76
10 iOct 10% 180 0.33 100 84
11 Dodecyl - 230 2 100 95
12 Dodecyl 10% 180 0.33 100 94

* Estimated value.

Then, the MW-promoted IL-catalyzed direct esterifications were extended to other
ring phosphinic acids, like 1-hydroxy-3,4-dimethyl-3-phospholene oxide (10), 1-hydroxy-
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phospholane oxides (12 and 14), as well as, a 1-hydroxy-1,2,3,4,5,6-hexahydrophosphinine
oxide (16) (Table 2) [29-31].

Table 2. Extension of the MW-assisted IL-catalyzed direct esterification to other cyclic phosphinic acids.

Model Reaction [bmim][PF] T (°C) t (h) Yield (%)
MW Me Me - 235 3 67
T/<11 bar/t —
+ PentOH —>[b —
_P mim][FFe _P
2 0~ “OPent
10 1 10% 200 1 72
Me MW Me - 235 3 79
T/<11 bar/t
+ PentOH —>[b —
P mimjiFre _P
0” “OH 0~ “OPent .
12 13 10% 220 1 89
MW Me Me - 235 5 60
T/<11 bar/t
+ PentOH m’
_P. mimjiFre _P
2 o/ \OPent
10% 220 2 84
Me - 220 4 31
T/ 9 bar/t
+ PentOH (j/
_PC [bm|m [PFg]
O OPent
16 17 10% 200 2 42

Using IL-catalysis, even phenols could be the reactants in the MW-assisted esterifica-
tion of cyclic phosphinic acids [32].

The esterification of the reactive phenyl-H-phosphinic acid (18) took place at a tem-
perature of 160-190 °C to provide the phosphinates (19) in good (73-90%) yields [33]. The
presence of [bmim][PF¢] had a beneficial effect on the outcome (Scheme 5/(1)) [34]. Methyl-
phenylphosphinic acid (20), and what is more, the sterically hindered diphenylphosphinic
acid (22), could also be efficiently esterified in the presence of an IL (Scheme 5/(2) and
(3)) [34,35].

MW
[ :1 0 140 °C/<16 bar 30 min [ :[ 0
7~ + ROH 7 Q)

P , P
H OH (15 equiv) [bmim][PF¢] (10%) H  OR
18 R = Et, Bu, ‘Bu, Pent, Oct 19
88-94%
MW
? 180 °C/<14 bar 0.33/2 h Q
P—OH + ROH P-OR  (2)
Me [bmim][PFg] (10%) Me
20 R = Bu, Oct 21
73-92%

Qo

MwW
//O 200 °C/<16bar 2h 0O

Pl + ROH : 4 (3)
OH (15 equiv.) [bmim][PFg] (10%) OR
22 R = Bu, Pent, ‘Pent, Oct 23
65-95%

Scheme 5. MW-promoted direct esterification of different phenyl-phosphinic acids (18, 20, and 22).
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It is noteworthy that thiobutanol could also be used under MW-assistance to afford
the corresponding thiophosphinates [36]; however, the direct amidations of phosphinic
acids were reluctant even on MW irradiation [37].

Our next targets were the phosphonic acids. In the first approach, the alkyl phenyl-H-
phosphinates (19) were oxidized, then the ester-acid were esterified. However, we could
not be satisfied with the efficiency (Scheme 6) [38].

MW MW

Ph, OH  ROH Ph, OR  nMCPBA Ph_ OR ROH Ph_ OR
N /,P\ - = /,P\ ZN

o H —H,0 0" H 0 'OH -H,0 0" OR
18 19 24 25

Scheme 6. The preparation of dialkyl phenylphosphonates (25) via alkyl phenyl-H-phosphinates (19).

For this, the direct esterification of phenylphosphonic acid was studied in detail. We
learned that the MW-assisted and IL-catalyzed protocol furnished the monoesters (27) in
good selectivities and in acceptable yields (Table 3). At the same time, the diesterification
to species 25 was not efficient (Table 4). [Bmim][PF4] was somewhat less efficient than
[bmim][BF,] [34,39].

Table 3. MW-promoted direct esterification of phenylphosphonic acid (26).

MW
T t
ROH (15 equiv.)
Ph_ OH [bmim][BF 4] (10%) Ph_ OR Ph_ OR
AN AN
0" OH O" OH 0" OR
26 27 25
R T Q) t (h) Conversion Composition {/Iield of ’:he
(%) Monoester (%) Diester (%) 01(1‘?0 'is er
Bu 180 0.75 100 95 5 82
Et 165 8 82 94 6 70
Oct 180 0.75 100 96 4 90

Table 4. MW-promoted direct esterification of phenylphosphonic monoesters (27).

MW
Tt
ROH (15 equiv.)
Ph, OR [omim][BF 4] (10%) Ph_ OR
//P\ //P\
0" OH 0" OR
27 25
R T (O t (h) Conversion (%)
Bu 220 6 45
Oct 235 3 72

As an alternative possibility, phenylphosphonic acid (26) was also subjected to alky-
lating esterifications using BuBr. These reactions were complete and selective for the
diesterification only when BuBr was used in a 5-fold quantity at 120 °C (Table 5) [39].
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Table 5. Alkylating esterification of phenylphosphonic acid (26).
MW
T, t
BuBr (1 equiv.)
Ph_ OH EtsN (1.1 or 2.2 equiv.) Ph_ OBu Ph_ OBu
/) PL ., PL + /) PL
O OH MeCN O OH O" OBu
26 27a 25a
BuBr (Equiv) T(C)  t(h)  Conversion (%) Composition
Monoester (%) Diester (%)
1 100 2 62 61 39
2.2 100 4 95 32 68
5 120 4 100 17 83 *

* The diester was prepared in a yield of 69%.

At the same time, the monoalkyl phenylphosphonates (27) could be esterified further
in reaction with alkyl halides under MW irradiation (Table 6) [39].

Table 6. Alkylation of phenylphosphonic monoesters (27)—synthesis of dialkyl phenylphospho-

nates (25).
MW
Tt
RX (1 equiv.)
Ph_ OR Et;N (1.1 equiv.) Ph_ OR
/, P\ 7/ P\
o° OH solvent-free o OR
27 25
R RX T(°Q) t (h) Yield (%)
Bu BuBr 85 * 0.5 80
Et EtI 85 0.5 92
Oct OctBr 100 1 72

* The yield of the comparative thermal experiment was 57%.

In this way, phenylphosphonates with (two) different alkyl groups (28) could also be
prepared (Table 7). The isolated yields of products 28 were mostly around 70% [39].

Table 7. The preparation of phenylphosphonates (28) with different alkyl groups.

MW
85°C,05h
R'X (1 equiv.)
Ph_ OR EtzN (1.1 equiv.) Ph_ OR
AN M
O OH solvent-free O OR
26 28
R |Bu| Bu|Bu| Et | Et
R'[ Et["pr| ipr[npr| ipr
R R’X Yield of the “Mixed” Ester (%)
Bu Etl 71
Bu "PrBr 68
Bu "PrBr 48
Et "PrBr 72
Et "PrBr 54
Et BuBr 72

It follows from our results that the method of choice for the diesterification of phos-
phonic acid 26 is when the first HO group of the phosphonic acid (26) is esterified with
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alcohol under MW conditions [34,39], while the second HO function (as in 27) is converted
to alkoxy by alkylation using an alkyl halogenide (Scheme 7) [39].

MW MW
~180°C ~ 85 °C
Ph\P/OH ROH (15 equiv.) Ph\P/OR R'X Ph\P/OR
0” OH  [bmim][BF,] (10%) & “oH NEt, & “or
26 27 _ 25
R = Et, Bu, Oct R'= Et, Pr, 'Pr, Bu
X = Br, |

Scheme 7. The new protocol elaborated for the synthesis of dialkyl phenylphosphonates.

It is noteworthy that the MW-assisted continuous flow esterification of a H-phosphinic
acid was also elaborated [40].

We were successful in modeling the rate-enhancing effect of MWs. The esterification
of phenyl-H-phosphinic acid and 1-hydroxy-3-methyl-3-phospholene 1-oxide served as
the model reactions [41,42].

The opposite reaction of esterification is hydrolysis that is of high importance also
in the sphere of P-esters [43,44]. The hydrolysis of phosphinates and phosphonates is
carried out, in most cases, under acidic conditions [45-52], but, among other possibilities,
base-catalyzed cases also occur [53-57]. It was a new approach to perform the hydrolyses
under MW irradiation. Alkyl diphenylphosphinates (29) were hydrolyzed at 180 °C in the
presence of 10% of p-toluenesulfonic acid (PTSA) as the catalyst (Scheme 8) [58]. For the
esters with n-alkyl substituents, completion of the hydrolysis required 1.5-2.2 h; however,
with the i-propyl ester, the hydrolysis took place after 0.5 h. This latter experience is due to
the realization of the A ;1 mechanism. The acid (30) was isolated in yields of 94-97%.

MW
180 °C/0.5-2.2 h
-0 PTSA (10%) O
Ph,PJ + H,0 PhyPl
OR OH
29 30
R = Me, Et, "Pr, Pr, Bu 94-97%

Scheme 8. MW-assisted hydrolysis of alkyl diphenylphosphinates (29).

A comparative thermal experiment afforded the phosphinic acid (30) in a lower
conversion of 24%, indicating the beneficial effect of MWs. This is the consequence of the
local overheating [27,28] and the better MW absorbing effect of PTSA.

In conclusion, MW irradiation made possible the otherwise impossible direct esterifi-
cation of phosphinic acids, and the monoesterification of phosphonic acids. MW irradiation
proved to be a useful tool in overcoming the enthalpy of activation barriers higher than
130 kJ mol~! [27,28]. This is due to the beneficial effect of the statistically occurring local
overheating [41,42]. On the other hand, the MWs were beneficial also in the acid-catalyzed
hydrolysis of phosphinates.

3. Microwave as a Substitute for the Catalysts in the Deoxygenation of
Phosphine Oxides

Besides the widely applied trichlorosilane (Cl3SiH) and phenylsilane (PhSiHjz) [59,60],
the use of the cheaper ethoxysilanes, (EtO)s;SiH and (EtO);MeSiH, as well as 1,1,3,3-
tetramethyldisiloxane (TMDS) and polymethylhydrosiloxane, called also as methylpolysilox
ane ([PMHS or MPS] represented by formula [-O-SiH(Me)-],), offers alternative possibili-
ties [61,62]. However, these silanes are of low reactivity. Beller et al. tested different acids as
catalysts in the deoxygenation of triphenylphosphine oxide (31) with diethoxymethylsilane
as the reductant (Table 8) [61]. No deoxygenation occurred in the lack of a catalyst. Adding
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15 mol% of benzoic acid to the mixture, triphenylphosphine (32) was obtained in a yield of
6%. However, in the presence of the diphenyl ester of phosphoric acid as the catalyst, the
yield of PPh3 was 75%. Moreover, it was observed that the use of a P-ester-acid catalyst with
an electron-withdrawing substituent in the phenyl ring led to the quantitative reduction.

Table 8. Deoxygenation of triphenylphosphine oxide (31) using (EtO),MeSiH with acid catalysts.

o) 110 °C/24 h
Il (EtO),MeSiH (3 equiv.) 5
Ph”| Ph PR Ph
h 15 mol% catalyst Ph
31 PhMe 32
Catalyst Yield (%)
- <1
PhCOOH 6
(PhO),P(O)OH 75
(4-NO,CzH,40),P(O)OH >99
(4-CF3C¢H40),P(O)OH >99

Different tertiary phosphine oxides (33) were reduced to the respective phosphines
(34) using (EtO)3SiH in the presence of titanium(IV) isopropoxide as the catalyst (Table 9).
The deoxygenations were performed in tetrahydrofuran (THF). On heating at 67 °C, the
completion required 1 h, if the silane was applied in a 3-fold excess [62].

Table 9. Reductions with triethoxysilane.

0 67 °C
I (Et0);SiH (3 equiv.)
Ph” 1 >Ph — - Ph” | ~Ph
Ti(O'Pr)4 (0.1 equiv.) R
33 THF 34
R Yield (%)
Ph 85
CH,CH,P(O)Ph, 90
Me 99
Et 95
Pr 81
Pr 41
Bn 98
CH,Bn 83

The reduction of aryl-diphenylphosphine oxides with (EtO)3;SiH in the presence of
Ti(O'Pr)4 in benzene at reflux provided the corresponding phosphine in 90% yield after a
reaction time of 30 min [63].

The deoxygenation of triphenylphosphine oxide (31) was also elaborated using TMDS
in the presence of catalysts. Copper(Il) triflate was a suitable promoter in the reduction
of the P=0O unit at 100 °C in PhMe [64]. Without a catalyst, even measuring in TMDS in a
12 equivalents’ quantity, no reduction occurred. The use of 15 mol% of the (PhO),P(O)OH
in boiling PhMe also promoted deoxygenation [61]. Using 10 mol% of Ti(O'Pr), at 100 °C,
triphenylphosphine (32) was formed in a conversion of 86%. In the presence of 1% of InBrs
as the catalyst, the reduction was quantitative at 100 °C [65] (Table 10).
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Table 10. The catalytic deoxygenation of triphenylphosphine oxide (31) applying 1,1,3,3-
tetramethyldisiloxane (TMDS) as the reducing agent.

Q T/t .
P TMDS _P<
Ph™ 1 “Ph catalyst P4, Ph
31 toluene 32
Equivalent of TMDS Catalyst (mol%) T (°C) t (h) Conversion (%)

12 - 100 2 <1
3 Cu(OTf), (10) 100 15 9%
3 (PhO),P(O)OH (15) 110 24 62
12 Ti(O'Pr), (10) 100 24 86
3 InBr; (1) 100 18 >99

It is noteworthy that there is no need for any catalyst if the reduction of triphenylphos-
phine oxide (31) with TMDS is performed in a solvent-free manner under MW irradiation.
After treatment at 200 °C for 6.5 h, the reduction was quantitative. On conventional heating
at 175 °C, there was a need for a 1-day reaction time. As the reduction takes place in the
absence of catalyst, the MW-assisted approach may be regarded as a “green” protocol
(Table 11) [66,67]. Practically, MW irradiation substituted the catalyst.

Table 11. Deoxygenation of triphenylphosphine oxide (31) using TMDS in the absence of catalysts.

ICI) T/t .
TMDS P
Ph T Ph Ph” | “Ph
Ph solvent-free Ph
31 32
Equivalent of TMDS Mode of Heating T (°Q) t(h) Conversion (%)
2 A 175 24 92
2 MW 200 6.5 100

The reduction of ring phosphine oxides, such as 3-methyl-1-phenyl-2-phospholene
oxide (35a), was performed using TMDS together with InBrj as the catalyst in PhMe at
100 °C [65]. The deoxygenation also took place in the absence of catalyst in PhMe at
reflux [68]. The solvent- and catalyst-free reduction of 1-phenyl-3-phospholene oxide 35b
was complete after a shorter reaction time in both the thermal and MW-promoted variations
(Table 12) [66].

Table 12. Deoxygenation of phospholene oxides (35) applying TMDS.

T/MW
O TMDS O _
P. lvent P. = \
SO .
o~ “ph " “Ph a b

35 36
_ Equivalent of Catalyst Mode of o Conversion
P=0 TMDS (mol%) Solvent Heating TCO t® (%)
a 3 InBr; (1) PhMe A 100 40 95
a 2 - PhMe A 110 8 82
b 2 - - A 110 5 100
b 2 - - MW 110 3 100
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The next user-friendly silane, PMHS can be used in the deoxygenation of triph-
enylphosphine oxide (31). At 290 °C in the absence of any solvent, triphenylphosphine (32)
was isolated in an 86% yield [69]. Itis a disadvantage that the application of PMHS requires
a relatively high temperature. Applying the reducing agent in a 12 equivalents’ quantity at
100 °C in PhMe, no reduction took place after 2 h. At the same time, applying Cu(OTf),
as the promoter at 100 °C for 15 h, the deoxygenation took place [64]. Applying 15 mol%
of (PhO),P(O)OH as the catalyst at reflux for 1 day, the conversion was incomplete, and
the phosphine (32) was obtained in a 35% yield [62]. Applying PMHS at a temperature of
175 °C on conventional heating in the absence of any catalyst and solvent, completion of
the reduction required 17 h. In the MW-promoted version, 8 h was enough for an almost
quantitative outcome (Table 13).

Table 13. Deoxygenation of triphenylphosphine oxide with polymethylhydrosiloxane (PMHS).

Q T/t ..
P, _PMHS _ _ _P<
Ph Plh Ph catalyst Ph IIDh Ph
31 32
Equivalent of PMHS Catalyst (mol%) Mode of Heating Solvent T (°Q) t (h) Yield (%)
5 - A - 290 2 86
12 - A PhMe 100 2 0
6 Cu(OTf), (10) A PhMe 100 15 88
4 (PhO),P(O)OH (15) A PhMe 110 24 35
2 - A - 175 17 87
2 - MW - 175 8 90
The first deoxygenation of 1-phenyl-2-phospholene oxide 35a with PMHS was per-
formed in the absence of any solvent at 250 °C [69]. Then, this transformation was carried
out in PhMe at reflux 6 h [68]. The deoxygenation of 1-phenyl-3-phospholene oxide
35b was also investigated under thermal and MW-promoted, in most cases, solvent-free
conditions. These deoxygenations were complete at 110 °C after 4 and 2 h, respectively
(Table 14) [66,67]. The outcome of the deoxygenation of the dimethylphospholene oxide
35c¢ was better in PhMe at reflux.
Table 14. The deoxygenation of a series of phospholene oxides using PMHS.
T/ MW
OB O 0-38%
P solvent P B
0” “Ph " Ph a b c
35 36
Phosphine Oxide Silane (Equiv.) Mode of Heating Solvent T (°O) t (h) Yield (%)
a 5 A - 250 2 88
a 2 A PhMe 110 6 85
b 2 A - 110 4 91
b 2 MW - 110 2 92
c 5 A - 250 - 35
c 2 A PhMe 110 6 92

Optimum conditions for the reduction of 1-alkyl-3-methyl-3-phospholene 1-oxides by
PhSiHj, TMDS, and PMHS were also evaluated [70].

TMDS and PMHS are user-friendly and low-cost reducing agents. The lower reactivity
can be compensated by a solvent-free and MW-assisted protocol. MWs can be regarded as
a kind of promoter substituting efficient catalysts.
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4. Microwave as a Substitute for Catalysts in the Kabachnik-Fields Reaction

a-Aminophosphonic acids, the P-analogues of x-amino acids, are of importance
due to their potential biological activity, which is the consequence of their enzyme in-
hibitory properties [71]. The major method for the synthesis of x-aminophosphonates is
the Kabachnik-Fields condensation of amines, aldehydes or ketones, and dialkyl phos-
phites [72,73]. a«-Aminophosphonates (37, Y = RO) and a-aminophosphine oxides (37,
Y = Ph) were synthesized by the solvent- and catalyst-free MW-assisted phospha-Mannich
reaction of primary amines, oxo compounds, and dialkyl phosphites or diphenylphosphine
oxide. Earlier preparations utilized special catalysts, such as, tetra-tert-butyl-substituted
phthalocyanine—AICl3 complex [74], magnesium perchlorate [75], metal triflates (M(OTf)y,,
M = Li, Mg, Al, Cu and Ce) [76], indium(I1l) triflate [77], bismuth(I) nitrate [78], samar-
ium(Il) iodide [79], ceric ammonium nitrate (CAN) [80], indium(III) chloride [81], and
a variety of lanthanide (Yb, Sm, Sc, La) triflates [82], which mean cost and environmen-
tal burden. It was found that under MW conditions, there is no need for any catalyst
(Scheme 9) [83].

9 0y 80 1'\%\, °C/t X9
/ —

R'NH, + _C_ _+ HFl —————» R'NH-C—F
R 'R® Y - H,0 Y

R'=Ph,Bn Y =EtO, MeO, Ph 37

RZ| H H Me C> 80-94%
H Ph Ph

R®
Scheme 9. MW-assisted phospha-Mannich condensations.

Starting from heterocyclic amines: pyrrolidine, piperidine, morpholine and piperazine
derivatives or heterocyclic >P(O)H species, N-heterocyclic [84] and P-heterocyclic [85] «-
aminophosphonates were obtained. 3-Amino-6-methyl-2H-pyran-2-ones were also suitable
amino derivatives in Kabachnik-Fields reaction with formaldehyde and dialkyl phosphites
or diphenylphosphine oxide [86]. As special cases, x-aminophosphonates with different
alkoxy groups [87], a-aminophosphinates [88], and a-aminophoshonates with sterically
demanding o-aryl substituents [89] were also synthesized under MW-assisted conditions.
Moreover, carboxylic amides could also be used under solvolytic conditions [90]. It is
noteworthy that the phospha-Mannich reactions may also be performed in the presence of
the T3P® activating agent [91].

Primary amines are suitable components for bis(Kabachnik-Fields) condensations [92].
In these distances, alkyl or arylamines were reacted with two equivalents of the formaldehyde
and the >P(O)H reagents to afford the bis(Z! Z2P(O)CH,)amines (38) (Scheme 10) [93-95].
Most of the reactions could be carried out in a solvent-free manner.

0]
. MW y 1.z
/O  100°C,1h JCH2—P<
Y=NH, + 2(HCHO), + 2 R~ ————> Y-N_ 71
72 H solvent-free CH,—PZ2,

or acetonitrile
Y= "Pr, "Bu, “Hex, Bn, Ph, 4-MeOCgH,4
38

-0
Z! ‘ OMe OEt OBu OBn OFEt Ph ,O> 79-98%
72| OMe OEt OBu OBn Ph Ph O ‘ .

Scheme 10. The bis(phospha-Mannich) reaction.

The bisphosphinoyl derivatives (38, Z! = Z? = Ph) were transformed after double-
deoxygenation to bis(phosphines) that were useful in the synthesis of ring platinum
complexes [94-96] «-, 3- and y-amino acids (or esters) were also utilized in the dou-
ble Kabachnik-Fields condensation to furnish the bis(phosphono- or phosphinoyl) prod-
ucts [97,98].
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The a-aminophosphonates may be formed via imine of «-hydroxyphosphonate inter-
mediates [72,92,99,100]. a-Hydroxyphosphonates may be formed in a reversible manner
from the corresponding oxo compound and dialkyl phosphite [101,102]. It was a somewhat
surprising experience that the a-hydroxyphosphonates could be converted to the respective
a-aminophosphonates by reaction with primary amines under MW conditions. This was
promoted by a favorable adjacent group effect [103,104].

In summary, a wide range of mono- and bis Kabachnik-Fields reactions were carried
out under MW-assisted and catalyst-free conditions, and mostly in a solvent-free manner.

x-Aryl-o-hydroxyphosponates [105] mentioned above as intermediates in the phospha-
Mannich condensations, along with x-aryl-a-hydroxyphosphine oxides (39), were synthe-
sized in a catalytic and solvent-free MW-assisted Pudovik reaction comprising the addition
of >P(O)H species to aryl aldehydes (Scheme 11) [106].

MW
110 °C /20 min
z@—CHo O NayCOs (0.75 equiv.) . 2: ﬁF?)Y
+ L. p—
YZP\H solvent-free ( > 2
Z =H, OMe, Me, CI, NO, 39
Y = EtO, MeO, Ph 62-88%

Scheme 11. MW-promoted synthesis of a-hydroxyphosphonates and a-hydroxyphosphine oxides
by the Pudovik reaction.

Dialkyl phosphites could also be reacted with x-ketophosphonates to result in the
formation of dronate analogue a-hydroxybisphosphonates in the presence of diethylamine
and in the absence of any solvent [107,108].

It was found that the Pudovik reaction may also be realized at room temperature
in a solvent-free manner. However, these methods required special catalysts, such as
piperazine [109], magnesium chloride/3 equivalents of triehylamine [110], barium hydrox-
ide [111], sodium carbonate [112], potassium phosphate [113], sodium-modified fluoroap-
atite [114], and silica-supported tungstic acid [115].

Moreover, the work-up needed a considerable quantity of solvents. Hence, these
methods cannot be regarded as green. The author of this review together with co-workers
developed an indeed environmentally-friendly method by crystallizing the products from
the mixtures [116].

5. Microwave Irradiation Allowing the Simplification of the Catalysts in the
Hirao Reaction

The Hirao reaction of aryl, heteroaryl, and vinyl halogenides (or other derivatives)
with dialkyl phosphites, alkyl H-phosphinates, and secondary phosphine oxides is an
important method for the synthesis of phosphonates, phosphinates, and phosphine oxides,
respectively [117-119]. The original Hirao P-C coupling aimed at the synthesis of arylphos-
phonates reacting aryl- and vinyl halogenides with dialkyl phosphites in the presence of
tetrakis(triphenylphosphine)palladium (Scheme 12) [120-122]. The P-C coupling reaction
was then extended to other substrates [123-135] that was followed by further variations
involving different >P(O)H reagents, Pd(Il)-, or other metal (Ni(Il) and Cu(Il)) salts as
catalyst precursors together with mono- and bidentate P-ligands, bases (mostly amines)
and solvents.
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90-100 °C
Pd(PPhgz)4 (5%)
RO_ //O base RO //O
X + PN PN
RO H PhMe RO Zz
solvent-free 40
Z = aryl, heteroaryl, vinyl Yields: up to 98%
X=1,Br
R = Et, 'Pr, Bu

base: Et3N, BugN, pyridine

Scheme 12. The classical P-C coupling reactions.

Instead of Pd(PPhg),, the application of Pd salts together with P-ligands was spread.
In such cases, the Pd(0) catalyst is formed in situ from the components. From among the
Pd salts, PA(OAc); is the most suitable. The Pd(OAc), /P-ligand combination was often
utilized in the preparation of arylphosphonates, and this approach was more suitable than
the classical Pd(PPh3)y catalyst [136-148]. PPhs, dppp, dppb, dppe, dppf, and BINAP
(2,2'-bis(diphenylphosphino)-1,1’-binaphthyl were the typical P-ligands applied.

“Greener” and more efficient protocols were developed for the Hirao reaction in the
last twenty years. The MW technique also proved to be useful in the Hirao reactions.
The first MW-assisted P—C coupling took place between aryl halides/triflates and diethyl
phosphite in the presence of bis(triphenylphosphine)palladium dichloride, triethylamine,
and triethylsilane as the reductant (Scheme 13) [149]. The Hirao reaction was performed in
a domestic microwave device.

MW
PdCl,(PPhg),
EtO_ O Et;N, HSiEt, Et0_ O
AX + R P
EtO° H PhMe EtO" Ar
41,13-97%

Ar = 4-MeCeH4,4—MeOCeH4'4-BrCGH4, 4-C|CGH4, 4-H02005H4, 4-MeOzCCGH4, 3-MeOzCCGH4,
2-M602CC6H4, 2-M602CCH2C6H4, 2-MeOCH2C6H4, 4-MGC(O)NHC6H4, 4-MeSO3C6H4
X =1, Br, Cl, OTf

Scheme 13. The first P-C coupling realized on MW irradiation.

The MW-assisted Hirao reaction of dialkyl phosphites with aryl and vinyl halides/
triflates was also studied in the presence of Pd(PPhs), [150]. The best results (72-96%) were
obtained using Cs,COj3 in THF. The MW protocol was also applied in the synthesis of P-
functionalized 11(3-aryl-substituted steroids (43) that are progesterone receptor antagonists
(Scheme 14) [151].

MW O, Y1
OTf 150 °C P vz
1 Pd(OAc),, dppp j\o Y
Y0 iPr,NEt ~
+ /P\
Y2 H 1,4-dioxane
0 0
42 43, 19-52%

Y = Me, OMe, OEt, OCH,CF3 Ph, 4-CICgH4 OPh

Scheme 14. The derivation of 113-aryl-substituted steroids with the help of the Hirao reaction.
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A few arylboronic acids and arylfluoroborates were coupled with dialkyl phosphites
using the Pd(OAc); or Pd(O,CCF3),/dmphen catalyst combination, and p-benzoquinone
in the absence of a base [152]. The authors assumed the role of the reoxidant in the catalytic
cycle. The author of this review believes that the application of an oxidant in the P-C
coupling is mistaken. Instead, a reductive agent may be useful. A new cyclodiphosphazane-
containing Pd catalyst was tested in the preparation of triarylphosphine oxides from aril
bromides and diphenylphosphine oxide [153]. The use of this exotic promoter and Cs,CO3
as a base in acetonitrile under MW irradiation gave Ph3P=0 in yields of 46-95%. It is note-
worthy that the coupling of iodo- and bromobenzoic acids with diphenylphosphine oxide
could be performed in water using Pd/C catalyst under MW conditions (Scheme 15) [154].
In this case, the tetrabutylammonium bromide additive had no influence on the outcome.

MW
X 180°C Ph—P—Ph
f\_COOH + Ph\P//O e (\ COOH
A Ph” H H,0 /S
R
R
X = 3-l, 4-1, 3-Br, 4-Br, 4-Cl 44, 18-87%

R =H, 3-NH,, 4-MeO, 4-Me
base: Na,CO3, K,CO3, NaOH, EtzN

Scheme 15. Hirao reaction in water using Pd/C on MW irradiation.

It was recognized by the Keglevich group that the Hirao cross-couplings may take place
in the presence of Pd(OAc), without the addition of the usual P-ligands under solvent-
free and MW-assisted conditions (Scheme 16) [155]. The reaction of bromobenzene and
1.5 equivalents of the dialkyl phosphites, phenyl-H-phosphinates, and diphenylphosphine
oxide was carried out in the presence of 5% of Pd(OAc); and 1.1 equivalents of triethy-
lamine. The relevance of the MW technique was pointed out by comparative thermal
experiments. The conversion was almost complete at 120 °C, but the best results were
obtained at 150 °C.

MW
120-150 °C T
Br Pd(OAG); (5%) Y-p-Y?
Y0 Et;N
+ ,P\
Y2 H solvent-free
(1,5 equiv.) 45, 41-92%

Y'| OEt| 0Bu | OEt | 0"Pr | O'Pr | 0"Bu | O'Bu| OPent | Ph
v2|oEt|oBu|Ph | Ph | Ph | Ph | Ph | Ph |Ph

Scheme 16. MW-promoted P-C couplings applying Pd(OAc), without added P-ligands.

In the next stage, the Pd(OAc),-promoted “P-ligand-free” Hirao reactions were ex-
tended to different bromoarenes (Table 15) [156]. The experience was that both electron-
releasing and electron-withdrawing substituents decreased the reactivity, as in these in-
stances, higher temperatures (175-200 °C) were necessary to obtain the aryl phospho-
nates in acceptable yields (69-92%) (Table 15). The reactions of the methoxy- and alkyl-
substituted bromoarenes with a decreased reactivity required, in most cases, a temperature
of 200 °C, and the application of 10% of the Pd(OAc); catalyst.
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Table 15. MW-assisted Hirao reaction of bromoarenes and diethyl phosphite applying Pd(OAc), as
the catalyst precursor.

MW
150-200 °C T
Br Pd(OAc), (5-10%) EtO—P—OEt
N EtO\ //O Et;N N
| + A |
X Et0. H solvent-free X
Y
(1,5 equiv.) 46, 60-95%
Y Pd(OAC); (%) T (O t (min) Conversion (%) Yield (46) (%)
H 5 150 5 99 93
4-MeO 10 200 2 80 69
3-MeO 10 200 2 93 79
4-Pr 10 200 2 86 71
4-Et 10 175 15 93 85
4-Me 10 175 10 86 73
4-Cl 10 175 10 95 83
3-Cl 10 175 10 95 87
4-F 5 175 5 99 91
3-F 5 175 10 100 88
4-CO,Et 5 175 15 100 89
3-COyEt 10 200 2 93 81
4-C(O)Me 5 175 5 96 71
3-C(O)Me 10 175 5 100 92

Recently, Hirao et al. have publised another “P-ligand-free” reaction (Scheme 17) [157].
According to this, diethyl phosphite was coupled with 2-nitro-5-bromoanisole applying
Pd(OACc); as the catalyst and Nap,COj3 in xylene at 120 °C to furnish the respective aryl
phosphonate (47) in a yield of 69% after 24 h.

. I
Br 120 °C EtO-P-OFEt
Pd(OAC); (10%)
EtO\ P//O N32CO3
+
O:N Et0” H xylene ON
OMe OMe
47, 69%

Scheme 17. An additional Pd(OAc),-catalyzed “P-ligand-free” P-C coupling.

Xiao and his co-workers described the Pd-catalyzed cross-coupling of an arylsulfi-
nate salt with dialkyl phosphites applying PdCl, without the usual P-ligands in DMF-
DMSO [158]. The arylphosphonates were prepared in good yields using silver carbonate
as the oxidant under MW irradiation. Here, it is noted again that there is no need for
an oxidant during the P-C coupling. The Pd(OAc),-promoted “P-ligand-free” protocol
was extended to the Hirao reaction of heteroaryl bromides [159], and the reactivity of the
substrates was studied in detail [160].

Moreover, the mechanism of the Pd-catalyzed Hirao reactions carried out using the
P-reactant in excess was investigated experimentally and by quantum chemical calcula-
tions [161]. It was found that if Pd(OAc), is applied in a quantity of 10%, the >P(O)H
reactant should be used in a quantity of 1.3 equivalents. 10% of the P-species reduces Pd(II)
to Pd(0), while 20% covers the P-ligand that is the trivalent tautomeric form (>P-OH) of
the >P(O)H reagent. The whole catalytic cycle involving oxidative addition, ligand ex-
change, and reductive elimination was adapted to our model, and the elemental steps were
refined [161]. The formation of the “PdP,” catalyst and its activity were investigated under
a separate cover [162]. It turned out that the Ar,POH ligands with 2-MePh or 3,5-diMePh
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substituents are more advantageous than the Ph one, as the steric hindrance prevents the
tricoordination of the Pd [162].

It was also found that NiCl, may also be a suitable catalyst in the P-C coupling of
bromobenzene and a series of >P(O)H reagents (Scheme 18) [163]. The experiments were
carried out at 150 °C on MW irradiation. Using 1.5 equivalents of NEt; in a solvent-free
manner, completion of the reaction of diethyl phosphite and bromobenzene required 2 h,
and the diethyl phenylphosphonate was isolated in a 67% yield. The use of K;COj in
acetonitrile was more advantageous: in the presence of 5% NiCl,, after a reaction time of
45 min the yield of the corresponding product was 92%. Applying phenyl-H-phosphinates,
the diphenylphosphinates were isolated in yields of 84-89%. Diphenylphosphine oxide
and other aryl-substituted secondary phosphine oxides served as additional reagents in
the “P-ligand-free” P-C couplings under discussion.

MW 0
150 °C L0,
Br NiCl, (5%) Y =p-Y
Y e EtsN or K,CO3
+ P,
v2 \H solvent-free or MeCN
(1,5 equiv.) 48, 67-94%

v'| Ot | 0Bu| OEt | 07Pr | O'Pr | O"BuU | O'Bu | O/Pent
vZ[oEt[oBul Ph [ Ph [ Ph | Ph | Ph | Ph

Y'| Ph | 4-MeOCgH, | 4-BuCgH, | 4-MeCgHy | 3-MeCgHy | 4-CICeH, | 4-FCqH,
v2| Ph | 4-MeOCH, | 4-BuCgH, | 4-MeCgH, | 3-MeCgHy | 4-CICqH, | 4-FCoH,

Scheme 18. Hirao reactions applying NiCl, as the catalyst without added P-ligands.

The NiCly-catalyzed phosphonylation of a series of bromoarenes gave similar results
as those in the presence of Pd(OAc),. However, the scope of the aryl bromides was more
limited (Scheme 19) [163].

MW
150 °C I
Br NIC|2 (10%) EtO—P—OEt
| N . EtO\P//O K,CO4 | AN
AN
>, Et0” H MeCN X,
1,5 equiv.
(1.5 equiv) 49, 31-92%

Y = H, 4-MeO, 3-MeO, 4-Bu, 4-Pr, 4-Et, 4-Me, 3-Me, 3-C, 4-F, 3-F

Scheme 19. NiCl,-catalyzed P-C couplings of bromoarenes with diethyl phosphite.

The nature of the Ni-catalyst, its formation, and the mechanism of the NiCl,-catalyzed
P—C coupling reactions was also studied experimentally and by theoretical calculations [163].
It was found that in these cases, a Ni(II)(PY,OH), type catalyst is formed, and Ni(Il) is
converted to Ni(IV) in the oxidative addition step. This surprising finding was also proved
to be true for earlier Ni-catalyzed instances [164] carried out originally in the presence of
Zn or Mg reductants [165-167]. Hence, the Ni(II) — Ni(IV) conversion may be of more
general value instead of the earlier assumed Ni(0) — Ni(II) protocol [168].

Both the Pd- and the Ni-catalyzed protocols elaborated by the Keglevich group are
suitable for the coupling of bromoarenes and different >P(O)H reagents. Considering the
conditions, costs, and toxicity, one can conclude that the application of Pd(OAc), is more
attractive, but the use of NiCl, may be a good alternative as well. The recent developments
and extensions of the P-C coupling reactions open a new horizon since there is no need to
add sensitive and expensive P-ligands.
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A catalyst-free method was developed for the P-C coupling of halobezoic acids
and secondary phosphine oxides in water as the medium (Scheme 20) [169]. 4-lodo-, 3-
bromo-, and 4-bromobenzoic acids were coupled with diaryl phosphine oxides under MW
conditions at 180 °C for 1-6 h in the presence of K,COj3. The only limitation of this “green”
P—C coupling reaction is the low water-solubility of the P-reagents.

X MW [l
180 °C Ar—P—Ar
N Ar /0 K2COsq X
| P + /N H,0O | ~
XX Ar” H 2 XX
COOH COOH
X =1 Br 50, 59-82%

Ar = Ph, 4-MeCgH,4
Scheme 20. A catalyst-free Hirao reaction in aqueous medium.

In summary, the Hirao reaction utilizing a series of suitably substituted aryl derivatives
and different >P(O)H reagents along with a Pd or Ni catalyst provides arylphosphonates,
tertiary phosphine oxides, and related compounds that may be useful intermediates in syn-

thetic organic chemistry. The chemistry discussed hides interesting green chemical aspects,
such as MW activation, solvent- and catalyst-free protocols, as well as mechanistic delicates.
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