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Abstract: The evaluation and interpretation of the behavior of construction materials under fire
conditions have been complicated. Over the last few years, artificial intelligence (AI) has emerged as
a reliable method to tackle this engineering problem. This review summarizes existing studies that
applied AI to predict the fire performance of different construction materials (e.g., concrete, steel,
timber, and composites). The prediction of the flame retardancy of some structural components such
as beams, columns, slabs, and connections by utilizing AI-based models is also discussed. The end
of this review offers insights on the advantages, existing challenges, and recommendations for the
development of AI techniques used to evaluate the fire performance of construction materials and
their flame retardancy. This review offers a comprehensive overview to researchers in the fields of
fire engineering and material science, and it encourages them to explore and consider the use of AI
in future research projects.

Keywords: flame retardants; combustion; chemical kinetics; pyrolysis; artificial intelligence; ma-
chine learning

1. Introduction

Innovative materials nowadays have a significant impact on our daily lives and the
industry. However, when considering if a new material can be used in the construction
industry, its fire performance is one of the important factors that needs to be taken into
account. As a result of several years of study, there are currently three fundamental methods
for assessing the fire resistance of materials and their structural elements. The most classical
and reliable method is the performance of an experiment in accordance with standards and
regulations (i.e., the cone calorimetry test [1]). However, since many resources are needed,
such as budget and time, to perform experiments, it is difficult to consider the influence
of small changes and the significant variability of the parameters. The second method
involves the use of empirical formulas based on the findings of the conducted fire tests.
This approach is only suitable for materials of the same or similar composition as previously
tested materials, and it cannot be applied to advanced materials. That is why numerical
simulation (e.g., computational fluid dynamics (CFD) [2]) appears as the third approach
that enables researches to carry out a larger number of analyses. Nevertheless, a major
shortcoming is that the numerical model requires a very time-consuming process, extensive
computational resources, and the dependence on a wide range of empirical parameters.

Nowadays, it is prevalent to apply artificial intelligence (AI) in different areas of
life. Machine learning (ML), which is a subset of AI, has been widely used in image and
speech recognition [3,4], web searches [5], fraud detection, [6], and email/spam filters [7].
Additionally, the utilization of ML in solving the scientific problems of areas including
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physics [8], chemistry [9], medicine [10], pharmacy [11], and biology [12,13] is thriving.
Though the combination of ML and material sciences has just developed, several ML
algorithms have demonstrated their ability to speed up the optimization and discovery of
different functional materials for use in catalytic, photovoltaic, optical, and thermoelectric
applications [14–21]. Unlike the CFD approach, ML uses a series of algorithms to con-
struct statistical models to carry out predictions based on sample data instead of relying
on existing knowledge [22,23]. ML-derived models show advantages over CFD-based
models to simulate more complex problems without considering the true essence of the
input–output relationship. In addition, the computational speed of ML models is much
faster than that of CFD models. In a systematic review carried out by Naser [24], the posi-
tive potential of applying machine intelligence as an advanced technique to supplement
experimental and simulation methods used within the field of fire engineering and sciences
was provided. Artificial neural networks (ANNs), among the ML-based computational
methods, have emerged as an effective mathematical method in solving many complex sci-
entific and engineering problems [25]. In the fire engineering discipline, AI-based models
employing an ANN and a genetic algorithm have been increasingly used to predict the
temperature-related properties of a variety of materials (e.g., concrete, steel, timber, and
composite). Therefore, this review focuses on the development of models derived from
these two algorithms.

In this review paper, an overview of recent progress in applying artificial intelligence
to predict the fire behavior of certain types of materials and structural components, in-
cluding flame-retardant materials, is provided. This review paper includes five sections.
In Section 1, an introduction of several existing methods and their limitations to assess
materials’ fire performance is provided. In Section 2, a brief description of the operation of
ML models is presented. In particular, the explanation of input variables and the evaluation
metrics of ML models are included. In Section 3, the utilization of AI/ML to predict the
temperature-related properties of construction materials (e.g., concrete, steel, timber, and
composites) is elaborated. In Section 4, the existing applications of AI/ML to predict
some characteristics of flame-retardant materials are discussed. The perspectives on the
advantages, current challenges, and future developments of ML-based models applied to
flame-retardant materials are proposed. Finally, conclusions are given in Section 5. It is
expected that this review will bring benefits to material scientists and provide them with
the motivation to explore and consider the ML application in their research projects.

2. Brief Description of Machine Learning
2.1. Operation of Machine Learning Models

ML is one of the most innovative methods in the material science area in recent years.
This technique is different from conventional computing methods such as the fire dynamics
simulator [26]. As for traditional methods, the necessary information such as boundary
conditions, functions, and computational requirements are transmitted into the software,
and computers help to run that software. Eventually, the expected result is shown in the
software window. This method provides a high efficiency in cases that require a large
amount of iteration in calculation. However, one challenge for the numerical model is
that it must go through a time-consuming process of validation and the use of empirical
parameters, which are difficult to be determined through analysis or testing. ML models,
in contrast, provide a sufficient dataset, and a suitable algorithm can train the models
to learn from known data or past experience in order to self-study to make predictions
about unknown data without human intervention [27]. The ML approaches, which show
the ability to model linear or nonlinear complex relationships without considering the
essence of the relationships between the input and output, demonstrate advantages over
conventional computational methods. The key steps when building a machine learning
model include: collecting data to form a valid dataset, choosing relevant descriptors,
splitting the dataset into the training and test sets, selecting an appropriate algorithm
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to build model on the training set, and evaluating the predictive power of the model by
test set.

Constructing a material dataset is one of the main challenges when building an
ML model. This dataset must be reliable and well-defined for the input and output
parameters [28]. The material data can be collected from experimental results, the literature,
or databases (i.e., structures and properties databases). Typically, descriptors are considered
the input variables of ML models, such as the composition or properties of the material;
therefore, the descriptor set must contain unique information. In the ML approach, the
whole dataset can be used to build the ML model. However, to inspect the predictability
of the proposed model, it is better to utilize data that the model has never been seen
before. That is why a dataset is generally partitioned into two independent sets: the
training set and the test set. The training set aims to build up the model, and the test set
is employed to estimate the predictive power of the model. Algorithm selection plays a
vital role in building machine learning models. Depending on the structure of the training
data, ML can be classified into three groups: supervised learning, unsupervised learning,
and semi-supervised learning [27]. Some ML algorithms that are commonly used in the
development and production of advanced materials include multiple linear regression,
support vector machines, decision tree, artificial neural network, ensemble learning, and
clustering [27,29,30]. Finally, the predictive power of the model is assessed by the statistical
method. In predicting material properties, the coefficient of determination (R2) and root
mean square error (RMSE) are most widely used to measure the difference between the
predicted values and the true values of an ML model.

2.2. Explanation of Descriptors

Descriptors play an essential role in constructing ML models because they are re-
garded as the input variables of models. Usually, data attributes generate the descriptors
in one ML model. In addition, utilizing a mathematical transformation can produce new
descriptors from other existing descriptors in many cases. If those produced descriptors are
highly correlated to the output results of the ML approach, they are selected as the input
parameters of the model. Descriptors can be classified into different categories, such as
compositional descriptors, experimental descriptors, and topological descriptors. Composi-
tional descriptors can be referred to as the composition of each component that constitutes
the material. Experimental descriptors include all the parameters relating to experiments,
e.g., temperature, pressure, the heat of reaction, the heat of combustion, reaction time, and
the amount of the reactants and redundant parameters. Several properties regarding the
texture of a material (e.g., surface area, volume, porosity, and pore size) can be assigned to
the group of topological descriptors. Some set of descriptors used in a variety of material
systems for various purposes in the fire engineering discipline are summarized in Table 1.

Constructing descriptors requires an in-depth understanding of the characteristics of
the model and scientific problems [31]. Selecting appropriate descriptors is dependent on
the specific issues that need to be solved, and enumerating all possible descriptors in one
ML model is not an easy task. However, some general rules can be applied in the descriptor
construction. First and foremost, descriptors shall define the materials; thus, each descriptor
must include unique information, such as the material properties, composition, or structure
of the material. It must be ensured that each entry is discrepant. For example, in the
study carried out by Mukherjee and Nag Biswas [32], the stress of concrete at elevated
temperatures was determined by a set of descriptors: strain (ε), temperature (T), elastic
modulus (ET) at that temperature, compressive strength (f cT), and ultimate strain (εulT).
Secondly, there should be a limitation on the number of descriptors. Too many descriptors
makes a model more complex and thus hinders its ability to predict due to overfitting [33]
and increases its computation time. As a good rule of thumb, the number of fitted variables
in a model should be less than half the number of data points to prevent overfitting [34].



Molecules 2021, 26, 1022 4 of 28

2.3. Evaluation of the Performance of AI/ML Models

Model assessment is necessarily carried out to determine the accuracy of a model
in predicting material properties. In statistics, concerning regression problems, the R2

and root mean square error (RMSE) or mean square error (MSE) are commonly used to
measure the difference between the predicted values and actual values of a target output.
Let consider a dataset of size n. The actual properties of each data point are denoted by
y1, y2, . . . , yn. The corresponding predicted values of those properties are ŷ1, ŷ2, . . . ,
ŷn, respectively.

The mean of these properties:

y =
1
n

n

∑
i=1

yi (1)

Total sum of squares:
SStot = ∑n

i=1(yi − y)2 (2)

Residual sum of squares:

SSres = ∑n
i=1(yi − ŷi)

2 (3)

The R2 can be determined as follows:

R2 = 1 − SSres

SStot
(4)

RMSE is calculated as below:

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(5)

The use of R2 in conjunction with RMSE or MSE to evaluate the prediction capability
of a model is strongly recommended [35,36]. It is suggested that a well-defined regression
model should have an R2 value close to 1.0 and an RMSE value close to 0 [36].

If an ML model can make accurate predictions on unseen data, it is supposed to have
the ability to generalize from the training set to the test set. In other words, it possesses
generalization capability. The model’s performance might suffer from underfitting or over-
fitting. If a too-simple model with inadequate descriptors is built, it will cause underfitting,
which means the model will perform poorly on both training and test sets. More descriptors
should be placed in the model to tackle this problem and improve the prediction ability.
Some new descriptors can be generated by a mathematical transformation from the current
set of descriptors. In contrast, overfitting occurs when an ML model is too complicated
and has too many descriptors. In this case, the model works very well on the training set
but makes a worse prediction or poor generalization on the test set. The typical approach
to address this issue is using a training set that accounts for a certain proportion of the
dataset, ranging from two-third to 80%. The remainder of the dataset is allocated to the
test set. The more similar the training set and test metrics are, the more reliable the model
is. This approach seems realistic and straightforward, but it requires that the original
dataset must be sufficiently large in order to produce good results. This strategy is the
so-called train-and-test method. If the size of the dataset is large enough, it can even be
divided into three sets: training, validation, and test sets. The function of the validation
set is to select the best parameters of the ML model. After that, one can rebuild a model
with the parameter setting that was found by training on both the training and validation
data. Moreover, some other techniques can help prevent overfitting, including minimizing
the number of descriptors by eliminating the weakly correlated ones or increasing the
dataset size.
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In addition to the train-and-test method, one technique can be applied to the relatively
small dataset for assessing the accuracy of the model, which is cross-validation. The detail
and the variation of this technique can be found in a paper by Arlot and Celisse [37]. When
performing cross-validation, the original dataset is firstly partitioned into k parts of approx-
imately equal size, called folds. The training and testing process is then performed k times.
Each time, the model is constructed using the data in (k-1) folds, and the model accuracy is
evaluated on the remaining fold. This process is often called k-fold cross-validation.

3. Application of AI/ML in Fire Engineering

In the fire engineering discipline, great attempts have been made to evaluate the
behavior of construction materials, such as concrete [38–45], steel [46–53], timber [54–58],
and composites [59–67], exposed to fire conditions by conducting experimental programs.
However, since many resources, such as budget and time, to perform experiments are
required, AI-based models have emerged as powerful tools used to predict the temperature-
related properties of a variety of materials. The behavior of some types of structural systems,
e.g., columns, beams, frame, trusses, or joints exposed to high temperature, has also been
investigated by the application AI-based models, typically ANNs.

3.1. Concrete Elements/Structures

Since concrete is a composite material composed of cement and aggregates, the me-
chanical behavior of concrete under fire conditions is nonlinear, extremely complicated,
and highly temperature-dependent. It is tough to incorporate all contributing factors
in a mathematical model to obtain concrete behavior under elevated temperatures. To
overcome this difficulty, ANNs have been employed to predict concrete element fire per-
formance. A neural network consists of three layers, as shown in Figure 1. There is an
input layer includes the nodes corresponding to the number of descriptors, followed by
one or some hidden layers, and, finally, an output layer containing the target properties
to be predicted. The weights between each layer of the network are modified during the
computational process to produce the best match to the given data. It can be noticed that
different input descriptors come with different scales of their values. Thus, the data should
be normalized to a range between 0 and 1 for all descriptors before training the model.
In the end, the output production of the model is also within this 0–1 range. With the
advantage of modeling complex nonlinear, multi-functional engineering problems over
other machine learning algorithms, ANNs have attracted considerable attention from the
scientific community in evaluating the fire performance of concrete material and concrete
structural elements.
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One of the earliest studies to apply AI in predicting the properties of concrete material
under high temperature was conducted by Mukherjee and Nag Biswas [32]. A feedforward
and backpropagation algorithm was employed and integrated into the ANN model to
obtain the stress–strain relationship of concrete under three different cases: varying load
under isothermal conditions (case 1), varying temperature under constant load (case 2),
and varying temperature under total restraint (case 3). For case 1, strain (ε), temperature
(T), elastic modulus (ET) at that temperature, compressive strength (f cT), and ultimate
strain (εulT) were considered as input descriptors, with the target output as the stress being
depicted in Figure 1. An RMSE value of 0.000484 demonstrated a strong agreement between
the measured data and the predicted result. In case 2, another set of input descriptors was
applied, including temperature (T), load level (h), modulus of elasticity (ET), compressive
strength (f cT), ultimate strain (εulT), and the coefficient of the thermal expansion (ΩT); the
output of the ANN model was strain (ε). Finally, in case 3, the six input parameters of
the model were temperature (T), modulus of elasticity (ET), compressive strength (f cT),
ultimate strain (εulT), thermal expansion coefficient (ΩT), and heating rate (λ), while the
target output was set to be the restrained stress (σ). In both cases 2 and 3, the neural
network proved its capability to learn from experimental observation and make very
good predictions.

Chan et al. [68] developed an ANN-based model to predict the degradation of the
compressive strength of concrete exposed to fire conditions (75–1200 ◦C). With target as
the loss of concrete strength, the input nodes of the model contained variables relating
to experimental parameters and environmental factors. The prediction error within 15%
between experimental and analytical results indicated the potential in adopting this ad-
vanced approach in the concrete analysis. The use of ANNs in predicting compressive
strength degradation of self-compacting concrete (SCC) under elevated temperature was
also investigated in another study by Uysal et al. [69]. While setting the loss in compressive
strength as the targeted output, a set of compositional constituents and the heating degree
was assigned as the input variable of the neural network. The ANN model was built
on the dataset with the size of 85 data samples. The numbers of data points allocated
for the training set and test set were 43 and 42, respectively. The R2 coefficient of 0.9757
demonstrated the excellent prediction capability of this advanced programming approach
in fire engineering.

An ANN also possesses power in predicting the performance of concrete columns
exposed to high temperatures. McKinney and Ali [70] applied the supervised ANN method
to classify the temperature-induced spalling phenomenon and predict the failure time of
concrete columns. In this research, two neural network models with architectures of 6–
10–3 and 5–10–1 (input nodes–hidden nodes–output nodes) were employed for spalling
classification and failure time prediction, respectively. Among 30 test results selected for the
model construction, 80% of the dataset were allocated to the ANN training process, and the
remaining 20% were retained for the test set. As a result, 0.987 and 0.983 were the R2 scores
obtained for estimating failure time in the training set and test set, respectively, while the
case of the concrete spalling classification produced the outcomes with an error of 7%. A
comparison between the experimental observations and ANN modeling results is shown in
Figure 2. All this demonstrated the ANN’s capability to assess the fire performance of high-
strength concrete columns. The fire resistance of concrete columns under fire conditions
also drew interest from the fire engineering scientific community. Some research groups
have successfully constructed and applied ANNs to predict this characteristic of concrete
columns [71,72]. In these studies, the ANN models set the fire resistance of columns as the
output, while the input variables were dimensional descriptors and loading conditions.
All aforementioned models proved the predictive powers with almost-zero RMSE value or
an error within an acceptable range.
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Concrete spalling is not a new phenomenon and has been interpreted by carrying
out experimental studies. It is generally the explosion at the surface layers of the concrete
element exposed to an elevated temperature that could be triggered by fire. However, by
leveraging the power of artificial intelligence and machine learning, Naser constructed
many AI-derived models to predict the fire-induced spalling and fire resistance of con-
crete elements [73–78]. These models were built on the basis of various machine learning
algorithms (e.g., logistic regression, decision tree, random forest, gradient boosted trees,
and support vector machine) or the combination of neural networks with genetic algo-
rithms. For spalling classification, the target of these AI-based models was the binary
output consisting of “non-spalling” and “spalling.” The failure temperature or failure time
could be set as the expected outputs for the fire resistance of concrete elements, while the
input parameters of these models were dimensional descriptors, loading conditions, or
mechanical properties of concrete. All models developed by Naser proved the predictive
powers, resulting in an error within the acceptable range and an R2 coefficient close to 1.0.
These aforementioned studies demonstrated the merit of utilizing numerous AI approaches
to develop reliable models capable of predicting fire-induced spalling phenomenon and
fire resistance of concrete structural elements with high accuracy.

In another notable research, Erdem [79] constructed an ANN model based on 294
experimental data to estimate the maximum moment capacity of reinforced concrete slabs
under fire conditions. 206, 44, and 44 data points were allocated for the training, validation,
and test sets, respectively. The proposed model contained seven input parameters relating
to the dimensional aspect of concrete slabs and some mechanical properties of concrete and
its reinforcement. As a result, the correlation coefficients in the training, validation, and
test sets were 0.99775, 0.99795, and 0.99750, respectively. It was stated that the proposed
model was fit for the determination of flexural capability of concrete slab exposed to fire
by providing a good generalization with a high degree of accuracy. A comparison of the
calculated results with the predicted values of moment capacity is presented in Figure 3.
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The addition of polymeric fibers to a concrete structural element not only strengthens
its mechanical properties but also allows them to be more fire-resistant by reducing the risk
of spalling. To continue to apply the power of AI in the development of numerical models,
Altun et al. [80] launched a study to investigate the fire performance of a prismatic concrete
beam with the effect of adding polypropylene fibers. In this study, three types of AI-models,
namely multilayer perceptron (MLP), an adaptive neuro-fuzzy-inference-system (ANFIS),
and a fuzzy-genetic model, were used to predict toughness; 216 out of 432 samples from
the experiment were randomly selected to build up the AI-based models, in which 60%,
20%, and 20% of 216 points data were, respectively, allocated for the training, validation,
and test sets. Different parameters relating to fiber types, fiber ratios, curing periods,
and temperature effects were taken into account as the input descriptors of the ANN
model. As a result, the fuzzy-genetic model was the most successful by producing a mean
absolute relative error value of 7.945% compared to 10.253% and 11.226% for the MLP and
ANFIS models, respectively. It was also revealed that the input–output relationship that is
inherently difficult to model could be successfully obtained by utilizing AI-based models.
In another study, Naser et al. [81] developed an ANN model to evaluate the fire resistance
of T-shaped reinforced concrete beams under different fire scenarios. In the experimental
program, these beams were strengthened by carbon fiber-reinforced polymers (CFRPs) and
insulated by various protective materials [82]. Since the validated finite element (FE) model
developed by Hawileh et al. [83] and the experimental data were matched, the FE model
was used as a benchmark to generate additional data points to train the ANN. The dataset
with 120 data points was split into the training set (90 data points) and test set (30 data
points). The output of the developed ANN model was the temperature between CFRP and
concrete interface, while the main input parameters consisted of insulation thicknesses,
types of material, and fire curves. The developed ANN model was able to achieve an
excellent matching score (R2 of 0.9805) with the observed data and validated FE model.

3.2. Steel Elements/Structures

In addition to its use for concrete structures, an ANN was also successfully applied
when making predictions and assessing the fire-induced behaviors of steel structures
or steel structural components. Naser had successfully developed an ANN tool that is
useful for deriving the temperature-dependent properties of structural steels [84]. The
model construction was based on the data collected from the literature and fire codes
or standards (American Society of Civil Engineers, Eurocode 3, British Standard, etc.).
Seventy percent of the dataset were allocated for training the model, and the remaining
30% was used to test the predictability of the neural network. The thermal properties
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and reduction factor of some mechanical properties of the structural steel were derived
as the temperature-dependent functions owing to the utilization of the ANN combined
with genetic algorithms. The developed model obtained R2 values of 0.998, 0.901, 0.995,
and 0.983 in the cases of the thermal conductivity, specific heat, yield strength, and elastic
modulus properties, respectively. The AI approach was found to be adequate for the
derivation of temperature-dependent thermal and mechanical properties of steel materials.

The power of AI, specifically the ANN, continued to be demonstrated by research
carried out by Hozjan et al. [85]. An ANN model with an architecture of 2–50–50–1 (two
neurons in the input layer, 50 neurons in each hidden layer, and one neuron in the output
layer) was employed to determine the stress of structural steel exposed to fires based on
the consideration of strain and temperature as the input variables. In their study, 527
data points were divided into a training set with a size of 435 and a test set with 92 data
points. In this case, the developed model gave a very high R2 value of 0.9993. Though
the predicted results were in line with the experimental observations, there were some
obstructions in constructing the ANN model. For instance, in the range of strains greater
than 2%, the ANN model was insufficient; therefore, it was required to add a constant
hardening parameter in this range. Another problem was that the predicted stress–strain
relationship under the yield limit deviated from a linear form because of ANN regression.
A linear regression based on experimental measurement should be applied for this range,
assuming an ideal linear behavior of steel. However, the usefulness of using an ANN in
predicting the property of structural steel exposed to high temperatures was proven.

The mechanical behavior of the tubular truss was not easy to capture due to the
dependence on a large number of affected parameters. While the FE method was found to
be ineffective, AI techniques emerged as a powerful tool to address these problems. In a
study conducted by Jixiang Xu et al. [86], an ANN with the structure of 4–10–1 for input–
hidden–output nodes was employed to predict the limiting temperature of steel tubular
truss under fire conditions. The neural network input descriptors included geometrical
parameters of the web and chord members that made up the truss. The developed ANN
model used 105 input–output pairs for the training process and 15 sets of data for testing
its predictability. Providing an R2 score of 0.99946 for the training set and 0.9975 for the
test set pointed out that the performance of the neural network was excellent. However,
getting satisfactory ANN results required a lot of time to process the dataset construction.
Additionally, the model predictability depended primarily on the accuracy level in the
training set.

The strength of AI continued to be reflected in a study carried out by Zhao [87].
A combination of AI techniques, including a backpropagation neural network, a radial
basis function neural network, and a genetic algorithm (GA), was employed to estimate
the failure temperature of steel columns under high temperatures. Some geometrical
parameters of steel columns were considered as the input variables of the AI-based model.
Two-thirds of the total 102 sets of experimental data were chosen for the training set,
and one-third with 34 data points was selected for the test set. It was found that the
proposed AI model was better than the modified Rankine method in terms of accuracy
level by comparing mean-square-error values. Some advantages could be drawn by the
utilization of this developed AI model. Firstly, it saved lots of computing time to predict
the target output given the input descriptors owing to neural networks. Secondly, the GA
helped to manage the model’s complexity. Finally, additional experimental data could
be easily integrated into the existing model if available, improving the model accuracy.
Nevertheless, a disadvantage of this model was that incorporating the GA made the model
quite time-consuming, thus requiring significant improvements.

3.3. Timber Elements/Structures

There have been some remarkable studies that have demonstrated the power of AI
in predicting some temperature-dependent properties of timber material and structural
components. ANN models were developed by Cachim to estimate the temperature of
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timber exposed to fires [88]. The three input descriptors of the model were timber density,
fire exposure time, and the distance from the measuring point to the exposed surface. With
a total of 41 data points, 30% of the dataset were selected for training the network, and
the rest of the dataset was used for evaluating the prediction capability of the model. A
parametric study was carried out by changing the number of hidden layers (one, two, or
three) and the number of nodes in each hidden layer (five, seven, or nine). The network
with two hidden layers, which included five and seven neurons in the first and second
layers, was found to be the best-constructed model. It provided an R2 score of 0.9998 and
an RMSE value of 3.3. The model outputs were also compared with the results produced by
the numerical model SAFIR, which is a thermal/structural program for structure analysis
under fire conditions. The developed model was reported to be reliable in calculating the
temperature in timber elements.

In another study, Naser [89] succeeded in integrating an ANN with symbolic regres-
sions and genetic algorithms to generate a robust AI-based model to derive temperature-
dependent expressions at the material and elemental levels of timber under fire conditions.
Databases with over 12,000 data points for model construction were gathered from the
conducted fire tests, fire design codes, and standards from the literature review. At the
material level, the mechanical and thermal properties of wood (i.e., Young’s modulus,
compressive strength, tensile strength, shear strength, thermal conductivity, specific heat,
and charring depth) were expressed as a function of temperature. Additionally, at the ele-
mental level, some thermo-structural responses of timber components (e.g., floors, beams,
columns, and connections) were also determined based on the consideration of related
compositional, dimensional descriptors, and loading conditions. Further details on the
input–output parameters used in this study can be found in Table 1. For all cases, the
almost-one values of R2 and nearly-zero values of the mean absolute error proved the
strength of using the combination of an ANN, symbolic regression, and genetic algorithms
for deriving the expressions of the temperature-dependent properties of wood, as well as
for tracing the thermal-structural responses of timber elements.

Lautenberger et al. [90] employed a genetic algorithm to generate inputs for computa-
tional fluid dynamic models to evaluate the fire-induced properties of redwood and red
oak under fixed heat flux in a cone calorimeter. In this study, eight properties of wood in
non-charring and charring phases (i.e., thermal conductivity, specific heat, pre-exponential
factor, activation energy, the heat of pyrolysis, char thermal conductivity, char specific heat,
and char density) were required as the input parameters for pyrolysis modeling developed
by fire dynamic simulation (FDS) software. A set of these above-mentioned properties was
firstly obtained by a GA and then transmitted to the FDS pyrolysis model. At the end, the
mass-loss rate and surface temperature of redwood and red oak could be expected as the
final results. This process was complicated due to the involvement of both the GA and
pyrolysis modeling because they were normally time-consuming. One noticeable point
was that the properties found by the GA were understood as the average values over the
different test conditions and assumed to be temperature-independent for the modeling
simplicity. These properties might not be applied in another pyrolysis model based on other
assumptions to simplify the model. However, a good agreement between the experimental
observations and model prediction proved the capability of this methodology to obtain the
mass loss rate and surface temperature of timber material.

3.4. Composite Materials

A few studies have utilized a GA to predict the temperature-dependent properties of
composite materials. Rein et al. [91] succeeded in applying this AI technique to estimate
the kinetic parameters required for theoretical modeling of the smoldering combustion
of flexible polyurethane (FPU) foam. Firstly, based on the outcomes from previous ther-
mogravimetric analyses, a global mechanism of FPU five-reaction kinetics was proposed.
Secondly, the development of a numerical lumped model of mass loss for FPU was carried
out to simulate the thermogravimetric experiment. Finally, the GA technique was em-
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ployed to find a set of kinetic parameters, including activation energy (E), pre-exponential
factor (A), power-law parameter for reaction (n), and mass yield/consumption of species
per mass of reactant in the reaction (ν) that provided the best agreement between the
numerical results and experimental observations. The result obtained by the GA was found
to help model the numerical simulation of smoldering combustion.

The genetic algorithm is a robust technique inspired by Darwin’s theory of natural
evolution [92]. The genetic algorithm is initialized by the creation of a population consisting
of a number of randomly candidate solutions. Each candidate solution is referred to as an
individual among the population. Each individual is defined by a set of parameters known
as genes. For instance, in the above-mentioned study conducted by Rein et al. [94], each
unknown kinetic parameter (i.e., E, A, n, and ν) was a so-called gene for an individual
in the GA population. The continual evolvement of populations resulted in subsequent
generations. The first generation was the original population, the second generation was
the offspring of the first generation, and so on. The processes of mutation, crossover, and
reproduction were included in this approach, and further information can be found in [95].
These processes were repeatedly continued until the convergence of candidate solutions.

The GA was also used as a potential tool to generate the required input parameters
for CFD-based models that simulate the combustion process of composites under the
cone calorimeter test [90,93]. In a study carried out by Lautenberger et al. [90], a set of
eight parameters, consisting of thermal conductivity, specific heat, pre-exponential factor,
activation energy, heat of pyrolysis, char thermal conductivity, char specific heat, and char
density, was generated by the GA. These parameters were then used in CFD models to
perform numerical analyses. Yuen et al. [96] applied the power of the GA to find out a pool
of input variables for the CFD-based fire growth model, including composition (ci), pre-
exponential factor (Ai), activation energy (Ei), and exponent (ni). The final results obtained
by the numerical model were surface temperature and mass loss rate of polypropylene [90],
or heat release rate, total heat release, smoke production rate, and total smoke production
of flame-retardant composites [93] under a bench-scale fire test. Though the combined
GA/pyrolysis model was found to provide a good agreement between predicted and
measured data, it did not help save computing time and computational resources, as two
analyses were required: one for the GA and another for the pyrolysis model.

3.5. Other Types of Elements/Structures

Another piece of evidence to demonstrate the strength of the ANN was found by
applying this advanced approach to assess the behavior of semi-rigid composite connec-
tions under fire conditions. In a study conducted by Al-Jabri et al. [94], the rotation of
beam-to-column-joints was predicted based on the designation of the applied moment
and the temperature of the joints as the input variables of the ANN model. The dataset
was constructed based on the results of 20 fire tests, in which 10–15% of the data were
assigned to the test set, and the rest of the data was used for the training set. Consequently,
by generating R2 values in a range from 0.926 to 0.983 for the training set and between
0.896 and 0.993 for the test set, it was concluded that the model results were in line with
the experimental observations. The rotational response of semi-rigid joints in the fire event
was also investigated by Al-Jabri et al. in another study [95]. However, the dimensional
factors, mechanical properties of the joints, temperature, and loading conditions were
designated as the input descriptors for the ANN model. The dataset of 280 cases obtained
from nine fire experiments was divided into the training set with 236 cases, and the test
set was composed of 44 cases. The R2 scores for the training set and the test set were
0.998 and 0.970, respectively. A trial to construct other ANN models was recommended by
considering parameters (e.g., axial restraints and temperature gradient) that significantly
impacted the joint’s rotation. Both aforementioned studies proved the model’s capability
of predicting the performance of composite joints under fire scenarios.

Neural networks were developed to become superior alternatives that save compu-
tational resources and computing time compared to the CFD approach for predicting
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important parameters in a single compartment fire [96,97]. One downside of an ANN was
that the noise contained in the dataset cannot be differentiated from the genuine features
in the network training process. Therefore, instead of utilizing an ANN, these studies
proposed an AI technique based on general regression neural network (GRNN) and fuzzy
adaptive resonance theory (FA), with the so-called general regression neural network with
fuzzy adaptive resonance theory model (GRNNFA) used to predict the location of thermal
interface [99] and the velocity and temperature profiles at the center of the doorway [97] in
a single compartment fire. While FA was applied to generate prototypes for network train-
ing based on the training data distribution in the input domain, the GRNN was employed
for prediction. The input variables of the network included six important parameters,
such as the dimensional factors relating to the opening, fire strength, and temperature.
The proposed GRNNFA model was built on the basis of a dataset of 55 experimental fire
tests. In the case of predicting thermal interface location, only 3 out of 55 samples were
incorrectly predicted, and the accuracy level was 94.5%. In the prediction of the velocity
and temperature profiles, the prediction errors of the GRNNFA model fell within the
acceptable range and were smaller than those of the CFD model. The accuracy of the model
was also found to be linked to the number of data points given for network training. These
results proved the potential of the utilization of the GRNNFA to predict compartment
fire parameters.

Further details on the applied method and descriptor set of AI-based models, used
to predict the properties of different types of material exposed to fire and evaluate the
thermally-induced responses of a variety of structural components, can be found in Table 1.

Table 1. Typical descriptors used in artificial intelligence (AI)/ML (machine learning) models to predict the fire-induced
properties of some types of structural elements.

Type of Structure Method Target Output Descriptors/Input Parameters Reference

Concrete material Artificial neural networks The stress (σ)

Strain (ε), temperature (T), elastic
modulus (ET) at that temperature,

compressive strength (f cT), and
ultimate strain (εulT)

[32]

Concrete material Artificial neural networks The strain (ε)

Temperature (T), load level (h),
modulus of elasticity (ET),

compressive strength (f cT), ultimate
strain (εulT), and the coefficient of the

thermal expansion (ΩT)

[32]

Concrete material Artificial neural networks The restrained stress (σ)

Temperature (T), modulus of
elasticity (ET), compressive strength
(f cT), ultimate strain (εulT), thermal

expansion coefficient (ΩT), and
heating rate (λ)

[32]

Concrete material Artificial neural networks The loss of strength Experimental parameters and
environmental factors [68]

Self-compacting concrete Artificial neural networks The compressive strength

The amount of cement, fly ash,
zeolite, limestone powders, basaltic,
marble powders, natural aggregate,

group I aggregate, group II
aggregate, polypropylene fibers,

heating degree

[69]

High-strength
concrete columns Artificial neural networks The spalling type

Furnace temperature, restraint,
loading level, force, spalling degree,

failure time, and spalling type
[70]
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Table 1. Cont.

Type of Structure Method Target Output Descriptors/Input Parameters Reference

High-strength
concrete columns Artificial neural networks The failure time

Furnace temperature, restraint,
loading level, force, spalling degree,

and failure time.
[70]

Reinforced-concrete
columns Artificial neural networks

The fire resistance of the
column expressed in

minutes (t)

Dimensions of the cross-section of
the column (b and d), the concrete
cover thickness (a), percentage of

reinforcement (µ), load coefficient for
axial force (η), and load coefficient

for the bending moment (β).

[72]

Concrete-filled tubular
steel columns

Backpropagation neural
network The fire resistance

Structural factors (external
dimension, steel thickness, column

height), material factors
(water–cement ratio, type of

aggregate, concrete 28 days cylinder
strength, steel yield strength),
loading conditions (test load)

[71]

Concrete slabs Artificial neural networks The ultimate moment
capacity (Mu)

The distance from the extreme fiber
in tension to the centroid of the steel

on the tension side of the slab (d’),
the effective depth (d), the ratio of

previous parameters (d’/d), the area
of reinforcement on the tension face

of the slab (As), the fire exposure
time (t), the compressive strength of

the concrete (fcd), and the yield
strength of the reinforcement (fyd)

[79]

Prismatic concrete beams
Artificial neural network,

fuzzy logic, and fuzzy
genetic models

The toughness (Tg) value
of the prismatic beams

The fiber type used to prepare the
specimen mixtures (Ft), curing
period (Cp), temperature (T),

volumetric fiber ratios in the mixture
(FR), the compressive strength of the

cylindrical specimens (fc)

[80]

Reinforced-concrete
T-beams strengthened

with carbon
fiber-reinforced polymer

(CFRP) plates

Artificial neural networks
The temperature at the
interface between the

CFRP/concrete

Insulation thicknesses, materials
types, and fire curves [81]

Structural steel Artificial neural networks
and genetic algorithms

Temperature-dependent
material properties:

thermal conductivity,
specific heat, reduction
factor for yield strength,
and reduction factor for

modulus of elasticity

Temperature [84]

Steel frames Artificial neural networks The stress (σ) Strain (ε) and temperature (T) [85]

Steel tubular truss Artificial neural networks The limiting temperature
Diameter ratio (β), the wall thickness

ratio (τ), the diameter–thickness
ratio (γ), and the load ratio

[86]

Steel columns Hybrid neural network
and genetic algorithm

The failure
temperature (T)

The length of the steel columns (L),
the radius of Gyration of the

cross-section (r), the sectional area
(A), the yield strength of the material
at room temperature (fy), the applied
load (P), and the eccentricity of the

load at failure (e)

[87]

Timber member Artificial neural networks The temperature in timber
The density of timber, the time of fire
exposure, and the distance from the

exposed surface
[88]
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Table 1. Cont.

Type of Structure Method Target Output Descriptors/Input Parameters Reference

Timber material

Artificial neural network
together with symbolic

regressions and
genetic algorithms

Mechanical properties
(Reduction factors of

density, Young’s modulus,
compressive strength,
tensile strength, and

shear strength),
thermal properties

(thermal conductivity and
specific heat),

charring depth

Temperature [89]

Timber floors

Artificial neural network
together with symbolic

regressions and
genetic algorithms

The temperature in the
plywood subfloor

Fire exposure duration (t), number of
layers in ceiling finish (C), sub-floor

thickness (kth), and type of cavity
insulation (I)

[89]

Timber beams

Artificial neural network
together with symbolic

regressions and
genetic algorithms

Mid-span deflection Fire exposure time (t), load level (P),
height (H), and charring rate (β) [89]

Timber columns

Artificial neural network
together with symbolic

regressions and
genetic algorithms

Fire resistance expressed
in minutes

Column depth (D), column breadth
(B), compressive strength (fc),

specific gravity (SG), and level of
applied loading (P)

[89]

Finger–joint timber
connections

Artificial neural network
together with symbolic

regressions and
genetic algorithms

Fire resistance expressed
in minutes

The adhesive type (A), width (W),
charring rate (β), and applied

loading (P)
[89]

Nailed timber connection

Artificial neural network
together with symbolic

regressions and
genetic algorithms

The slip of the
connection (d)

Fire exposure time (t) and load
level (P) [89]

Redwood and Red Oak Genetic algorithms and
pyrolysis model

Surface temperature and
mass loss rate

Thermal conductivity (kv), specific
heat (cv), pre-exponential factor (Z),
activation energy (EA), and heat of

pyrolysis (∆Hp), char thermal
conductivity (kc), char specific heat

(cc), and char density (
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Composition (ci), pre-exponential factor 
(Ai), activation energy (Ei), and exponent 

(ni) 
[93] 

c)

[90]

Chitosan/graphene oxide
layer-by-layer fire

retardant coating on
flexible polyurethane foam

(composite material)

Genetic algorithms and
computational fluid

dynamics model

Thermal degradation rate,
heat release rate, total heat
release, smoke production

rate, total smoke
production, CO

production rate, total
CO production

Composition (ci), pre-exponential
factor (Ai), activation energy (Ei),

and exponent (ni)
[93]

Semi-rigid
beam-to-column joints Artificial neural network The rotational capacity of

the joint
The applied moment and

joint’s temperatures [94]
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Table 1. Cont.

Type of Structure Method Target Output Descriptors/Input Parameters Reference

Semi-rigid
composite joints

Artificial neural network:
Backpropagation

paradigm

The rotational capacity of
the joints

The joint geometrical properties
(beam depth, beam width, beam

flange thickness, beam web
thickness, column depth, column
width, column flange thickness,

column web thickness, number of
bolts, bolt diameter, end-plate

thickness, end-plate depth, end-plate
width), the joint mechanical

properties (beam yield strength,
column yield strength), the joint’s

temperature, and the
applied moment

[95]

A single compartment fire
General regression neural

network and fuzzy
adaptive resonance theory

The location of the
thermal interface, the
height of the thermal

interface, and different
widths of the opening

The width and height of the sill of
the opening, parallel and

perpendicular distances from the
center of the fire bed to the vertical

centerline of the opening, fire
strength, and ambient temperature

[96]

A single compartment fire
General regression neural

network and fuzzy
adaptive resonance theory

The velocity and
temperature profiles at the

center of the doorway

Width of opening, the height of the
sill of the opening, fire strength,

distance from the vertical centerline
of the opening to the center of the
fire bed, distance from the vertical

centerline of the opening to the
center of the fire load, and the

ambient temperature

[97]

4. Application of AI/ML for Flame-Retardant Materials
Existing Studies

In a study conducted by Nazerian et al. [98], an ANN demonstrated its prediction
capability in the estimation of the modulus of rupture (MOR) and mass loss (MLoss) of
flame-retardant fiberboard. The researchers applied the response surface methodology and
central composite rotatable design to prepare the experimental design. The measurement
of the MOR and MLoss of the test specimens was followed by EN 310 (1993) Wood-based
panels - Determination of modulus of elasticity in bending and of bending strength, and
ISO 11925-3 (1997) Reaction to fire tests - Ignitability of building products subjected to
direct impingement of flame - Part 3: Multi-source test, respectively. Three types of flame
retardants consisting of boric acid, borax, and ammonium sulfate were involved in the study
to investigate their effect on the MOR and MLoss of fiberboard during the fire test. The
input parameters of the neural network model were the three above-mentioned mentioned
flame-retardants at five different levels (0, 1.5, 3, 4.5, and 6%) and press temperatures at five
levels (135, 150, 165, 180, and 195 ◦C). The target outputs included the fiberboard’s MOR
and MLoss under fire conditions. Expert Design Software version 6 and the second-order
plan statistical design were employed to estimate the effect of the model’s input variables
on the output. Figure 4 describes the skeleton of the ML model applied in this study.

Nazerian et al. selected a 90 sample data pool to perform an ANN model. The
processes of training, validating, and testing the predictability of neural networks employed
70%, 15%, and 15% of the total data, respectively. Table 2 shows the statistical results of
the ANN models in this study in terms of R2 and RMSE. The prediction error was shown
to be within a reasonable range and R2 was close to 1, thus indicating a strong agreement
between the ANN model and the experimental outcomes. A comparison between the actual
and predicted values of the ANN model in terms of the MLoss and MOR is illustrated in
Figure 5. The predicted result from the neural network was similar to the actual values for
both the MLoss and MOR. Therefore, it was concluded that the ANN model was capable
of predicting the MLoss and MOR with a high accuracy.
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The effect of flame retardants on model construction and model outputs was another
crucial aspect. The fiberboards in this study were made up of resin, fiber, and flame-
retardants. Since the resin and fiber contents were the same for all specimens, flame-
retarding agents at five different contents (0, 1.5, 3, 4.5, and 6%) had to be considered as
the input parameters of the neural network in addition to the press temperature. In other
words, the ANN model would not have been adequately constructed without the proper
determination of these parameters. As a result of Expert Design Software version 6 and
the second-order plan statistical design, the press temperature (x1), boric acid (x2), borax
(x3), and ammonium sulfate (x4) were found to have an essential impact on MLoss, while
x4 showed a minimal effect on the MOR. Furthermore, while the MLoss and MOR were
substantially influenced by the squared values of x2 and x3, they did not show the reliance
on the squared value of x1. The squared effect of x4 indicated the significant impact on
MLoss, but it was not influential on the MOR. Moreover, MOR values were considerably
dependent on the mutual impacts of x1X2, x2X3, and x3X4, while MLoss also relied on
the mutual effects of x1X3 and x2X4. It was also observed that the fire rate decreased as
the content of fire retardant chemicals increased, and, as a consequence, the mass loss
decreased. To sum up, adopting the proposed ANN model could save time and resources to
perform experiments, while the desired output of the MLoss and MOR could be achievable.

A study carried out by Arabasadi et al. [99] was another instance that demonstrated
the power of using AI to predict the properties of flame-retardant materials. A combination
of AI techniques, including an ANN, an ANFIS, and a GA, was employed to predict the
mean fireproofing time (MFPT) of intumescent coating on steel substrates. In this research,
the components of the prepared intumescent coating were ammonium polyphosphate
(APP), pentaerythritol (PER), melamine (MEL), thermoplastic acrylic resin (TAR), liquid
hydrocarbon resin (LHR), and titanium dioxide (TiO2). They were considered to be five
factors affecting the fire-retarding behavior of the intumescent coatings. APP, PER, and
MEL act as the blowing agents, TAR acts as a binder, LHR as a plasticizer, and TiO2 acts
as a pigment. Each of the components mentioned above was prepared with four different
levels to form the resultant compounds. Based on Taguchi experimental design [100],
16 types of samples were manufactured to serve the heat insulation tests. Further details of
16 intumescent coating formulations with different factors and levels can be found in the
paper [99]. For the construction of the AI-based model, APP, PER, MEL, TAR, and LHR
acted as five independent input variables, while the MFPT was the output parameter of the
system. The schematic architecture of the neural network applied in this study is provided
in Figure 6.
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For the training of the ANN model, 80%, 10%, and 10% of the original dataset were
allocated for the training, testing, and validation sets, respectively. The statistical results of
the ANN model in terms of MSE, RMSE, and R2 are summarized in Table 3. The RMSE val-
ues close to 0 and R2 values approaching 1 displayed that the ANN model was well-defined
with the best fit between the predicted and measured output. A comparison between the
predicted MFPT values from the ANN model and the actual experimental results is visual-
ized in Figure 7. It can be clearly seen from the figure that most of the predicted results
were in good agreement with the observed outcomes. However, some minor deviations
between the predicted data and experimental outputs could be observed in Figure 7b, and
they could be explained by some chemical- or physical-related phenomena. For example,
the low concentration of the binder (TAR) compared to that of other constituents in the
intumescent coating led to the removal of the coating layer from the steel surface, which
minimized the fireproofing characteristic of the applied intumescent coating. Consequently,
such phenomena resulted in lower values of MFPT than expected, and more importantly,
less than what the ANN anticipated.

Table 3. The statistical metrics of the ANN model used to predict the mean fireproofing time of the
intumescent flame-retardant coating [99].

Procedure R2 RMSE MSE

Training 1 0.01229 0.01512

Validating 0.96120 0.02519 0.06345

Testing 0.99562 0.01954 0.03818

All data 0.98553 - -
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The ANN model did not consider the nature of the relationship between input vari-
ables. In other words, the real interaction of the intumescent components in the coating was
neglected by applying an ANN, which was the shortcoming of this approach. Therefore,
the FIS appeared to the solution to overcome this inefficiency. By applying fuzzy rules in
ANFIS modeling, the minimum contents of ATR and LHR constituents could be defined to
prevent the foam detachment or char cracking phenomena from happening. Figure 8 shows
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a comparison between the FIS output and the testing data. The result obtained by the
ANFIS model fitted the experimental data very well. Because the fireproofing properties of
intumescent coatings primarily rely on experimental phenomena, and due to the absence
of rule viewing, the use of only ANN modeling could generate outputs with unexpected
errors. However, the utilization of the ANFIS model based on fuzzy rules was capable of
obtaining a higher level of accuracy than that obtained when only applying an ANN.
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Additionally, in this study, the GA, which was developed from Darwin’s natural
selection approach, was used to find out the optimal formulation of the intumescent
fireproofing coating. A comparison between the result obtained by the GA and the Taguchi
analysis is shown in Table 4. It could be seen that a higher MFPT value was produced
by the formulation by the GA modeling—about 2.79% higher than that of formulation
obtained by the Taguchi experimental design. This minor difference proved the predictive
capability of the GA in the optimization of intumescent coatings.

Table 4. A comparison between Taguchi and the genetic algorithm (GA) methods in terms of the
optimal intumescent coating formulation and the MFPT value [99]. APP: ammonium polyphos-
phate; PER: pentaerythritol; MEL: melamine; TAR: thermoplastic acrylic resin; and LHR: liquid
hydrocarbon resin.

Methods TAR (g) LHR (g) APP (g) MEL (g) PER (g) MFPT (Min)

Taguchi 13 2.5 25 10 11 129.2

GA 15.85 2.8 26.7 10.01 8.4 132.8

In another piece of remarkable research by Xia et al. [101], the formulation design
of halogen-free flame-retardant composites polyamide-66 (PA-66) was implemented by
applying machine learning. The ANN was integrated into and ran on the platform of the
Flame Retardant Expert System 2.0 (FRES 2.0) software. A three-layered backpropagation
network, including six input nodes, six hidden nodes, and one output node, was employed
in this study and is presented in Figure 9. A dataset with 30 samples corresponding to
thirty formulations of polyamide-66 was used to train the machine learning model. Six
independent constituents of composites consisting of PA-66, APP, phosphorus-containing
flame retardant (FR), melamine (MN), silicon-containing additive (AD), and zinc borate
(ZB) were considered as the input modeling variables. The limiting oxygen index (LOI)
was targeted as the dependent output of the neural network.
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Another model constructed based on the multiple nonlinear regression (MNLR) anal-
ysis was also adopted in this study. A comparison between the results obtained by the
MNLR and ANN models, as well as the predicted–observed LOI correlation, is illustrated
in Figure 10. In terms of evaluation scores, the values of correlation coefficient (R) and
RMSE given by the MNLR and ANN models are listed in Table 5. With an R-value of
precisely 1.0 and an RMSE of nearly 0, the ANN model provided more accurate predictions
compared to the MNLR model in terms of the LOI value of halogen-free, flame-retardant
PA-66 compounds. In other words, the predicted LOI value of PA-66 composites was
achieved with the aid of an ANN with a very high precision.
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Table 5. A comparison of prediction capability between multiple nonlinear regression (MNLR)
analysis and the ANN model [101].

Methods Correlation Coefficient Root-Mean-Square Error

MNLR model 0.9474 0.4388

ANN model 1.0000 0.0002

Following the successful application of machine learning to predict the LOI value of
polymers PA-66, Xia et al. continued to employ the FRES 2.0 software in another study in
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predicting tensile strength (TS) and elongation (EL) at break under mechanical testing [102].
The material prepared for this study was also halogen-free flame-retardant composites that
was composed of ethylene-vinyl acetate copolymer (Poly-1), ethylene-propylene copolymer
(Poly-2), polyethylene (Poly-3), a compatibilizer (Poly-4), alumina trihydrate (FR-1), zinc
borate (FR-2), silicon-containing additive (AD-1), phosphorus-containing additive (AD-2),
and antioxidant and processing agents. To simplify the ANN model, the concentration of
antioxidant and processing agent was unchanged during the material preparation phase.
Therefore, there were eight input parameters involved in the construction of the neural
network, which were Poly-1, Poly-2, Poly-3, Poly-4, FR-1, FR-2, AD-1, and AD-2. Three
target outputs of the modelling approach were LOI, TS, and EL. To train the machine
learning model, a dataset of twenty-nine samples equivalent to twenty-nine different
composite formulations was used. Among them, 20 out of 29 samples were used to train
the ANN model, while the remaining nine sets were allocated to the test set to assess the
predictability of the proposed model. Figure 11 illustrates the architecture of a three-layered
backpropagation network applied in predicting LOI, TS, and EL values.
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The predictive power of the neural network in the determination of the LOI, TS, and
EL values was objectively evaluated based on the test set. It is demonstrated in Table 6
through the terms of RMSE and R. It could be stated that the AI-based model proved
its capability in the prediction of some characteristics of flame-retardant composites by
providing the almost-one R values and relatively small RMSEs (close to 0). The correlation
between the predicted and actual data for nine samples in the test set can be visualized
in Figure 12, which shows the potential of applying the three-layered backpropagation
network in fire predictions.
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Table 6. The statistical results of the ANN model for the samples in the test set [102].

Output Results Correlation Coefficient Root-Mean-Square Error

LOI (%) 0.9524 0.38

TS (MPa) 0.9557 0.54

EL (%) 0.9695 10.10
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The typical descriptors applied in AI-based models of the above-mentioned studies to
predict various characteristics of flame-retardant composites are summarized in Table 7.
The importance of flame-retardants agents (i.e., boric acid, ammonium sulfate, ammonium
polyphosphate, and alumina trihydrate) in the construction of the machine learning models
was noticed. Without this type of descriptors, the machine learning model could not be
properly built up and accurately predicted.
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Table 7. Typical descriptors used in AI/ML models to predict the fire performance of flame-retardant materials.

Materials Method Target Output Descriptors/Input Parameters Reference

Flame-retardant
fiberboards Artificial neural networks The modulus of rupture

(MOR) and mass loss (ML)

The concentration of boric acid, borax,
and ammonium sulfate, and

press temperature
[98]

Intumescent
flame-retardant coatings

Artificial neural networks
(ANNs), adaptive neuro-
fuzzy-inference-system
(ANFIS), and genetic

algorithm (GA)

The mean fireproofing
time (MFPT)

The compositional concentration of
ammonium polyphosphate (APP),
pentaerythritol (PER), melamine

(MEL), thermoplastic acrylic resin
(TAR), and liquid hydrocarbon

resin (LHR)

[99]

Polyamide-66 Artificial neural networks The limiting oxygen
index (LOI)

Constituents of composites:
polyamide-66 (PA-66), ammonium

polyphosphate (APP),
phosphorus-containing flame retardant

(FR), melamine (MN),
silicon-containing additive (AD), and

zinc borate (ZB)

[101]

Halogen-free
flame-retardant

composites
Artificial neural networks

The limiting oxygen index
(LOI), tensile strength (TS),

and elongation (EL)

Ethylene-vinyl acetate copolymer
(Poly-1), ethylene-propylene

copolymer (Poly-2), polyethylene
(Poly-3), compatibilizer (Poly-4),

alumina trihydrate (FR-1), zinc borate
(FR-2), silicon-containing additive

(AD-1), and phosphorus-containing
additive (AD-2)

[102]

5. Advantages and Challenges

By reviewing the literature, the merit of utilizing machine learning models to evaluate
the fire behavior of flame-retardant materials could be seen to be significant. Before AI
techniques, it was a matter of time to understand the fire-related behavior of materials.
To interpret this kind of phenomena, it mainly relied on the arrangement of the experi-
mental program or development of a mathematical model based on reliable testing results.
However, the main challenges that lowered the accuracy of these models were the required
modelling resources with significant needed assumptions. After that, fine element model-
ing emerged as a helpful method to carry out a greater number of analyses. Nevertheless, it
was necessary to undergo a time-consuming validation process with empirical parameters
before the numerical models could be applied. However, unlike the methods mentioned
above, the AI-based model enabled researches to carry out analyses with minimal human
intervention. AI modeling not only helps to reduce calculation time a lot but also helps to
solve unknown parameters that are not achievable through testing. Another exciting aspect
of using AI modeling compared to advanced simulation is that increasing the number of
data points is equivalent to reducing the mesh size (or increasing the number of mesh
elements), which could result in significant improvement of model accuracy. It could,
however, lead to a considerable increase in the computational time of advanced numerical
models, which does not, on the other hand, occur in AI-based models. In other words,
AI-model implementation was found to be quick, easy to use, and potentially affordable
compared to other advanced simulation/calculation approaches.

However, the utilization of AI-/ML-based models is not entirely beneficial. Before
training the model, this advanced approach requires a dataset with a sufficient number
of data points because the predictive power or accuracy of a machine learning model is
primarily dependent on the number of measured input data points. However, to gather
enough data points for an ML model is not always a simple task. Some datasets might
be built up based on the information collected from a literature review. However, if the
literature cannot provide the needed information, the implementation of an experiment is
essential. The number of available fire tests is still limited, which is also one of the chal-
lenges in the fire engineering discipline in general. Through an experimental test, the input
variables of the model and the target output parameters can precisely be revealed. There-
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fore, while some advantages have been demonstrated over other conventional approaches,
it is recommended that the advanced AI approach is better used to assess the fire-related
behavior of materials in combination with traditional techniques such as experimental
testing or numerical simulation.

6. Recommendation for Future Studies

From the perspective of fire engineering, the limitation of the number of available
fire tests hinders the development of models based on AI/ML. To address this challenge,
the research community should work together to synthesize the findings of previous fire
studies and set up new fire tests to generate the new fire data. This would not only help to
better understand the fire-induced behavior of the materials but also allow for the creation
of more complete datasets that serve the purpose of building AI/ML models. Consequently,
the performance of AI/ML-based models could be significantly improved once more data
points become available. Moreover, one of the drawbacks of AI modeling is that this
approach does not consider the nature of the relationship between input and output
variables, which can only be better revealed by performing fire experiments. Therefore, to
get a comprehensive understanding of the behavior of materials under fire conditions, the
use of AI/ML-based models in conjunction with experimental studies in compliance with
regulations and standards should be performed. Another solution to tackle the shortage of
databases is constructing validated finite element models to generate the raw input data
points required for AI models [89]. This approach will primarily rely on the results of fire
tests to build up validated finite element models.

7. Conclusions

This review paper has provided a comprehensive look at the use of artificial in-
telligence in evaluating the behavior of construction materials, a variety of structural
elements/systems, and their flame-retardant capabilities under fire scenarios. The detailed
schematic architecture of neural networks and encouraging statistical results were given in
evaluating the fire performance of flame-retardant materials, which proves the powerful
capability of AI/ML-based models in this area. Through this review, some advantages
and challenges in applying AI techniques compared to conventional methods (e.g., exper-
imental tests and advanced simulations) in the fire engineering area were noticed, and
constructive recommendations for future researches were given. This review paper is ex-
pected to offer benefits to scientists in the fields of fire engineering and material science, as
well as to enable them to explore and consider the use of AI/ML in their research projects.

Through this review, some remarks could be drawn as follows:

• AI techniques have been extensively applied to evaluate the fire performance of
different construction materials consisting of concrete, steel, timber, and composites,
with encouraging results. AI-based models have also shown the potential to predict
the behavior of a variety of structural components such as beams, columns, slabs,
frames, trusses, and connections under fire scenarios.

• Some ML and AI algorithms have commonly been used in the evaluation of the
behavior of materials/structural systems exposed to fires, including ANNs, the ANFIS,
and the GA. While neural networks have mostly been applied to simulate the nonlinear
relationship between various input descriptors and the target output, the GA has been
employed to generate the required input parameters for the computational approach.

• ML techniques have brought many advantages compared to conventional approaches,
such as saving computing time, providing a high level of accuracy, and implementing
with minimal human intervention. However, some drawbacks of these advanced
techniques could be noticed, such as requiring database construction with adequate
data points for ML-based models or being unable to simulate the essence of the
input–output relationship for fire engineering problems.

• For the purpose of constructing AI/ML models, it is suggested that further fire tests
should be arranged to generate the fire database. Additionally, reliable finite element
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models could be constructed and validated to provide additional input data points to
be used in AI models. The AI approach should work in conjunction with traditional
methods (e.g., experimental tests and numerical simulations) to better understand the
fire phenomena and flame retardancy of construction materials.
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