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Abstract: The prediction of the aqueous pKa of carbon acids by Quantitative Structure Property
Relationship or cheminformatics-based methods is a rather arduous problem. Primarily, there are
insufficient high-quality experimental data points measured in homogeneous conditions to allow for
a good global model to be generated. In our computationally efficient pKa prediction method, we
generate an atom-type feature vector, called a distance spectrum, from the assigned ionisation atom,
and learn coefficients for those atom-types that show the impact each atom-type has on the pKa of
the ionisable centre. In the current work, we augment our dataset with pKa values from a series of
high performing local models derived from the Ab Initio Bond Lengths method (AIBL). We find that,
in distilling the knowledge available from multiple models into one general model, the prediction
error for an external test set is reduced compared to that using literature experimental data alone.

Keywords: pKa prediction; ab initio; bond length; carbon acid

1. Introduction

The fast calculation of complex molecular properties has been a goal of chemists for
some time. Some of the first examples are found in the seminal papers of Hansch and
co-workers [1,2]. Since then, many different techniques have been applied to a multitude
of problems in chemistry from predicting the log P of a compound [3] to using complicated
3D descriptors to predict hERG activity [4]. In essence they all follow a similar method-
ology: gather the data that are available for the target of interest, choose an approach
to featurise the molecules and use a machine learning technique to map this molecular
representation to the endpoint of interest. Finally, evaluation of the performance of the
model is performed on an external data set. By the nature of relying on experimental
data to train the computational model, the performance is best when query compounds
are drawn from an area of chemical space similar to that of the training set, i.e., for com-
pounds that do not fall outside of the models’ applicability domain. In order to build a
more general model, more training data are needed from a diverse chemical space. If one
has unfortunately exhausted the available data then more experiments need to be run in
order to gather more data, requiring both significant time and expense. An alternative
approach combines the knowledge across multiple models by training using data predicted
from suitably high-performing models [5]. In the current work, we investigate the use
of highly local, high-performing models, using quantum chemical descriptors calculated
at the B3LYP/6-311G(d,p)/CPCM level of theory to train a faster, more general model.
The goal is to enable prediction of carbon acid pKa values with acceptable speed (<10 ms
per compound) for a high throughput setting, with enhanced accuracy.

A plethora of different methods has been investigated to predict the acidity of small
(<50 atoms) organic molecules. They range from exceedingly precise quantum mechanical
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calculations over multiple different poses of a molecule to more simple linear-free-energy
methods, or to even simpler partial-least-squares methods using calculated descriptors [6].
Each of these different methods is associated with different computational times and
accuracy. Liao and Nicklaus [7] have compared the accuracy of nine different commercial
methods but the authors considered only a single example of a carbon acid in their test set.

Part of Lhasa Limited’s software portfolio involves the prediction of chemical degra-
dation under forced conditions [8]. A number of transformations are initiated through the
deprotonation of a carbon. For that purpose, we have developed patterns to locate carbons
that would have a sufficiently low pKa to allow for deprotonation. These patterns contain
the usual suspects of a carbon next to a ketone, sulphone, nitrile and others. However,
using a pattern is a blunt instrument without allowing for the fine gradient that could be
found with knowledge of the actual pKa. Therefore, we aimed at developing a system
where we can calculate an estimated pKa for the carbon acids and then use that pKa in our
likelihood system to assign a score for the transformation. In that vein, we developed an
atom-typed method that is of sufficient accuracy as well as speed, but we quickly exhausted
all of the available pKa data for carbon acids. Hence the model, while functional for our
purpose, could not improve its performance without additional data, which are currently
not available in the public domain. The pKa data does exist, but it is held in private data
silos as shown by the collaboration between Simulations Plus and Bayer where they were
able to use the pKa data at Bayer to build a well performing model [9]. The SAMPL6 [10]
challenge recently completed, but none of their test compounds included a single car-
bon acid, and none of the methods described in that issue (Journal of Computer-Aided
Molecular Design, Vol. 32, No. 10, October 2018) were trained with any carbon acids.

Our proposed method of overcoming the hindrance described above is to generate
virtual pKa data for compounds using a sufficiently precise prediction method. In order to
do so, we calibrate a specific local model, which is trained on the information in a narrow
range of chemical space, and we then use that model to generate calculations for virtual
molecules that lie within the domain of the model. For such virtual molecules, which are
chemically valid but for which no experimental data are currently known, validation of the
accuracy of the predictions is only inferred implicitly, via a reduction in prediction errors
for the general model on an external test set. If this approach is taken, then the predictions
must perform with excellent accuracy because any errors in the calculated training data
will result in compounded errors from the final learned model. This is not the first time that
calculated data have been used to train a model, [5,11] but this is the first time that Ab Initio
Bond Lengths (AIBL, pertaining to the use of bond lengths as descriptors), have been used
in this context. This quantum-chemically derived methodology operates in a small area of
chemical space to generate data for a congeneric series with diverse substituent groups.
These hypothetical data are then fed into our distance spectrum-based regression model,
which has a more general applicability domain. Thus, the goal of using the calculated
data is two-fold: (i) increase the accuracy of the model, and (ii) increase the coverage of
the model.

In any Quantitative Structure Property Relationship study the modeller must choose
how to encode structural information before using a regression algorithm to map this
description to a certain endpoint. In many applications the compound is represented as a
series of binary digits representative of the 2D structure. To this end, Extended Connectivity
Fingerprints, where the structure is represented by means of circular atom neighbourhoods
encoded into a specific length bit vector, are a common choice. Such representations may
allow for a performant general model to be constructed, but at the cost of more detailed
information pertaining to variations in electronic effects of substituents on the propensity
for dissociation. Such information may only be accurately captured using molecular
representations derived from quantum chemical calculations.

Examples of featurisation using 3D structure occur frequently in the field of learning
models that predict quantum chemical properties. This area of research aims for the
fast prediction of properties that would usually require a long computational time to
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obtain using standard quantum mechanical methods [12–14]. For example, recently the
Isayev group used modified Behler-Parrinello symmetry functions to encode single-atom
atomic environment vectors. These atomic level feature embeddings were then used as
input to neural networks to build a potential called ANI-1, which has been shown to
perform as well as a DFT calculation [15,16]. Graph Neural Networks have also been
applied to learn molecular potentials, with one recent example using directional message
passing to embed information about distances and angles between atoms in molecules,
and spherical Bessel functions and spherical harmonics to construct physically based
molecular representations. The prediction of pKa as an endpoint in a QSPR model has been
approached using molecular descriptors of both two and three dimensions. In our previous
work [17–23], we have demonstrated that small variations in QM-derived bond distances
may be mapped linearly to pKa values. This so-called Linear Free Energy Relationship may
be explained by a variation in the electronic distribution in the common substructure of
the series, as peripheral substituent groups are altered. We suggest that using interatomic
distances as descriptors to predict pKa variation provides a more detailed description of
electronic differences between substructures of similar compounds, such that differences in
the thermodynamic process of deprotonation can be predicted to a high degree of accuracy.
Despite this high accuracy in this narrow region of space, many hundreds, if not thousands
of local linear models would have to be constructed to provide reasonable coverage of
chemical space to make this approach generally applicable. We exploit the highly accurate
predictions of the AIBL approach to increase the accuracy and coverage of our faster and
more generalisable regression model, whilst retaining the speed advantage in running
a prediction.

The workflow for constructing these highly accurate linear models consists firstly
of locating clusters of compounds that are structurally highly similar, with correspond-
ing experimental pKa information, and calculating low-lying conformations to determine
statistically significant (according to Boltzmann distribution) bond lengths. Electronic struc-
ture calculations are carried out using Density Functional Theory (B3LYP/6-311G(d,p)),
which requires a significant, but not excessive, computation time. Bond lengths obtained
from low-lying geometries are then mapped to the corresponding pKa values to construct
highly correlated linear regression models using only a single bond length. The equa-
tion (of the form pKa = m*R(X − Y) + c) describing this relationship may then be used
to determine the pKa of unknown compounds. This method has been applied to many
different functional groups and has been shown to provide a prediction accuracy of +/−0.5
log units. The strength of AIBL lies in the ability to calculate highly precise bond lengths
such that tiny deviations of bond distances within the common fragment correspond to
analogous trends in acidity/basicity, with a well-defined coverage area for each model.
This model is then applicable to predict pKa values for similar compounds containing a
core chemical feature.

As speed is of the essence, the Lhasa pKa methodology uses an atom-typed regression
model where each different type of atom has a defined effect on the pKa of the atom
undergoing a deprotonation event. A molecule is subdivided into its component atoms and
by using the topological bond distance to the pKa centre we can estimate the impact that
each atom has on the pKa of the molecule. The atom-typing protocol is described in detail
in the Supplementary Materials but, briefly, the atom type encodes the atom as well as a
small amount of the local environment to account for steric and electronic considerations,
which are known to affect pKa. The coefficient for each atom-type is learned from a simple
linear regression from the feature vector describing each deprotonation centre. In that
manner each prediction simply generates the desired feature vector from the molecule and
then applies the coefficients in turn to calculate the pKa for the deprotonation of the desired
carbon. This approach results in a prediction time that is on the order of milliseconds per
compound making the pKa prediction suitable for running in a batch mode on thousands
of compounds.
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2. Results and Discussion

Each experiment was designed to build on the outcome of the previous experiment.
In other words, we investigate the performance improvement by the successive addition
of virtual compounds, thereby increasing the size of the training set with each addition.
The training statistics are provided in Table 1, which also includes the number of com-
pounds considered “inDomain” in the test set. A molecule is considered “inDomain” if the
distance spectrum for the ionisation site only contains atom-types for which a coefficient
has been calculated. Otherwise, the coefficient is assumed to be zero; a prediction is then
still made but it should be used with caution. The calculated compounds were separated
across 3 different datasets, which represent the results of 3 different AIBL models: deproto-
nation of sulphone-carbonyls, nitrile-carbonyls, and cyclic diketones (respective SMILES
strings: S(=O)(=O)C*C(=O), N#CC*C(=O) and C1(=O)C*C(=O)CCC1 where C* is the site
of deprotonation).

Table 1. Results of the matrix solving via QR decomposition. R2 is the coefficient of determination,
which captures the variance caught by the model.

Experiment pKa Points Number of
Atom-Types R2 inDomain

Start 234 49 0.8698 215

1 276 54 0.8715 235

2 392 59 0.8762 250

3 416 60 0.8775 250

After the sulphone-carbonyl model was established using the C–C bond lengths
of 14 compounds, the first set of virtual compounds were constructed. This initial set
of compounds incorporated multiple nitro- and multiple amino-aromatic moieties, to
extrapolate outside of the range of the AIBL model to extreme pKa values. This initial
set also contained compounds that were more focused on the diversity of atom-types
in order to increase the number of atom-types available in the model and widen the
applicability domain. The second set of virtual compounds consisted of nitrile-carbonyl
derivatives, chosen to extend the pKa range and atom-type diversity. The third virtual set
consisted of diverse compounds calculated from a previously prepared AIBL model of
cyclohexanediones and cyclopentanedione derivatives [24].

Overall, the inclusion of all virtual compounds increased the number of atom-types
used for the model from 49 to 60, while the size of the training set increased from 234 pKa
points to 416 pKa points. Overall, the number of compounds considered “in the domain of
the model” increased from 221 to 256, compared to 316 in the entire test set. A prediction
is considered in domain if it only contains atom-types for which it was able to learn a
coefficient. The R2, or coefficient of determination, of the solution, found via the QR
decomposition, also increased slightly from 0.869 to 0.877. This increase shows that the
additional atom-types make the model better capture the variance in pKa from the training
set. The increase is modest but significant because the QR decomposition algorithm is
a deterministic calculation, hence one obtains the exact same solution from the same set
of input data, each time the calculation is performed. The number of different atom-
types found in the log P training set of Werner and Plante [5] was 181, which gives an
estimated upper bound on the number of different atom-types that are likely to be found
in pharmacological chemical space. Insufficient pKa data exists in the public sphere to
reach this number of atom-types for carbon acids, but with judicious selection of virtual
compounds it is an achievable goal for the future. As more data are incorporated into
the training set, the QR decomposition will account for more atom-types and find a
better solution.

Table 2 gives the performance improvements, showing the root mean squared error
(RMSE) for the test set across each successive addition. These errors are examined in
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terms of three factors: (i) the overall performance of the test set, (ii) the local performance
improvements in the specific domains that are added, and (iii) the performance of molecules
that fall outside the chemical space where AIBL has provided virtual compounds. Notably,
the first addition (set 1), which consisted of the sulphone-carbonyl compounds, resulted in
a significant improvement in prediction accuracy in that specific area of chemical space,
reducing the RMSE from 3.43 to 1.49. Importantly, the improvement was not limited to that
domain and instead was also observed for compounds that were not sulphone-carbonyls,
as evidenced by the RMSE reducing from 3.05 to 2.78 for compounds that are not carbonyl-
sulphones (Table 2). This is likely a result of the additional atom-types allowing for a
more optimal solution to arise from the QR decomposition that is closer to the impact
each atom-type would have on the pKa centre. Despite this reduction in prediction errors,
the overall performance of the model for all carbon acids is still far from ideal. One reason
for this poor performance may be due to inconsistent experimental conditions (e.g., solvent,
temperature) for values used to train. Unfortunately, this is an unavoidable state-of-affairs
for predicting carbon acids until more experimental data become available.

Table 2. RMSE values of the carbon acids in the test set trained with additional incorporated compounds.

Overall Sulphone-Carbonyl Nitrile-Carbonyl Di-Carbonyl Others

Addition All inDomain All inDomain All inDomain All inDomain All inDomain

Start 2.96 2.92 3.43 3.44 1.99 1.84 2.11 2.06 3.05 3.01

Sulphone (1) 2.62 2.53 1.49 1.53 1.64 1.64 2.03 1.99 2.78 2.77

Nitrile (2) 2.82 2.67 2.48 2.48 1.75 1.75 1.94 1.92 3.02 2.90

DiCarbonyl (3) 2.74 2.58 2.07 2.07 1.70 1.70 1.94 1.93 2.92 2.81

Despite the overall performance being poor, it is encouraging to note that through the
addition of AIBL-derived compounds to the training set, 22 more compounds in the test set
are brought into the applicability domain. The addition of the nitrile dataset (set 2) further
increased coverage by 15 compounds, but also decreased the performance slightly to a
RMSE of 2.82 (coming from 2.62) for all compounds (and 1.75 for the nitriles). However, this
new value is still below the 2.96 of the original training set. Simultaneously, the coverage
has increased with the addition of set 2, but it is possible that the diversity of atom-types
in the training set is still missing key areas of chemical space relevant to test compounds,
resulting in a slight decrease in performance. Another possibility is that certain atom types
are only found within this data addition and that the solved coefficients are possibly not
truly reflective of the impact on the pKa. This would resolve if they were present in other
deprotonation centres. When the final, 24 compound, di-carbonyl dataset (set 3) is added
to the training set, we once again observe a subtle amelioration in performance, as reflected
in the decrease in RMSE. This subtlety in the RMSE reduction suggests perhaps that the
training set already has enough compounds to cover that area of chemical space, which
is likely because the majority of the data consists of carbons that are alpha to at least one,
but frequently two, carbonyl moieties. It is also important to note that the solution was
found using a QR decomposition, which means that it is impossible to generate error bars
on the RMSE values because the calculation is deterministic, resulting in exactly the same
solution when the exact same training data is used.

To ensure that the model is valid and not a chance-correlation, Y-scrambling was
performed. We randomly shuffled the pKa values amongst the training set and relearned
and validated the model 1000 times. This scrambled model performs with a RMSE of
11.44 ± 4.81 across all 1000 replicates, which shows that the model does not consist
of a chance correlation. As a baseline method to compare against, we tried to learn a
model using ECFP fingerprints generated from RDKit24 in Knime (knime.org). Using this
combination, the model was able to predict the test set with a RMSE of 8.582, showing
that the distance spectrum is good at capturing the required information to predict pKa.

knime.org
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The poor performance is not surprising because there is no information on which atom is
undergoing a deprotonation event, and instead, the ECFP fingerprints are just encoding
information on the entire molecule. We then examined how well a Random Forest of
100 trees captures the information in the ECFP fingerprints and such a model performs
much better with a RMSE of 2.842, nearing the performance of the Lhasa model. When
using the distance spectrum with a Random Forest of 100 trees, the performance improves
again to a RMSE of 2.67, beating the simpler linear models’ performance of 2.74 but not by
enough to switch to the more complicated model.

In order to further analyze the performance of the model with the addition of virtual
compounds, we have binned the results by absolute error (Figure 1). In this case we
consider a prediction “Good” when the absolute error is less than 1 pKa unit, “Fair” when it
is between 1 and 2 pKa units, “Poor” when it is between 2 and 3 pKa units and “Bad” when
the absolute error is larger than 3 pKa units. The final results show that for nearly 60% of
the “inDomain” predictions the error is now less than 2 pKa units. Furthermore, predictions
classed as “Good”, consisting of those compounds with an absolute error of less than 1 pKa
unit and shown in blue in Figure 1, have increased with each additional dataset, while
those with errors classed as “Bad” have steadily decreased. Given the trends we describe
here, we expect that with a few more targeted AIBL models (for the sparsest regions of
chemical space represented by the training set), the worst performing compounds will
move into the better half. This will require careful consideration of the compounds being
calculated as well as the expansion into new AIBL models hitherto undeveloped.

Figure 1. Cont.
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Figure 1. Binned performance stats by count (top) and by percentage (bottom) (if the absolute error
is less than 1 pKa unit then “Good”, 1 < Fair < 2, 2 < Poor < 3, Bad > = 3).

Coefficients from QR Decomposition Solution

Another beneficial outcome of the additional data is that the atom-type coefficients
have improved significantly. Any linear model consists solely of these coefficients and
they represent the impact that each atom-type has on the pKa of the ionizing centre. It is
desirable for each coefficient to have the smallest magnitude possible, while still allowing
for accurate predictions, such that no single coefficient could have a major impact on the
pKa calculation. The improvement in coefficients is displayed in Figure 2. The overall
magnitude of the coefficients is decreasing, leading to a solution where each coefficient will
have a smaller and smaller impact on the overall pKa value. In Figure 2 the coefficients with
an absolute magnitude of less than 20 have increased overall and end up encompassing
85% of the total coefficients. Further discussion is available in the Supplementary Materials.

Figure 2. Percentage graph showing the reduction of “Bad” coefficients (yellow) (Light Blue < 10,
Orange < 20, Grey < 30, Yellow > = 30, Dark Blue Missing coefficient).
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3. Methods
3.1. AIBL

Compounds of the carbon acids subset of the atom-type coefficient matrix model
were represented as ECFP4 fingerprints and clustered using the Butina algorithm using
RDKit [25]. The clusters were manually inspected to identify sets of congeneric series of
a sufficiently large number containing a common site of dissociation. Three series were
identified: sulphone-carbonyls, nitrile-ketones and cyclic diketones. The experimental data
for these compounds were obtained from various literature sources and are referenced
later. Next, an ensemble of 3D conformers was generated using RDKit. Each conformation
was geometry-optimised at B3LYP/6-311G(d,p)/CPCM level using GAUSSIAN09 and the
most stable geometry was identified by ranking total energies [26]. Bond distances around
the protonation site of this geometry were then extracted and regressed onto experimental
pKa values. The linear regression equation of the bond length-pKa model with the highest
r2 value was then calculated, using only a single, selected bond length as the input feature.

3.2. Virtual Molecules

New compounds were then manually designed and constructed (conformers gen-
erated and subsequently geometry-optimised, following the procedure outlined above).
The motivation for these virtual compounds was to add, to the common core of the
congeneric series, substituent groups of novel character (i.e., differing to those already
featured in the training set), with a wide variety of atom-types (atom numbers and local
environments). In this sense, we expanded further the applicability domain of each model.

3.3. Sulphone-Carbonyl Model

Fourteen datapoints were found for compounds that contained the sulphone-carbonyl
moiety (SMILES string S(=O)(=O)C*C(=O) where C* is the site of ionisation) as shown in
Figure 3. After the geometries were calculated they fell into two distinct groups: (i) those
with a substituent on the aromatic ring on the sulphone portion (Group 1), and (ii) those
with a substituent on the aromatic ring on the carbonyl portion (Group 2). The pKa values
for these compounds were given in 95% aqueous ethanol but were corrected to the water
using the correlated linear relationship between experimental values obtained in water
and aqueous ethanol, respectively. After calculating the precise geometries as described
above, it was found that the C–C bond between the carbonyl and the site of ionisation had
the greatest correlation (as demonstrated by the calculated r2 value) with the pKa when
split into two subsets, labelled Group 1 and Group 2 in Figure 3. Interestingly, two lines of
best fit that emerge have gradients of opposite signs: a negative gradient for compounds
substituted on the phenyl–SO2 terminus and a positive gradient for those with substituents
at the phenyl-carbonyl terminus. The corresponding linear equations for the two lines-of-
best-fit were used independently to generate virtual compounds for later inclusion into the
distance spectrum model training set.

3.4. Nitrile-Ketone Model

Next, pKa values were obtained for a series of carbon acids where the site of ionisation
is adjacent to a nitrile group (SMILES String N#CC*C=O where C* is the site of ionisation).
Figure 4 shows that a general linear model can be built that correlates the nitrile bond
length with the pKa. The correlation for this model was not as high as has been obtained
for previous models although we can surmise that it has a wider applicability due to the
higher number of compounds used for the model and the larger range of response values
(pKa). The full set was further subdivided into two groups depending on the character of
the R group (Figure 4), R=H, OEt, OPh and Me, for which the correlation coefficient with
pKa was found to be almost unity (r2 = 0.98), but the interpolation space is more restricted
by the reduced response range. These pKa values were also present across aqueous DMSO
mixtures and again a correlation was found, and the pKa values were corrected. The best
correlating bond was again found to be the nitrile bond, which contracts with decreasing
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pKa (Figure 4). The resultant models were used to generate a further 97 compounds for
inclusion into the training set across the two domains.

Figure 3. Investigations into the AIBL modelling of sulphone-carbonyl compounds showing the R2 correlation of the bond
length to the pKa.

Figure 4. Modelling the nitrile-containing compounds.

3.5. Cyclic Diketone Model

This model has been described previously [24] and 24 compounds were calculated
for inclusion into the dataset and can be found in the complete training set included with
the Supplementary Materials. The bond length identified as most performant was the
C–O bond of the keto-enol tautomer in the anti-conformations, which had an r2 of 0.72 for
r(C–O) vs pKa for 49 training compounds, a 7-fold CV RMSEE of 0.57 and RMSEP for an
external test set of 22 compounds of 0.24 log units.

3.6. Lhasa’s pKa Method

The Lhasa pKa prediction method is an extension of the company’s log P prediction
methodology [5], which uses at its core a system for generating different atom-types
representing the local environment around each atom. Briefly, each atom is assigned a tag,
which consists of a number in the format of ABBCDD. Figure 5 explains the meanings of A,
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BB, C and DD and shows an example of how this atom-typing works. Further details on
the atom-typing scheme are summarised in the Supplementary Materials as well as in our
log P paper.

Figure 5. Atom-type description and an example of a distance spectrum calculation. This distance spectrum consists of
the sum (one for each atom-type) of the inverse square of the topological distance to the pKa centre, which is the oxygen
(ionisation centre). Note that the oxygen (108103) is not included in the calculation of topological distances because it is
obviously zero.

The model is trained using data in the form of a pKa value along with the atom
involved in the ionisation event, which has been manually assigned. A distance spectrum
is generated for the molecule from the assigned ionisation atom. This distance spectrum
consists of the sum (one for each atom-type) of the inverse square of the topological distance
to the pKa centre (oxygen or 108103), as exemplified in Figure 5. Essentially, after each
atom in the molecule has been atom-typed, the through-bond distance to the ionisation
site is calculated. This integer value is inverted and squared to generate the fractional
impact that the atom will have on the ionisation. These impacts are summed to generate
a single feature vector consisting of the sum of all the distances to the ionisation centre
by atom-type, highlighted in grey in Figure 5. It was theorised that this procedure will
yield the impact that each atom-type has towards the pKa of the ionisation site, in a similar
manner to Xing’s molecular tree structured fingerprints [27].

In order to generate the model, many different distance spectra are collated into a
large matrix and subjected to Partial Least Squares (PLS) via a QR decomposition, using the
JAMA library [28] written in the language Java, to generate a coefficient for each atom-type.
This coefficient is the numeric representation of the impact that the atom-type will have
on the protonation or deprotonation site. The resultant model is simply these coefficients,
along with the method to calculate the distance spectrum. Once these coefficients have
been obtained, running a prediction is as simple as the summation over all atoms of the
coefficient for the atom-type divided by the square of the topological distance, which
results in the theoretical pKa prediction (Equation (1)).

pKa = ∑
All

Atoms

αAtom−type

Topological Distance2
atom

(1)

where, according to the Lhasa pKa prediction method, α is a coefficient for the atom-type
found from QR decomposition and the Topological Distance is the through-bond distance
to the atom undergoing a protonation or deprotonation. Note that the potential sites are
located using simple rules, and that each class of deprotonation or protonation results in a
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model for that domain. These models are quite broad: for example, Oxyacid, Amine Acid,
Carbon Acid and Sulphur Acid for deprotonations, and Alkylamine, Aromatic Amine and
Imine for protonation. In essence the overall investigation boils down to the question if
we can use AIBL to generate virtual molecules to feed into the Lhasa pKa method, both to
improve its coverage and its performance. We wish to combine the knowledge contained in
multiple AIBL models into our more generally Lhasa model, using the virtual compounds
as the substrate to transfer the knowledge.

3.7. Training Set

The training set for the Lhasa method was obtained by manually digitising the contents
of the books that contain important pKa data [29–31]. If during the collection multiple
values were present at 25 ◦C then the average pKa was taken. Furthermore, if no results
were given at 25 ◦C then the temperature closest to 25 ◦C was used. The pKa values were
all obtained either in water, or in a water/solvent mixture, and used without correction.
These minor variations typically limit the accuracy of the final model, but this decision was
deemed unavoidable, given the restricted amount of data available. For each pKa value,
a site of ionisation was manually selected showing the atom where the deprotonation
will occur.

3.8. Test Set

The test set consists solely of compounds collected from Reaxys® [32] by gathering up
all of the compounds with disassociation constant data. There are no computed molecules
present in the test set as they are only used to facilitate the transfer of knowledge from
the AIBL models to the Lhasa model. Frequently there are multiple different values for
compounds so there was a need to automatically find the average values, accounting also
for the possibility that there can be multiple pKa values for a compound. Therefore, to
simplify the problem where multiple values were present, they were added to a sorted list
of increasing amplitude. This list of values was simplified into the accepted pKa values
by using a damped averaging approach elaborated via an example in the Supplementary
Materials. This large set was then predicted using the Lhasa method, to determine the
actual atom where the ionisation event was occurring, as the Lhasa prediction returns both
a calculated pKa value along with the atom number from the structure. This compound list
was then trimmed to include only those compounds with one site, alongside compounds
where the number of sites was equal to the number of experimental values. These experi-
mental values were matched to the atomic sites by locating the smallest error between any
experimental and calculated pKa value, which assumes to be the correct atomic site for
that experimental value. Then the process is repeated using the next smallest error until
there were no more experimental points left to assign. This dataset was then subsampled to
include only the carbon acids, and finally it was curated manually to remove some incorrect
assignments, for example, a pKa value of −0.5 for acetophenone, which is obviously the
pKa of the protonated carbonyl.

4. Conclusions

This investigation into the use of predicted data to train a simpler model has borne
useful fruit. We used two different approaches for the prediction of pKa and were able to
combine them to improve coverage in the carbon acid area of chemical space. One approach
is the AIBL model, which is very accurate but requires long computational times and has
a very focused applicability domain. The other approach is the Lhasa model, which is
widely applicable and computationally fast but requires significantly more training data
than what is available to generate a good model. We were able to distil the knowledge
present in three different AIBL models, consisting of sulphone-carbonyls, nitrile-carbonyls,
and cyclic di-carbonyls, into the more general Lhasa model.

There is the potential to generate many additional data points, which will greatly
improve the pKa modelling available from our fast distance spectrum model by leveraging
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the knowledge contained in the more computationally expensive AIBL model. Speed is
important as pKa prediction is a necessary component in pharmacokinetics modelling,
specifically the mole-fraction of a compound in the neutral state at pH 7.4 and 6.5 for
calculating absorption rates and Caco-2 permeability [33].

Whilst the improvements in performance are more pronounced within the domain
of the additional compounds, the impact of new compounds does bleed out into the
entirety of chemical space, which directly follows from the improved predictions calculated
with the additional data. The improvement in coverage and performance detailed in this
manuscript has resulted in a calculator suitable to use in our Zeneth software for predicting
chemical degradation, replacing complicated patterns to locate acidic hydrogens. Further
work is underway to optimise the performance of the Lhasa pKa calculator, which will be
detailed in a further publication.

Supplementary Materials: The following are available online, Section S1: Damped Averaging,
Section S2: Atom-Typer, Figure S1: The DD values for each element of the atom-typer, Section S3:
QR Coefficient Improvement, Section S4: Atom-type Coefficients, Table S1: Coefficients from the
solved model.
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