Proposed Mechanism for the Antitrypanosomal Activity of Quercetin and Myricetin isolated from *Hypericum afrum* Lam.: Phytochemistry, in Vitro Testing and Modeling Studies

Farida Larit ^{1,2,*}, Khaled M. Elokely ^{3,4}, Manal A. Nael ^{3,4}, Samira Benyahia ⁵, Francisco León ^{2,6}, Stephen J. Cutler ^{2,6} and Mohammed M. Ghoneim ^{7,8,*}

- ¹ Département de Chimie, Faculté des Sciences Exactes, Université des Frères Mentouri Constantine 1, Constantine 25000, Algeria
- ² Department of BioMolecular Sciences, Division of Medicinal Chemistry, University of Mississippi, University, MS 38677, USA
- ³ Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
- ⁴ Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA 19122, USA; kelokely@temple.edu (K.M.E.); mnael@pharm.tanta.edu.eg (M.A.N.);
- ⁵ Laboratoire de Synthèse Organique, Modélisation et Optimisation des Procèdes (LOMOP), Université Badji Mokhtar, 23000 Annaba, Algeria; samira.benyahia13@gmail.com
- ⁶ Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA; jleon@mailbox.sc.edu (F.L.); sjcutler@cop.sc.edu (S.J.C.)
- ⁷ Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Riyadh 13713, Saudi Arabia
- ⁸ Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, 11371, Egypt
- * Correspondence: laridafarida@umc.edu.dz (F.L.); mghoneim@mcst.edu.sa (M.M.G.), Tel.: +966-537415011 (F.L. & M.M.G.).

Table of Content

	Page
Figure S1. ¹ H NMR spectrum of compound 1.	3
Figure S2. ¹³ C NMR spectrum of compound 1.	4
Figure S3. HRESIMS (-) for compound 1.	5
Figure S4. ¹ H NMR spectrum of compound 2.	6
Figure S5. ¹³ C NMR spectrum of compound 2	7
Figure S6. HRESIMS (-) for compound 2	8
Figure S7. ¹ H NMR spectrum of compound 3.	9
Figure S8. ¹³ C NMR spectrum of compound 3	10
Figure S9. HRESIMS (-) for compound 3	11
Figure S10. ¹ H NMR spectrum of compound 4.	12
Figure S11. ¹³ C NMR spectrum of compound 4	13
Figure S12. HRESIMS (-) for compound 4	14
Figure S13. ¹ H NMR spectrum of compound 5.	15
Figure S14. ¹³ C NMR spectrum of compound 5	16
Figure S15. HRESIMS (-) for compound 5	17
Figure S16. ¹ H NMR spectrum of compound 6	18
Figure S17. ¹³ C NMR spectrum of compound 6	19
Figure S18. HRESIMS (-) for compound 6	20
Figure S19. ¹ H NMR spectrum of compound 7	21
Figure S20. ¹³ C NMR spectrum of compound 7	22
Figure S21. HRESIMS (-) for compound 7	23

Figure S1. ¹H NMR spectrum of compound 1 (DMSO-*d*₆, 400 MHz)

Figure S2. ¹³C NMR spectrum of compound 1 (DMSO-d₆, 100 MHz)

Figure S3. Positive HRESIMS of compound 1

Figure S4. ¹H NMR spectrum of compound 2 (Methanol-*d*₄, 400 MHz)

Figure S5. ¹³C NMR spectrum of compound 2 (Methanol-*d*₄, 100 MHz)

Figure S6. Negative HRESIMS of compound 2

Figure S7. ¹H NMR spectrum of compound 3 (DMSO-*d*₆, 400 MHz)

Figure S8. ¹³C NMR spectrum of compound 3 (DMSO-*d*₆, 100 MHz)

P://aridamass/....9June2015(+).d/\ Injection 1 ESI MS+, Centroid MS + spectrum 0.54

Figure S9. Positive HRESIMS of compound 3

Figure S10. ¹H NMR spectrum of compound 4 (DMSO-*d*₆, 400 MHz)

Figure S11. ¹³C NMR spectrum of compound 4 (DMSO-*d*₆, 400 MHz)

Figure S12. HRESIMS (-) for compound 4

Figure S13. ¹H NMR spectrum of compound 5 (DMSO-*d*₆, 400 MHz)

Figure S14. ¹³C NMR spectrum of compound 5 (DMSO-*d*₆, 100 MHz)

Figure S15. HRESIMS (-) for compound 5

Figure S16. ¹H NMR spectrum of compound 6 (Methanol-*d*₄, 400 MHz)

Figure S17. ¹³C NMR spectrum of compound 6 (Methanol-*d*₄, 100 MHz)

Figure S18. HRESIMS (-) for compound 6

Figure S19. ¹H NMR spectrum of compound 7 (Methanol-*d*₄, 400 MHz)

Figure S20. ¹³C NMR spectrum of compound 7 (Methanol-d4, 100 MHz)

Figure S21. HRESIMS (-) for compound 7