

Figure S1. Absorption spectra of dsDNA– (6,5)-Enriched SWNT Complex by H₂O₂

The absorption spectra measured with 98mM of H_2O_2 concentration are shown.

Concentration		dsDNA- (6,5) enriched SWNT Absorbance					
(H2O2)	Initial State	H ₂ O ₂ Addition	Change rate from Initial state	Catechin addition	Change rate from H ₂ O ₂ Addition		
98 mM	0.4642 ± 0.0004	0.4609 ± 0.0002	$-0.72 \pm 0.03\%$	0.4552 ± 0.0001	$-1.22 \pm 0.03\%$		
9.8 mM	0.4657 ± 0.0001	0.4650 ± 0.0001	$-0.13 \pm 0.01\%$	0.4616 ± 0.0001	$-0.73 \pm 0.00\%$		
Concentration	dsDNA- (6,5) enriched SWNT Peak Wavelength (nm)						
(H2O2)	Initial State	H ₂ O ₂ Addition	Shift from Initial state	Catechin addition	Shift from Initial state		
98 mM	992.0± 0.000	992.0± 0.000	0.0 ± 0.000	992.3 ± 0.471	0.3 ± 0.385		
9.8 mM	992.0± 0.000	992.0± 0.000	0.0 ± 0.000	992.0± 0.000	0.0 ± 0.000		

Figure S2. Absorbance rate of change and wavelength peak shift of dsDNA- (6,5) enriched SWNT Complex by H₂O₂

At the final concentrations of 98 mM and 9.8 mM, no significant spectral change was observed when H_2O_2 was added.

There was no significant difference in the rate of change when catechin was added thereafter.

No significant change was observed in the wavelength peak shift.

Figure S3. Absorbance rate of change and wavelength peak shift of dsDNA- (6,5) enriched SWNT Complex by $K_2I_rCl_6$

The decrease in absorbance proportional to the concentration was detected in the concentration range of 0.5 to 5.0 μ M. The rate of change at 5 μ M was -57.0%. In the same range, recovery of absorbance by addition of catechin was observed. The rate of change at 5 μ M was 129.8%. At the concentration of K₂I_rCl₆ of 5.0 μ M, the peak wavelength was shifted 5.7 nm to the short wavelength side. It recovered to near the initial state with the addition of catechin. The data are presented as the average of three independent experiments.

Concentration	dzDNA- (6,5) enriched SWNT Absorbance				
(KMnO.)	Initial State	KMnO. Addition	Change rate	Catechin addition	Change rate
(interior)		item of	from Initial state		from KMnO ₄
10.0 µM	0.4790 ± 0.0013	0.2500 ± 0.0007	$-47.8 \pm 0.00\%$	0.3667 ± 0.0086	$46.7 \pm 2.47\%$
5.0 µM	0.4640 ± 0.0008	0.2529 ± 0.0004	$-45.5 \pm 0.00\%$	0.4587 ± 0.0013	$81.4 \pm 0.15\%$
2.0 µM	0.4629 ± 0.0011	0.2744 ± 0.0101	$-40.7 \pm 1.67\%$	0.4590 ± 0.0005	67.3 ± 4.89%
1.0 µM	0.4655 ± 0.0029	0.3206 ± 0.0089	$-31.1 \pm 1.22\%$	0.4622 ± 0.0032	44.2± 2.46%
0.5 µM	0.4657 ± 0.0043	0.3543 ± 0.0043	$-23.9 \pm 0.18\%$	0.4630 ± 0.0037	$30.7 \pm 0.43\%$
0.25 µM	0.4693 ± 0.0038	0.4060 ± 0.0051	$-13.5 \pm 0.31\%$	0.4666 ± 0.0040	14.9± 0.38%
0.17 µM	0.4661 ± 0.0052	0.4255 ± 0.0041	$-8.72 \pm 0.11\%$	0.4626 ± 0.0051	8.72± 0.11%
0.10 µM	0.4675 ± 0.0033	0.4489 ± 0.0006	$-3.97 \pm 0.43\%$	0.4648 ± 0.0035	3.53± 0.51%
0.05 µM	0.4670 ± 0.0031	0.4595 ± 0.0031	$-1.61 \pm 0.01\%$	0.4637 ± 0.0030	0.91± 0.03%
Concentration		dsDNA- (6,5	5) enriched SWNT Peak	Wavelength (nm)	
(KMnO ₄)	Initial State	KMnO ₄ Addition	Shift from Initial state	Catechin addition	Shift from Initial state
10.0 µM	992.0 ± 0.000	975.3 ± 0.471	-16.7 ± 0.385	987.7 ± 0.471	-4.3 ± 0.385
5.0 µM	992.0 ± 0.000	975.3 ± 0.471	-16.7 ± 0.385	992.0 ± 0.000	0.0 ± 0.000
2.0 µM	992.0 ± 0.000	978.3 ± 1.247	-13.7 ± 1.018	992.0 ± 0.000	0.0 ± 0.000
1.0 µM	992.0 ± 0.000	985.7 ± 1.886	-6.3 ± 1.540	992.0 ± 0.000	0.0 ± 0.000
0.5 µM	992.0 ± 0.000	988.0 ± 0.816	-4.0 ± 0.667	992.0 ± 0.000	0.0 ± 0.000
0.25 µM	992.0 ± 0.000	990.0 ± 0.000	-2.0 ± 0.000	992.0 ± 0.000	0.0 ± 0.000
0.17 µM	992.0 ± 0.000	991.0 ± 0.000	-1.0 ± 0.000	992.0 ± 0.000	0.0 ± 0.000
0.10 µM	992.0 ± 0.000	991.3 ± 0.471	-0.7 ± 0.385	992.0 ± 0.000	0.0 ± 0.000

Figure S4. Absorbance rate of change and wavelength peak shift of dsDNA- (6,5) enriched SWNT Complex by KM_nO_4

The decrease in absorbance proportional to the concentration was detected in the concentration range of 0.05 to 10.0 μ M. The rate of change at 10 μ M was -47.8%. In the same range, recovery of absorbance by addition of catechin was observed. The rate of change at 10 μ M was 46.7%. At the concentration of KM_nO₄ of 5.0 μ M, the peak wavelength was shifted 16.7 nm to the short wavelength side. By adding catechin, it recovered from the initial state to the position of 4.3 nm on the short wavelength side.

Concentration	dsDNA- HiPco (6,5) SWNT Absorbance					
(HzOz)	Initial State	HzOz Addition	Change rate from Initial state	Catechin addition	Change rate from HzOz Addition	
98 mL	0.2939 ± 0.0002	0.2897 ± 0.0001	-1.42± 0.04%	0.2869 ± 0.0003	-0.95± 0.03%	
9.8 mL	0.3205 ± 0.0002	0.3131 ± 0.0001	$-2.29 \pm 0.03\%$	0.3131 ± 0.0002	$0.02 \pm 0.03\%$	
0.98 mL	0.3212 ± 0.0005	0.3134 ± 0.0001	$-2.45 \pm 0.05\%$	0.3146 ± 0.0001	0.40 ± 0.00%	
196 µL	0.3230 ± 0.0005	0.3139 ± 0.0001	$-2.80 \pm 0.11\%$	0.3159 ± 0.0000	0.64± 0.01%	
98 μL	0.3230 ± 0.0001	0.3133 ± 0.0001	$-3.02 \pm 0.01\%$	0.3140 ± 0.0002	$0.24 \pm 0.02\%$	
49 μL	0.3159 ± 0.0000	0.3146 ± 0.0001	$-0.41 \pm 0.01\%$	0.3154 ± 0.0000	0.24± 0.01%	
Concentration	dsDNA- HiPco (6,5) SWNT Peak Wavelength (nm)					
(HzOz)	Initial State	HzOz Addition	Shift from Initial state	Catechin addition	Shift from Initial state	
98 mL	993.0 ± 0.000	993.0 ± 0.000	0.0 ± 0.000	963.0 ± 0.000	0.0 ± 0.000	
9.8 mL	991.3 ± 0.471	991.2 ± 0.236	-0.2 ± 0.192	991.8 ± 0.000	0.5 ± 0.000	
0.98 mL	991.5 ± 0.000	991.2 ± 0.236	-0.3 ± 0.192	992.0 ± 0.000	0.7 ± 0.192	
196 µL	991.0 ± 0.000	991.2 ± 0.236	0.3 ± 0.192	992.0 ± 0.000	1.0 ± 0.000	
98 µL	991.5 ± 0.000	991.5 ± 0.000	0.0 ± 0.000	992.0 ± 0.000	0.5 ± 0.000	
98 μL 49 μL	991.5 ± 0.000 991.5 ± 0.000	991.5 ± 0.000 991.5 ± 0.000	$0.0 \pm 0.000 \\ 0.0 \pm 0.000$	$\frac{992.0 \pm 0.000}{992.0 \pm 0.000}$	0.5 ± 0.000 0.5 ± 0.000	

Figure S5. Absorbance rate of change and wavelength peak shift of dsDNA- HiPco (6,5) SWNT Complex by H₂O₂

The rate of change in absorbance decreased by up to 3.0% when the H_2O_2 concentration was 98 μ M, but no significant difference was observed in the range of 49 μ M to 98 mM. There was no significant difference in the rate of change when catechin was added thereafter. No significant change was observed in the wavelength peak shift.

Figure S6. Absorbance rate of change and wavelength peak shift of dsDNA- HiPco (6,5) SWNT Complex by K₂I_rCl₆

The decrease in absorbance proportional to the concentration was detected in the concentration range of 0.1 to $5.0 \,\mu$ M. The rate of change at $5.0 \,\mu$ M was -11.1%. In the same range, recovery of absorbance by addition of catechin was observed. The rate of change at $5.0 \,\mu$ M was 10.8%. No significant change was observed in the wavelength peak shift.

			1		I	
Concentration	dsDNA- HiPco (6,5) SWNT Absorbance					
(KMnO.)	Initial State	KMnO, Addition	Change rate	Catechin addition	Change rate	
(12,12,0,4)			from Initial state		from KMnO ₄ Addition	
1.0 μM	0.2880 ± 0.0001	0.2488 ± 0.0011	-13.6 ± 0.30%	0.2830 ± 0.0000	$13.8 \pm 0.42\%$	
0.50 μΜ	0.2820 ± 0.0001	0.2545 ± 0.0003	-9.75 ± 0.06%	0.2772 ± 0.0000	$8.90 \pm 0.10\%$	
0.17 μM	0.2835 ± 0.0032	0.2725 ± 0.0000	-3.87 ± 0.88%	0.2759 ± 0.0000	$1.23 \pm 0.01\%$	
0.10 μΜ	0.2846 ± 0.0024	0.2809 ± 0.0000	-1.29 ± 0.66%	0.2833 ± 0.0000	$0.87 \pm 0.01\%$	
0.05 μΜ	0.2969 ± 0.0000	0.2913 ± 0.0000	$-1.88 \pm 0.00\%$	0.2908 ± 0.0000	-0.18 ± 0.00%	
0.025 μM	0.2898 ± 0.0000	0.2865 ± 0.0000	$-1.14 \pm 0.00\%$	0.2862 ± 0.0000	$-0.12 \pm 0.01\%$	
Concentration	d-DNA HiBee (6.5) SWNT Beels Wesselength (nm)					
Concentration		usbith- III	0 (0,5) 5 111 16	ak wavelengin (nn		
(KMnOa)	Initial State	KMnO ₄ Addition	Shift	Catechin addition	Shift	
(12.11101)	Interna State	ILTINO, HUMMON	from Initial state		from Initial state	
1.0 μM	993.0 ± 0.000	995.7 ± 0.236	2.7 ± 0.192	993.5 ± 0.000	0.5 ± 0.000	
0.50 μΜ	992.0 ± 0.000	992.0 ± 0.000	0.0 ± 0.000	992.5 ± 0.000	0.5 ± 0.000	
0.17 μM	992.0 ± 0.000	992.0 ± 0.000	0.0 ± 0.000	992.5 ± 0.000	0.5 ± 0.000	
		000 5 . 0 000	0.5 ± 0.000	003.8 ± 0.236	0.8 ± 0.102	
0.10 μM	993.0 ± 0.000	992.5 ± 0.000	-0.5 ± 0.000	993.0 ± 0.230	0.0 ± 0.192	
0.10 μM 0.05 μM	993.0 ± 0.000 992.5 \pm 0.000	992.5 ± 0.000 992.5 ± 0.000	-0.5 ± 0.000	992.5 ± 0.000	0.0 ± 0.000	
0.10 μM 0.05 μM 0.025 μM	993.0 ± 0.000 992.5 ± 0.000 992.5 ± 0.000	992.5 ± 0.000 992.5 ± 0.000 992.5 ± 0.000	0.0 ± 0.000 0.0 ± 0.000	992.5 ± 0.000 993.0 ± 0.000	$\begin{array}{c} 0.0 \pm 0.192 \\ 0.0 \pm 0.000 \\ 0.5 \pm 0.000 \end{array}$	

Figure S7. Absorbance rate of change and wavelength peak shift of dsDNA- HiPco (6,5) SWNT Complex by KM_nO₄

The decrease in absorbance proportional to the concentration was detected in the concentration range of 0.025 to 1.0 μ M. The rate of change at 1.0 μ M was -13.6%. In the same range, recovery of absorbance by addition of catechin was observed. The rate of change at 1.0 μ M was 13.8%. At the concentration of KM_nO₄ of 1.0 μ M, the peak wavelength was shifted 2.7 nm to the long wavelength side. By adding catechin, it recovered to near the initial state with the addition of catechin.

				1	
dsDNA- HiPco (8,7) SWNT Absorbance					
Initial State	HzOz Addition	Change rate from Initial state	Catechin addition	Change rate from HzOz Addition	
0.3353 ± 0.0003	0.2991 ± 0.0001	$-10.8 \pm 0.04\%$	0.3173 ± 0.0025	6.09± 0.66%	
0.3661 ± 0.0003	0.3112 ± 0.0003	$-15.0 \pm 0.01\%$	0.3787 ± 0.0012	21.7± 0.24%	
0.3657 ± 0.0009	0.3119 ± 0.0008	$-14.7 \pm 0.02\%$	0.3880 ± 0.0004	$24.4 \pm 0.17\%$	
0.3704± 0.0007	0.3328 ± 0.0016	$-10.2 \pm 0.21\%$	0.3929 ± 0.0001	18.1± 0.43%	
0.3702 ± 0.0002	0.3331 ± 0.0014	$-10.0 \pm 0.27\%$	0.3893 ± 0.0003	$16.9 \pm 0.34\%$	
0.3626 ± 0.0008	0.3434 ± 0.0012	$-5.31 \pm 0.09\%$	0.3912 ± 0.0001	13.9± 0.30%	
	dsDNA- HiPc	o (8,7) SWNT Pea	k Wavelength (nm))	
Initial State	HzOz Addition	Shift from Initial state	Catechin addition	Shift from Initial state	
1266.5 ± 0.000	1262.0 ± 0.000	-4.5 ± 0.000	1266.2 ± 0.236	-0.3± 0.192	
1266.7 ± 0.236	1262.0 ± 0.000	-4.7 ± 0.192	1269.0 ± 0.000	2.3 ± 0.192	
1266.8 ± 0.236	1262.0 ± 0.000	-4.8 ± 0.192	1270.5 ± 0.000	3.7 ± 0.192	
1266.7 ± 0.236	1264.0 ± 0.408	-2.7 ± 0.141	1270.8 ± 0.624	4.2 ± 0.317	
1267.2 ± 0.236	1264.5 ± 0.408	-2.7 ± 0.141	1270.7 ± 0.236	3.5 ± 0.000	
	Initial State 0.3353 ± 0.0003 0.3661 ± 0.0003 0.3657 ± 0.0009 0.3704 ± 0.0007 0.3702 ± 0.0002 0.3626 ± 0.0008 Initial State 1266.5 ± 0.000 1266.7 ± 0.236 1266.7 ± 0.236 1266.7 ± 0.236 1267.2 ± 0.236	$\begin{tabular}{ c c c c c } & dsDNA-\\ \hline Initial State & HzOz Addition \\ 0.3353 \pm 0.0003 & 0.2991 \pm 0.0001 \\ 0.3661 \pm 0.0003 & 0.3112 \pm 0.0003 \\ 0.3657 \pm 0.0009 & 0.3119 \pm 0.0008 \\ 0.3704 \pm 0.0007 & 0.3328 \pm 0.0016 \\ 0.3702 \pm 0.0002 & 0.3331 \pm 0.0014 \\ 0.3626 \pm 0.0008 & 0.3434 \pm 0.0012 \\ \hline & dsDNA- HiPc \\ \hline Initial State & HzOz Addition \\ 1266.5 \pm 0.000 & 1262.0 \pm 0.000 \\ 1266.7 \pm 0.236 & 1262.0 \pm 0.000 \\ 1266.7 \pm 0.236 & 1262.0 \pm 0.000 \\ 1266.7 \pm 0.236 & 1264.0 \pm 0.408 \\ 1267.2 \pm 0.236 & 1264.5 \pm 0.408 \\ \hline \end{tabular}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \frac{dsDNA-HiPco (8,7) SWNT Absorbance}{Change rate from Initial State} HzOz Addition \begin{pmatrix} Change rate from Initial state \\ from Initial state \end{pmatrix} \begin{pmatrix} Catechin addition \\ Catechin addition \\ 0.3353 \pm 0.0003 \\ 0.2991 \pm 0.0001 \\ 0.3661 \pm 0.0003 \\ 0.3112 \pm 0.0003 \\ 0.3112 \pm 0.0003 \\ -15.0 \pm 0.01\% \\ 0.3787 \pm 0.0012 \\ 0.3787 \pm 0.0012 \\ 0.3704 \pm 0.0007 \\ 0.3328 \pm 0.0016 \\ -10.2 \pm 0.21\% \\ 0.3893 \pm 0.0004 \\ 0.3704 \pm 0.0002 \\ 0.3331 \pm 0.0014 \\ -10.0 \pm 0.27\% \\ 0.3893 \pm 0.0003 \\ 0.3626 \pm 0.0008 \\ 0.3434 \pm 0.0012 \\ -5.31 \pm 0.09\% \\ 0.3912 \pm 0.0001 \\ 0.3912 \pm 0.0001 \\ dsDNA-HiPco (8,7) SWNT Peak Wavelength (nm) \\ HzOz Addition \\ from Initial state \\ HzOz Addition \\ 1266.5 \pm 0.000 \\ 1262.0 \pm 0.000 \\ -4.5 \pm 0.000 \\ 1266.2 \pm 0.236 \\ 1262.0 \pm 0.000 \\ -4.7 \pm 0.192 \\ 1269.0 \pm 0.000 \\ 1269.0 \pm 0.000 \\ 1266.7 \pm 0.236 \\ 1264.0 \pm 0.408 \\ -2.7 \pm 0.141 \\ 1270.8 \pm 0.624 \\ 1267.2 \pm 0.236 \\ 1264.5 \pm 0.408 \\ -2.7 \pm 0.141 \\ 1270.7 \pm 0.236 \\ 12$	

Figure S8. Absorbance rate of change and wavelength peak shift of dsDNA- HiPco (8,7) SWNT Complex by H₂O₂

When the H_2O_2 concentration changed from 49 μ M to 9.8 mM in step by step, the rate of change in absorbance increased, but at 98 mM, the rate of change decreased. The rate of change at 0.98mM was -14.7%. %. In the same range, recovery of absorbance by addition of catechin was observed. The rate of change at 0.98mM was 24.4%.

At the concentration of H_2O_2 of 0.98mM, the peak wavelength was shifted 4.8 nm to the short wavelength side. By adding catechin, it recovered from the initial state to the position of 3.7 nm on the long wavelength side.

Concentration	dsDNA- HiPco (8,7) SWNT Absorbance					
			Change rate	Cata shin addition	Change rate	
(Karci)	Initial State	KIITCI: Addition	from Initial state	Catechin addition	from HzOz Addition	
1.5 μM	0.4650 ± 0.0005	0.4066 ± 0.0012	$-12.5 \pm 0.13\%$	0.4853 ± 0.0000	19.3± 0.28%	
1.0 μM	0.4614 ± 0.0034	0.4118 ± 0.0007	-9.23 ± 0.41%	0.4827 ± 0.0000	15.3 ± 0.16%	
0.5 μΜ	0.4627 ± 0.0001	0.4481 ± 0.0004	-3.16 ± 0.06%	0.4839 ± 0.0000	7.99 ± 0.08%	
0.2 μΜ	0.4611± 0.0003	0.4542 ± 0.0002	$-1.49 \pm 0.01\%$	0.4825 ± 0.0001	$6.23 \pm 0.03\%$	
0.1 μM	0.4619 ± 0.0001	0.4561 ± 0.0001	$-1.27 \pm 0.01\%$	0.4817 ± 0.0001	$5.62 \pm 0.02\%$	
Concentration		dsDNA- HiPc	o (8,7) SWNT Pea	k Wavelength (nm)		
	Teritial State	V LCI Addition	Shift	Coto di addition	Shift	
(Karch)	Initial State	KIITCI: Addition	from Initial state	Catechin addition	from Initial state	
1.5 μM	1267.0 ± 0.000	1261.3 ± 0.236	-5.7 ± 0.192	$\boldsymbol{1271.0\pm0.000}$	4.0± 0.000	
1.0 μM	1266.5 ± 0.000	1261.3 ± 0.236	-3.7 ± 0.192	1270.5 ± 0.000	4.0± 0.000	
0.5 μΜ	1267.0 ± 0.000	1266.2 ± 0.236	-0.8 ± 0.192	1270.7 ± 0.236	3.7 ± 0.192	
0.2 μM	1267.0 ± 0.000	1267.0 ± 0.000	0.0 ± 0.000	1270.7 ± 0.236	3.7 ± 0.192	
0.1 uM	1267.0 ± 0.000	1267.3 ± 0.236	0.3 ± 0.192	1271.0 ± 0.000	40 ± 0.000	
0.1 μΜ	1207.0 ± 0.000	1207.5 ± 0.250	0.0 = 0.172	12/1.0 = 0.000	4.0 - 0.000	

Figure S9. Absorbance rate of change and wavelength peak shift of dsDNA- HiPco (8,7) SWNT Complex by K₂I_rCl₆

The decrease in absorbance proportional to the concentration was detected in the concentration range of 0.1 to 1.5 μ M. The rate of change at 1.5 μ M was -12.5%. In the same range, recovery of absorbance by addition of catechin was observed. The rate of change at 1.5 μ M was 19.3%. At the concentration of K₂I_rCl₆ of 1.5 μ M, the peak wavelength was shifted 5.7 nm to the short wavelength side. By adding catechin, it recovered from the initial state to the position of 4.0 nm on the long wavelength side.

		1	1				
Concentration		dsDNA- HiPco (8,7) SWNT Absorbance					
	T-W-LCG-4-	VALO Addition	Change rate	Catachin addition	Change rate		
(KNIIO4)	Initial State	KIVIIIO4 Addition	from Initial state	Catechin addition	from KMnO ₄ Addition		
0.10 μM	0.3220 ± 0.0031	0.2747 ± 0.0007	-14.7 ± 0.50%	0.3424 ± 0.0000	24.6 ± 0.24%		
0.05 μM	0.3448± 0.0003	0.3287 ± 0.0001	-4.68 ± 0.04%	0.3585 ± 0.0000	9.06 ± 0.03%		
0.025 μM	0.3369 ± 0.0003	0.3288 ± 0.0001	-2.41 ± 0.05%	0.3527 ± 0.0000	7.26 ± 0.01%		
Concentration		dsDNA- HiP	co (8,7) SWNT Pe	ak Wavelength (nn	ı)		
(WMrO)	Tuitial State	VMnO Addition	Shift	Catachin addition	Shift		
(KNIIO4)	Initial State	KIMIIO4 Addition	from Initial state	Catechin addition	from Initial state		
0.10 μM	1267.3 ± 0.471	1261.2 ± 0.850	-6.2 ± 0.309	1270.5 ± 0.408	3.2 ± 0.052		
0.05 μM	1266.8 ± 0.471	1266.2 ± 0.624	-0.7 ± 0.124	1270.7 ± 0.624	3.8 ± 0.124		
0.025 μM	1267.0 ± 0.408	1267.0 ± 0.408	0.0 ± 0.000	1270.7 ± 0.624	3.7 ± 0.176		

Figure S10. Absorbance rate of change and wavelength peak shift of dsDNA- HiPco (8,7) SWNT Complex by KM_nO_4

The decrease in absorbance proportional to the concentration was detected in the concentration range of 0.025 to 0.1 μ M. The rate of change at 0.1 μ M was -14.7%. In the same range, recovery of absorbance by addition of catechin was observed. The rate of change at 0.1 μ M was 24.6%. At the concentration of KM_nO₄ of 0.1 μ M, the peak wavelength was shifted 6.2 nm to the short wavelength side. By adding catechin, it recovered from the initial state to the position of 3.2 nm on the long wavelength side.

Figure S11. Absorbance rate of change and wavelength peak shift of dsDNA- HiPco (9,4) SWNT Complex by H₂O₂

When the H_2O_2 concentration changed from 49 μ M to 9.8 mM in step by step, the rate of change in absorbance increased, but at 98 mM, the rate of change decreased. The rate of change at 0.98mM was -7.20%. %. In the same range, recovery of absorbance by addition of catechin was observed. The rate of change at 0.98mM was 7.88%.

No significant change was observed in the wavelength peak shift.

Figure S12. Absorbance rate of change and wavelength peak shift of dsDNA- HiPco (9,4) SWNT Complex by K₂I_rCl₆

The decrease in absorbance proportional to the concentration was detected in the concentration range of 0.1 to 2.0 μ M. The rate of change at 2.0 μ M was -22.4%. In the same range, recovery of absorbance by addition of catechin was observed. The rate of change at 2.0 μ M was 28.7%. At the concentration of K₂I_rCl₆ of 2.0 μ M, the peak wavelength was shifted 2.5 nm to the short wavelength side. By adding catechin, it recovered to near the initial state with the addition of catechin.

Figure S13. Absorbance rate of change and wavelength peak shift of dsDNA- HiPco (9,4) SWNT Complex by KM_nO₄

The decrease in absorbance proportional to the concentration was detected in the concentration range of 0.025 to 0.1 μ M. The rate of change at 0.25 μ M was -15.2%. In the same range, recovery of absorbance by addition of catechin was observed. The rate of change at 0.25 μ M was 17.8%. At the concentration of KM_nO₄ of 0.25 μ M, the peak wavelength was shifted 1.5 nm to the short wavelength side. By adding catechin, it recovered to near the initial state with the addition of catechin.

Figure S14. Absorbance spectra of dsDNA- dsDNA- enriched (6,5) SWNT Complex by K₂I_rCl₆

(a) Absorption spectra of the dsDNA- enriched (6,5) SWNT complex following the addition of $K_2 I_r Cl_6(10.0 \mu M)$ and catechin.

(b) Absorption spectra of the dsDNA- enriched (6,5) SWNT complex following the addition of $K_2 I_r Cl_6(5.0 \mu M)$ and catechin.

The spectral peak was slightly detected at 5.0 μ M, but no spectral peak was observed at 10.0 μ M.

Figure S15. Absorbance spectra of dsDNA- HiPco (6,5) SWNT Complex by K₂I_rCl₆

(a) Absorption spectra of the dsDNA- HiPco (6,5) SWNT complex following the addition of $K_2I_rCl_6(10.0\mu M)$ and catechin. (b) Absorption spectra of the dsDNA- HiPco (6,5) SWNT complex following the addition of $K_2I_rCl_6(5.0\mu M)$ and catechin. The spectral peak was slightly detected at the concentration of 5.0 μ M, but no spectral peak was observed at 10.0 μ M. The data are presented as the average of three independent experiments.

Figure S16. Absorbance spectra of dsDNA- HiPco (8,7) SWNT Complex by K₂I_rCl₆

(a) Absorption spectra of the dsDNA- HiPco (8,7) SWNT complex following the addition of $K_2 I_r Cl_6 (2.0 \mu M)$ and catechin.

- (b) Absorption spectra of the dsDNA- HiPco (8,7) SWNT complex following the addition of $K_2 I_r Cl_6(1.5 \mu M)$ and catechin.
- The spectral peak was detected at the concentration of $1.5 \,\mu$ M, but no spectral peak was observed at $2.0 \,\mu$ M.

Figure S17. Absorbance spectra of dsDNA- HiPco (9,4) SWNT Complex by K₂I_rCl₆

(a) Absorption spectra of the dsDNA- HiPco (9,4) SWNT complex following the addition of $K_2I_rCl_6(2.0\mu M)$ and catechin. (b) Absorption spectra of the dsDNA- HiPco (9,4) SWNT complex following the addition of $K_2I_rCl_6(5.0\mu M)$ and catechin. The spectral peak was detected at the concentration of 2.0 μ M, but no spectral peak was observed at 5.0 μ M. The data are presented as the average of three independent experiments.

Figure S18. Absorbance spectra of dsDNA- (6,5) enriched SWNT Complex by KM_nO_4

(a) Absorption spectra of the dsDNA- (6,5) enriched SWNT complex following the addition of $KM_nO_4(20\mu M)$ and catechin.

(b) Absorption spectra of the dsDNA- (6,5) enriched SWNT complex following the addition of $KM_nO_4(10\mu M)$ and catechin.

The spectral peak was detected at the concentration of 10 μ M, but no spectral peak was observed at 20 μ M.

Figure S19. Absorbance spectra of dsDNA-HiPco (6,5) SWNT Complex by KM_nO_4

(a) Absorption spectra of the dsDNA- HiPco (6,5) SWNT complex following the addition of $KM_nO_4(2.0\mu M)$ and catechin.

- (b) Absorption spectra of the dsDNA- HiPco (6,5) SWNT complex following the addition of $KM_nO_4(1.0\mu M)$ and catechin.
- The spectral peak was detected at the concentration of $1.0 \,\mu$ M, but no spectral peak was observed at $2.0 \,\mu$ M.

Figure S20. Absorbance spectra of dsDNA-HiPco (8,7) SWNT Complex by KM_nO₄

(a) Absorption spectra of the dsDNA- HiPco (8,7) SWNT complex following the addition of $KM_nO_4(0.17\mu M)$ and catechin.

(b) Absorption spectra of the dsDNA- HiPco (9,4) SWNT complex following the addition of $KM_nO_4(0.1\mu M)$ and catechin.

The spectral peak was detected at the concentration of 0.1 μ M, but no spectral peak was observed at 0.17 μ M.

Figure S21. Absorbance spectra of dsDNA-HiPco (9,4) SWNT Complex by KM_nO_4

(a) Absorption spectra of the dsDNA- HiPco (9,4) SWNT complex following the addition of $KM_nO_4(0.50\mu M)$ and catechin.

(b) Absorption spectra of the dsDNA- HiPco (9,4) SWNT complex following the addition of $KM_nO_4(0.25\mu M)$ and catechin.

The spectral peak was detected at the concentration of $0.25 \,\mu\text{M}$, but no spectral peak was observed at $0.50 \,\mu\text{M}$.