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Abstract: The tyrosine kinase inhibitors (TKIs) are chemotherapeutic drugs used for the targeted ther-
apy of various types of cancer. This work discusses the experimental and computational evaluation
of chloranilic acid (CLA) as a universal chromogenic reagent for developing a novel 96-microwell
spectrophotometric assay (MW-SPA) for TKIs. The reaction resulted in an instantaneous formation of
intensely purple colored products with TKIs. Spectrophotometric results confirmed that the reactions
proceeded via the formation of charge-transfer complexes (CTCs). The physical parameters were
determined for the CTCs of all TKIs. Computational calculations and molecular modelling for the
CTCs were conducted, and the site(s) of interaction on each TKI molecule were determined. Under
the optimized conditions, Beer’s law correlating the absorbances of the CTCs with the concentrations
of TKIs were obeyed in the range of 10–500 µg/well with good correlation coefficients (0.9993–0.9998).
The proposed MW-SPA fully validated and successfully applied for the determination of all TKIs
in their bulk forms and pharmaceutical formulations (tablets). The proposed MW-SPA is the first
assay that can analyze all the TKIs on a single assay system without modifications in the detection
wavelength. The advantages of the proposed MW-SPA are simple, economic and, more importantly,
have high throughput.

Keywords: tyrosine kinase inhibitors; chloranilic acid; charge-transfer reaction; 96-microwell spec-
trophotometric assay; high-throughput pharmaceutical analysis

1. Introduction

Cancer is the world’s second major cause of death among males and females. This
reflects ~9.6 million deaths in 2018 (~13% of all deaths). Cancer deaths worldwide are
expected to increase significantly, with ~13.1 million deaths in 2030 [1]. According to
many reported studies, cancer is a growing problem [2–4] and therefore it continues to
spread worldwide, with a tremendous burden on individuals, families, communities and
healthcare systems, both mentally and socially [5]. The majority of health care systems
in developed countries are little prepared to deal with this challenge, and many cancer
patients globally will not have the privilege of early treatment. In these countries, nearly
two-thirds of cancer patients die [6]. There is evidence that shows that in countries where
national health services are well-developed, strategies such as early detection, treatment
and survivorship care are improving the survival rates of many types of cancers [1,6].

There are a number of treatment options for cancer such as surgery, radiation therapy
and/or chemotherapy. For treating localized cancers, radiation therapy and surgery
are preferred, while chemotherapy is considered safe for systemic cancers. Although
chemotherapeutic agents exert their cytotoxic effect by way of interfering with the synthesis
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or the function of proteins and other needed cellular biomolecules, they also attack RNA,
DNA and other vital proteins. Consequently, one must be careful when administering
chemotherapy, as it has major side/toxic effects since it is capable of killing cells. A perfect
recorded chemotherapy would be highly selective and specific to sick or cancerous tissues,
while leaving healthy ones untouched. Unsurprisingly, the reality always differs from
expectations, as most chemotherapies are heavily toxic, particularly for short-lived cells [7].

Recent developments in life science research in recent years have led to increased
understanding of signaling transductions in tumor cells, apoptosis triggering, cellular
interactions and other critical processes [8]. In addition, these chemotherapeutic drugs
may be highly selective for DNA and other cellular targets that present in cancer cells as
well as normal cells. The use of major intracellular signal transduction enzymes relevant
to the differentiation and spread of cancer cells as drug testing objectives has become a
hot area for medical research and development of antitumor drugs, and the continued
improvement of effective, safe and specific new targeted anticancer drugs [9].

Tyrosine kinase (TK) is an enzyme that is responsible for transferring phosphate group
from adenosine triphosphate (ATP) to the tyrosine residues of certain proteins inside the
living cell [10]. An abnormality in TK could lead to a series of body diseases. Earlier
investigations have demonstrated that there are TK activities for more than half of mutated
proto-oncogenes and oncogenes, and the irregular expression of these genes can contribute
to abnormal cell proliferation and eventually cancer [11]. Additionally, in conjunction with
tumorigenesis, neovascularization and chemotherapy resistance, an abnormal expression
of TK has been observed [12]. For that reason, targeting TK has attracted even more
interest for the pharmaceutical industry for developing new chemotherapeutic drugs.
Researchers and pharmaceutical organizations have been given high priority to developing
tyrosine kinase inhibitors (TKIs) that may affect unique molecular pathways [13]. In
2001, the Food and Drug Administration (FDA) quickly approved the first targeted TKI
drug imatinib and stimulated new energetic thought to cancer treatment [14–16]. To
date, the FDA has approved over 20 TKI drugs [17]. These drugs are characterized by
high effectiveness and low drawbacks and dominate the management of various types of
cancer [10–17] compared to traditional cytotoxic antinineoplastics, some of which have
become the foremost cancer treatment. The safety and efficacy of TKI medications is
principally based on their corresponding pharmaceutical formulation quality, including
drug content and uniformity.

For the quality control (QC) of TKIs, it is absolutely necessary to use proper ana-
lytical techniques. The analytical methods mentioned in the literature for QC of TKIs
in their dosage forms are HPLC and HPTLC [18–27], voltammetry [28], spectrofluorom-
etry [29–32] and spectrophotometry [33–44]. The most accessible methodology is spec-
trophotometry, which is quite easy, the least expensive and available in most quality control
laboratories. Nevertheless, almost all of these spectrophotometric assays for TKIs are
based on measurements of native UV absorption, which are not selective [33–39]. Few
visible-spectrophotometric methodologies with varying chromogenic reagents have been
developed for assaying TKIs [40–44]. Even worse, these methods incorporate laborious
extraction steps and utilize large volumes of toxic organic solvents [45–48]. Furthermore,
due to the differences in chemical structures of analyzed TKIs, these assays were individu-
ally developed. Besides, these assays have limitations regarding throughput, as they use
traditional spectrophotometry.

From the presented information, establishing a universal spectrophotometric method
for assaying any TKI irrespective of its chemical structure would be of great benefit and
convenience. This research is directed to establish a novel 96-microwell-based spectropho-
tometric assay (MW-SPA) that could be applied in QC laboratories for reliable and accurate
determination of any TKI. The proposed approach is based on formation of charge-transfer
complexes (CTCs) between TKIs and chloranilic acid (CLA). The proposed procedure was
established and validated for five TKIs. These TKIs were seliciclib (SEL), vandetanib (VAN),
tozasertib (TOZ), dasatinib (DAS) and olaparib (OLA); their chemical structures are given
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in Figure 1. Their chemical names, molecular formulae and molecular weights are given in
Table 1.
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Figure 1. The chemical structures of chloranilic acid (CLA) and the investigated tyrosine kinase
inhibitors (TKIs) with their abbreviations. Asterisks symbol (*) denotes the electron-donating sites of
interactions of TKIs with CLA and the charge-transfer complexes (CTCs) formed.

Table 1. The investigated TKIs with names, abbreviations, IUPAC names, molecular formulae and molecular weights.

TKI Name Abbreviation IUPAC Name Molecular formula Molecular Weight

Seliciclib SEL (2R)-2-{[6-(benzylamino)-9-(propan-2-yl)-9H-
purin-2-yl]amino}butan-1-ol C19H26N6O 354.46

Vandetanib VAN
N-(4-bromo-2-fluorophenyl)-6-methoxy-7-[(1-

methylpiperidin-4-yl)
methoxy]quinazolin-4-amine

C22H24BrFN4O2 475.40

Tozasertib TOZ
N-[4-[4-(4-methylpiperazin-1-yl)-6-[(5-methyl-

1H-pyrazol-3-yl) amino] pyrimidin-2-yl]
sulfanylphenyl]cyclopropanecarboxamide

C23H28N8OS 464.59

Dasatinib DAS

N-(2-chloro-6-methylphenyl)-2-[[6-[4-(2-
hydroxyethyl)

piperazin-1-yl]-2-methylpyrimidin-4-yl]amino]-
1,3-thiazole-5-carboxamide

C22H26ClN7O2S 488.01

Olaparib OLA
4-[[3-[4-(cyclopropanecarbonyl)piperazine-1-

carbonyl]-4-fluorophenyl]
methyl]-2H-phthalazin-1-one

C24H23FN4O3 434.47
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2. Results and Discussion
2.1. Strategy and Design of the Study

Our selection for TKIs as target analytes is due to their therapeutic relevance and
the need to develop a globalized analytical methodology for their quantification in their
dosage forms regardless of their differences in chemical structure. By virtue of its simplicity
and spreadability in almost all analytical laboratories, spectrophotometry was adopted for
assaying TKIs in the current work. The CT reaction of the investigated TKIs were examined
in this section on the basis of their expected high electron-donating capability due to the
presence of multiple potentially electron-donating sites on the chemical structures of all
TKIs (Figure 1); these sites may form CTCs with electron-acceptors. Previous research,
which include CT reactions with several polyhalo-/polycyanoquinone electron acceptors,
have shown that CLA is by far the most reactive acceptor because its reactions are instant
at room temperature [49,50]. This is the reason why CLA was selected from other acceptors
for the current work. Since traditional CT-based spectrophotometric methods have a
restricted throughput and utilize large volumes of organic solvents that are costly and,
more crucially, cause toxicity to analysts [45–48], this study was dedicated to developing
a spectrophotometric assay for TKIs that is free from these demerits. Accomplishing this
goal was achieved by performing a CT reaction between TKIs and CLA in 96-microwell
assay plates and recording the color intensity by a microplate absorbance reader. This
technique employs low volumes of organic solvents and offers a high-performance analysis
that serves the needs of QC laboratories, as it allows analysts to rapidly perform huge
numbers of samples and to obtain large datasets that would otherwise exhaust assets in
terms of costs, effort and time [50,51].

2.2. UV–Visible Absorption Spectra and Band Gap Energy

UV–visible absorption spectra of various solutions of TKIs were measured in the range
of 200–400 nm. The spectra exhibited various shapes, maxima and molar absorptivities.
This is due to variability in their chemical structures (Figure 1). Nevertheless, none of
the studied TKIs exhibited any reading above 360 nm (Figure 2). When TKI solutions
were mixed individually with a yellow–orange color solution of CLA (its (λmax of 444 nm),
the solutions changed to purple color and the corresponding absorption spectra shifted
toward larger wavelengths of both CLA and TKIs (Figure 2). Table 2 depicts all (λmax)
and the molar absorptivities (ε) for all TKIs. It was confirmed that the new absorption
bands of TKI–CLA product were generated as a result of the reaction between CLA and
TKIs, and the absorption intensities depended on the concentrations of TKIs. The TKI–CLA
absorption spectra produced was shown to have the same form and pattern as the CLA
radical anion formed as a result of the reduction procedure, as published previously [49,52].
The reaction was therefore suggested to be a CT interaction between TKI (electron donor
(D)) and CLA (electron acceptor (A)) and the reaction initiated in methanol (polar solvent)
to form the CTC (D–A). This complex was then disassociated by the ionizing power of
methanol and formed the CLA radical anion, as shown below.

Table 2. Spectrophotometric parameters of the CT complex reaction of CLA with TKIs.

TKIs λmax (nm) εmax × 103

(L mol−1 cm−1)
Band Gap Energy

Value (eV)
Association Constant

(L mol−1 × 108) DG0 (J mol−1 × 104)
Molar Ratio
[TKI:CLA]

SEL 497 0.83 1.90 2.00 −4.74 1:2
VAN 517 1.54 1.90 2.18 −4.76 1:2
TOZ 512 1.47 1.90 1.13 −4.60 1:2
DAS 475 1.09 1.90 2.30 −4.77 1:2
OLA 494 0.73 2.14 1.97 −4.73 1:1
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Figure 2. Panel (A): Absorption spectra of TKIs (10 µg/mL). Panel (B): absorption spectra of CLA
(0.1%, w/v), and its reaction mixtures with TKIs (100 µg/mL). All solutions were in methanol.

It is well known that CLA has three different ionic forms depending on the pH value.
The first form that occurs at low pH is the neutral yellow–orange form (H2A), while the
second form is the purple form (HA−), which is stable at pH = 3, and lastly the third form is
the pale violet form (A2–), which is stable at high pH [53]. It was observed that the resulting
products of all the investigated TKIs with CLA were purple; accordingly, the form HA−

was the concluded form of CLA that is involved in the current reaction. Additionally, there
was other evidence for the suggested reaction, namely the disappearance of the formed
purple color upon addition of mineral acids to the reaction mixtures. All of these findings
support the development of the CTC between CAL and TKIs. The band gap energy (Eg) is
the smallest required energy for excitation of an electron from the lower energy valence
band into the higher energy band to participate in formation of a conduction band [54]. In
order to compute Eg values, a Tauc graph was created from the absorption spectra of the
TKI–CLA complexes by drawing energy values (hυ, in eV) against (αhυ)2 (Figure 3). Eg
values were attained by extrapolation of the linear segments of the plots to (αhν)2 = 0 [55].
The results showed that Eg values ranged from 1.90 to 1.92 eV for all the investigated TKIs
(Table 2). These results illustrate the easiness of electron transfer from TKI to CLA and the
formation of CTC absorption bands.
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(3), DAS (4) and OLA (5).

2.3. Optimizing Conditions for CT Reaction of CLA with TKIs

In order to pick the best solvent for color development optimum reaction conditions,
various solvents with different dielectric constants [56] and polarity indexes [57] were tried
and the absorption spectra reported. These solvents were acetonitrile, methanol, ethanol,
acetone, propanol, butanol, dichloroethane, dichloromethane, chloroform, diethyl ether,
benzene and dioxan. Small shifts were noticed in the λmax values, as well as changes in
molar absorptivity (ε) values. As anticipated, the interactions in more polar solvents that
possess large dielectric constant values, such as methanol and acetonitrile, provided ε
values when compared with less polar solvents, such as diethyl ether and chloroform. This
was attributed to the complete transfer of electrons from the TKI molecule to CLA in polar
solvents; hence, methanol was chosen throughout this work.

2.4. Association Constants and Free Energy Change for the CTC of TKI–CLA

The Benesi–Hildebrand method [58] was applied for calculation of the association
constants (Kc) at room temperature (25 ± 2 ◦C) and at the λmax of the formed TKI–CLA
complexes. As shown in Figure 4 as a representative example, straight lines were obtained
from which the association constants of the CTC were computed. The obtained values
of the association constants ranged from 1.13 × 108 to 2.3 × 108 L mol−1, as depicted in
Table 2.
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The standard free energy change (∆G0) of the CTC were calculated using the follow-
ing formula:

∆G0 = −2.303 RT log Kc

where ∆G0 is the standard free energy change of the complex (KJ mol−1), R is the gas
constant (8.314 KJ mol−1), T is the absolute temperature in Kelvin (◦C + 273) and Kc is the
association constant of the complex (L mol−1). ∆G0 values were found to be comparable to
all TKIs (~ 4.72 × 104 J mol−1). These values proposed the easiness of the TKI interaction
with CLA, as well as the stability of the formed CTCs [59].

2.5. Molar Ratio of the Reaction, Molecular Modelling of CTCs and Determination of the Sites
of Interaction

The published spectrophotometric titration methodology [52] was adopted to find
out the molar ratio of TKI to CLA, and it was found to be 1:1 for OLA and 1:2 for SEL,
VAN, TOZ and DAS (Figure 5). The molecular modelling and energy minimization of the
TKI molecules and the CTC were performed, and the electron density of each atom was
computed for allocation of these sites from the multiple electron-donating sites that exist
on TKI molecules (Figure 1).
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Figure 5. Plot of absorbance versus molar ratio of [CLA]/[Drug] obtained from reaction mixtures
containing a fixed concentration of drug and varying concentrations of CLA. The mole ratio corre-
sponds to the point of intersection of the tangents of straight-line portions of the plots (as shown for
VAN). Measurements were carried out at 490 nm.

The molecular modelling was done with CS Chem3D Ultra, version 16.0, and execution
took place by molecular orbital computations software (MOPAC) and molecular dynamics
computations software (MM2 and MMFF94). The most likely sites for the interaction
between CLA and TKI are found on the TKI, which have the highest electron density
(Table 3). For verification of these sites’ participation, energy minimization was performed
for one molecule of TKI with the number of CLA molecules obtained from the molar ratios.
The CLA molecule was observed adjacent to the suggested sites with the highest electron
density (Figure 6). Exceptionally in the case of OLA, the CLA molecule was adjacent to
the carbonyl oxygen atom (O11), although it had lower electron density than those on
the amide nitrogen atoms (N22 and N25). This information confirmed that CLA–TKI
interactions happen through n→ π* interactions. From the results of the molar ratio and
computational molecular modelling, it was clear that these are the electron-donating sites
on TKI molecules that are involved in generation of the produced CTCs with CLA.
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Table 3. The molar ratios of the reaction of TKIs with CLA, types of atoms proposed as site(s) of interaction on TKIs
molecules and charges on these atoms.

TKI TKI:CLA Molar Ratio Atom Type(s) Proposed as Site(s) of Interaction a Charge b

SEL 1:2 (N10): Enamine or aniline nitrogen, delocalized lone pair of electrons −0.8691
(N21): Enamine or aniline nitrogen, delocalized lone pair of electrons −0.8691

VAN 1:2 (N11): Enamine or aniline nitrogen, delocalized lone pair of electrons −0.6
(N23): Amine nitrogen −0.81

TOZ 1:2 (N2): Aromatic 5-ring nitrogen −0.7068
(N14): Enamine or aniline nitrogen, delocalized lone pair of electrons −0.8382

(N17): Amine nitrogen −0.81
DAS 1:2 (N28): Enamine or aniline nitrogen, delocalized lone pair of electrons −0.8382

(N29): Amine nitrogen, N-hydroxyethyl −0.81
(O30): Alcohol or ether oxygen −0.68

OLA 1:1 (O11): Carbonyl oxygen in amide −0.57
(O21): Carbonyl oxygen in amide −0.57

(N22): Amide nitrogen −0.6602
(N25): Amide nitrogen −0.6602

a These sites of interactions are denoted on the chemical structures of the TKIs (Figure 1). b The negative sign indicates negative
electron density.
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2.6. Optimization of MW-SPA Conditions

In order to have an excellent result in the 96-microwell assay plate, the experimental
conditions were adjusted by adopting a “change one factor at a time” approach. Among
the different tested solvents (Table 4), methanol was the optimum solvent, and it was used
through the whole study, and measurements were recorded at 490 nm (the nearest filter
to the λmax of all investigated TKIs complexes of CLA). The observed results of changing
CLA concentrations and the time of the reaction at room temperature (25 ± 2 ◦C) showed
that the optimum CLA concentrations ranged from 0.2 to 0.8% (w/v), as shown in Figure 7.
Similar experiments were conducted in order to optimize the reaction time, and it was
discovered that the reaction was instantaneous; nevertheless, for obtaining the best reading
precision, the measurements were carried out after 5 min from the starting point of the
reaction. A summary of the condition ranges studied and the optimum value selected for
the development of the proposed MW-SPA are included in Table 4.

Table 4. Optimization of experimental conditions for the 96-microwell spectrophotometric assay for
TKIs based on their CT reaction with CLA.

Condition Studied Range Optimum Value a

CLA conc. (%, w/v) 0.01–0.8 0.4
Solvent Different b Methanol

Reaction time (min) 0–40 5
Temperature (◦C) 25–60 25

Measuring wavelength (nm) 400–800 490
a Optimum values were used for all TKIs. b Solvents used were acetonitrile, methanol, ethanol, acetone, propanol,
butanol, dichloroethane, dichloromethane, chloroform, diethyl ether, benzene and dioxan.
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carried out at 490 nm.

2.7. Validation of MW-SPA
2.7.1. Linear Range and Sensitivity

The calibration curves were constructed (Figure 8) according to optimum conditions
of the MW-SPA (Table 4), and the least square method was used for linear data regression.
Calibration curves in the range of 10–500 µg/well (100 µL) were linear with excellent corre-
lation coefficients. The limits of detection (LOD) and quantitation (LOQ) were determined
based on the International Conference on Harmonization (ICH) guidelines [60]. The LOD
and LOQ levels lay at 3.78–8.16 and 11.36–24.46 µg/well, respectively. A summary for the
calibration and validation parameters of the current MW-SPA is given in Table 5.
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Table 5. Calibration parameters for the analysis of TKIs by the 96-microwell spectrophotometric assay based on their CT
reaction with CLA.

TKIs Linear Range a Intercept SDa b Slope SDb b r b LOD a LOQ a

SEL 10–500 0.0034 0.52 × 10−2 0.0041 1.5 × 10−3 0.9995 4.12 12.38
VAN 15–300 0.0028 0.78 × 10−2 0.0067 1.2 × 10−3 0.9997 3.84 11.52
TOZ 10–300 0.0081 0.60 × 10−2 0.0053 0.6 × 10−2 0.9998 3.78 11.36
DAS 20–500 0.0056 0.68 × 10−2 0.0033 0.1 × 10−2 0.9993 6.78 20.32
OLA 25–500 0.0065 0.64 × 10−3 0.0028 4.3 × 10−3 0.9996 8.16 24.46

a Values are in µg/well. b SDa = standard deviation of the intercept, SDb = standard deviation of the slope, r = correlation coefficient.
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2.7.2. Precision and Accuracy

The accuracy of the proposed MW-SPA was determined utilizing samples of TKI
solutions at various concentration levels (Table 6). The values of relative standard deviation
(RSD) were 1.24–2.24 and 1.51–2.87% for intra- and inter-assay accuracy, respectively. The
high precision of the method was proved by these low RSD values. The accuracy of the
proposed method was assessed by the recovery studies. The recovery values ranged from
97.2 to 102.4% (Table 6), reflecting the accuracy of the assay.

Table 6. Precision and accuracy of the proposed 96-microwell spectrophotometric assay for TKIs via
their CT reactions with CLA.

TKIs
Relative Standard Deviation (%) a

Recovery (% ± SD) a
Intra−Assay, n = 3 Inter−Assay, n = 3

SEL 2.12 2.25 101.7 ± 2.3
VAN 1.24 1.51 102.3 ± 2.2
TOZ 1.53 2.11 97.6 ± 1.9
DAS 2.24 2.87 102.4 ± 2.3
OLA 2.01 2.54 97.2 ± 2.6

a Values are the means of three determinations.

2.7.3. Robustness and Ruggedness

The robustness of the method (effect of small changes in the variables on its perfor-
mance) was assessed [60]. The results of the test were found to be not significantly affected
by small variations in the studied variables; the recovery values ranged between 97.5 and
102.3 ± 1.76 and 2.49%, respectively. This confirmed that the proposed test was convenient
for routine TKI analysis.
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Additionally, the ruggedness was tested by performing the method by at least two
different analysts on three different days [60]. The results were reproducible since RSD
values never exceeded 2.8%.

2.7.4. Specificity and Interference

The advantage of the suggested MW-SPA is that measurements in the visible region
are performed away from UV-absorbing interfering substances, which may be co-extracted
from TKI-containing pharmaceutical formulations. Possible interference of additives in
dosage forms was also studied. Mixing known quantity of TKI with different quantities of
the familiar excipients was done to produce samples. These excipients included microcrys-
talline cellulose, magnesium stearate, sodium starch glyconate, colloidal silicon dioxide
and anhydrous dibasic calcium phosphate. The results given in Table 7 showed that no
interference was noted from any of the mentioned excipients with the suggested methods,
as the recovery values ranged from 97.5 to 102.9%. The absence of interference with these
excipients was caused by the organic solvent extraction of the TKI target from samples,
where the excipients were not dissolved.

Table 7. Analysis of TKIs in the presence of the excipients in solid pharmaceutical tablets by the
proposed 96-microwell spectrophotometric assay based on their CT reactions with CLA.

Excipient b
Recovery (% ± SD) a

SEL VAN TOZ DAS OLA

MCC (50) c 100.9 ± 0.8 101.3 ± 0.56 99.7 ± 1.1 99.5 ± 1.2 101.5 ± 1.2
CSD (10) 97.5 ± 1.5 98.6 ± 1.3 100.6 ± 0.9 100.9 ± 0.9 100.1 ± 1.8
ADCP (5) 101.3 ± 0.9 101.3 ± 1.2 98.8 ± 1.4 102.3 ± 1.7 98.8 ± 1.9

SSG (5) 101.2 ± 0.8 102.9 ± 0.8 99.2 ± 1.6 101.6 ± 1.3 99.2 ± 1.6
MS (5) 99.4 ± 1.2 101.8 ± 1.5 97.9 ± 1.9 100.4 ± 1.4 102.1 ± 1.4

a Values are means of three determinations. b Abbreviations: MCC = microcrystalline cellulose, CSD = colloidal sil-
icone dioxide, ADCP = anhydrous dibasic calcium phosphate, MS = magnesium stearate. c Figures in parenthesis
are the amounts in mg added per 50 mg of TKI.

2.8. Application of MW-SPA in the Analysis of TKIs in Pharmaceutical Formulations

The successfulness of the validation results demonstrated that the suggested procedure
was suitable for routine QC analysis of the investigated TKIs. The MW-SPA was used to
determine TKIs in various pharmaceutical formulations, and the results are depicted in
Table 8. The acquired mean values of the marked amounts were in the range of 98.6% to
103.1%. The results proved that the proposed MW-SPA was appropriate for assaying the
investigated TKIs in their tablets.

Table 8. Determination of TKIs in their pharmaceutical formulations by the proposed MW-SPA based on their CT reaction
with CLA.

Taken Conc.
(µg/well)

Recovery (% ± SD) a

Caprelsa Tablets
(300 mg VAN)

Sprycel Tablets
(70 mg DAS)

Lynparza Tablets
(150 mg OLA)

LM TOZ Tablets b

(100 mg TOZ)
LM SEL Tablets b

(100 mg SEL)

50 102.4 ± 1.3 100.6 ± 1.3 97.9 ± 2.2 101.4 ± 1.8 99.1 ± 1.7
100 98.9 ± 1.2 101.9 ± 1.6 99.2 ± 1.4 103.1 ± 2.6 101.5 ± 1.4
150 101.8 ± 1.8 100.8 ± 1.1 101.3 ± 1.6 99.3 ± 1.2 98.6 ± 1.9
250 99.7 ± 2.1 99.5 ± 1.8 100.6 ± 1.5 101.3 ± 2.8 100.8 ± 1.6

a Values are mean of three determinations. b LM means laboratory made.

In the present study, the detailed spectrophotometric investigations and quantitative
analysis were given for five TKIs; however, other TKIs (more than 10) were tested in our
laboratory for their ability to form CT complexes with CLA, and their results were positive.
Their universal ability to form CT complexes was attributed to the fact that all TKIs contain
electron-donating atoms in their chemical structure; that is the main requirement for forma-
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tion of charge transfer complexes. In addition, we confirmed that all TKIs, regardless their
chemical structures, did not absorb above 400 nm (the UV cut off wavelength) because they
all were not colored. Furthermore, we confirmed that, even if the TKI molecule absorbed
at above 400 nm, it could be analyzed by its reaction with CLA as long as its absorption
spectrum did not extend to the maximum absorption peak of the complex (475–517 nm).

3. Experimental
3.1. Apparatus

A double beam ultraviolet–visible spectrophotometer with matched 1-cm quartz
cells (UV-1800, Shimadzu Co. Ltd., Kyoto, Japan) was operated for the scanning of all
the generated UV–visible spectra. An absorbance microplate reader (ELx808: Bio-Tek
Instruments Inc., Winooski, VT, USA) powered by KC Junior software provided with the
instrument was used.

3.2. Chemicals and Materials

All the investigated TKIs were procured from LC Laboratories (Woburn, MA, USA) and
Weihua Pharma Co. Limited (Hangzhou, Zhejiang, China) and utilized as provided. Their
purity was >99% (as claimed by the providing companies), and their solutions remained
stable for at least 7 days under refrigeration. CLA was bought from BDH Chemicals Co.
(Langenfeld, Germany). Transparent 96-microwell plates were procured from Corning/Costar
Inc (Cambridge, USA). AdjusTable 8-channel pipettes were obtained from Sigma-Aldrich
Chemicals Co (St. Louis, Missouri, USA). BRAND® PP reagent tanks with lids for the pipettes
were acquired from Merck KGaA (Darmstadt, Germany). The other reagents and solvents were
of analytical grade (Fisher Scientific, California, CA, USA). The pharmaceutical formulations
were caprelsa tablets (AstraZeneca, Cambridge, United Kingdom) labelled to contain 300 mg
of VAN; sprycel tablets (Bristol Myers Squibb, New York, NY, USA) labelled to contain 50 mg
DAS per tablet; and lynparza tablets (AstraZeneca, Cambridge, United Kingdom) labelled
to contain 150 mg OLA per tablet. Laboratory-made tablets were prepared in the lab by
combining individually accurate amounts (100 mg) of TOZ and SEL with 25 mg of each of
starch, lactose monohydrate, microcrystalline cellulose and hydroxypropyl cellulose.

3.3. Preparation of TKIs Standard Solutions

Stock solutions of 5 mg/mL of SEL, VAN and OLA were obtained by dissolving
50 mg of the standard material in 10 mL of methanol, while 0.5 mg/mL of DAS and TOZ
solutions were made by dissolving 5 mg of the standard material in 10 mL of methanol.
These above-mentioned stock solutions were found to be stable over a period of 14 days
when stored in the refrigerator.

3.4. Determination of Association Constants

A set of TKI solutions ranging from 1.79 × 10−4 to 1.85 × 10−3 M were swirled with a
constant CLA concentration (4.8 × 10−3 M). The reaction was instant at room temperature
(25± 2 ◦C). The absorbances of the colored solutions were recorded at their absorption
peaks against exactly prepared reagent blanks. The measured absorbances were utilized to
produce the plot of Benesi–Hildebrand [58] by plotting the values [A0]/AAD versus l/[D0].
Linear regression analysis was shown for the data using the following Benesi–Hildebrand
equation [60]:

[A0]

AAD =
1
εAD +

1
KAD

c ·εAD ×
1

[D0]

where [A0] represents the CLA molar concentration (the acceptor); [D0] represents TKI
molar concentration (the donor); AAD represents the absorbance of the CTC reaction
mixture formed; εAD represents the molar absorptivity of the CTC; and KcAD represents
the formation constant of the complex (L mol−1). The intercept of the linear fitting equation
was equivalent to 1/εAD, and the formation constant was calculated from the derived value
of εAD in addition to the slope of the equation.
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3.5. Determination of CLA:TKI Molar Ratio

The spectrophotometric titration methods were applied in the current work [61].
Principal solutions of the investigated TKIs (2.5 × 10−3 M) and CLA (2 × 10−2 M) were
readily prepared (i.e., molar concentration of CLA was 8 times bigger than that of TKI).
Exceptionally, PEL concentration was (1 × 10−3 M) and that of CLA was 8 × 10−3 M. A
set of master solutions of both the investigated TKIs and CLA were made to give molar
ratios of TKI:CLA of 0.25:8. These solutions were always composed of constant TKI
concentrations. The temperature was 25 ± 2 ◦C, and the corrected absorbances of the
products were measured at 490 nm (after subtracting the readings of blanks that were
treated similarly but using methanol instead of the sample) A graph was drawn by plotting
the corrected measured absorbances versus the TKI:CLA molar ratio. From this graph,
the molar ratio of the reaction was computed. The mole ratio corresponds to the point of
intersection of the tangents of straight-line portions of the plots.

3.6. Preparation of TKI Tablets Solutions

The total amount of commercialized or synthetic tablets accounting for 50 mg of TKI
(5 mg was used in case of DAS and TOZ) was placed in a 10-mL measuring flask, dissolved
in a volume of 5 mL methanol, mixed thoroughly and sonicated for 5 min, completed to
the mark with methanol, well shaken for 10 min and then filtered. The first portion of the
filtrate was thrown away, and the exact volume of the filtrate was diluted with methanol.
The final concentrations of TKIs ranged from 50 to 5000 µg mL−1.

3.7. Procedure of MW-SPA

Aliquots (100 microliters) of the standard or tablet sample solutions were composed
of varying concentrations of TKI, ranging from 5 to 500 µg, and were placed to 96-well
plates in addition to 100 microliters of 0.4% w/v of CLA solution. The reaction was carried
out at 25 ± 2 ◦C for 5 min. Absorbances of the product were measured by the plate reader
at a selected wavelength (490 nm). The blank wells were treated exactly the same as the
other wells, except for the addition of 100 µL of methanol to each of them instead of the
TKI solutions. Then, the absorbances of the samples were corrected by subtracting those of
the blanks.

4. Conclusions

The present study found the CLA reagent to be a universal chromogenic reagent for
TKIs. The experiment proved how the reaction proceeded, through formation of colored
CTCs between CLA and TKIs. The reaction was used to develop novel MW-SPA for the
five investigated TKIs. The proposed assay outperformed all the established assays for
TKIs, since it could be applied for assaying all TKIs irrespective of the differences in their
chemical structures. In the presented work, five TKIs were tested; however, the universal
applicability of the proposed assay was supported by another study that was carried out
in our laboratory [62]. Extended advantages of the suggested MW-SPA are the easiness
of the procedure (simplicity), the use of affordable analytical reagents (economic), the
requirement of minimal volumes of reagent and solvent (eco sustainable “green” approach)
and high throughput. All these advantages make the suggested MW-SPA an effective
universal TKI assay for routine QC laboratory use.
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