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10-726 Olsztyn-Kortowo, Poland; darewicz@uwm.edu.pl (M.D.); ami@uwm.edu.pl (A.I.);
marta.turlo@uwm.edu.pl (M.T.)
* Correspondence: minkiew@uwm.edu.pl; Tel.: +48-89-523-3715

Abstract: Phosphorylation represents one of the most important modifications of amino acids,
peptides, and proteins. By modifying the latter, it is useful in improving the functional properties of
foods. Although all these substances are broadly annotated in internet databases, there is no unified
code for their annotation. The present publication aims to describe a simple code for the annotation
of phosphopeptide sequences. The proposed code describes the location of phosphate residues in
amino acid side chains (including new rules of atom numbering in amino acids) and the diversity
of phosphate residues (e.g., di- and triphosphate residues and phosphate amidation). This article
also includes translating the proposed biological code into SMILES, being the most commonly used
chemical code. Finally, it discusses possible errors associated with applying the proposed code and
in the resulting SMILES representations of phosphopeptides. The proposed code can be extended to
describe other modifications in the future.

Keywords: amino acids; peptides; phosphorylation; phosphate groups; databases; code; bioinformatics;
cheminformatics; SMILES

1. Introduction

Phosphorylation belongs to the most important modifications of amino acid residues
in peptides and proteins [1,2]. According to Li et al. [3], phosphorylation of food proteins is
a useful method for improving their functional properties. Some food products containing
proteins (like, e.g., milk, yogurt, or cheeses) can also be sources of phosphopeptides that
affect many body functions [4].

The most typical phosphorylation sites in peptides and proteins are serine, threonine,
and tyrosine residues. Other residues susceptible to this modification are hydroxyly-
sine, hydroxyproline, lysine, arginine, histidine tryptophan, aspartic acid, glutamic acid,
and cysteine [1,5–10]. The N-terminal phosphorylation has not been found in proteins but
is possible in peptides [10].

Biologically active peptides, including those derived from food sources, are annotated
in many databases available via the Internet. Some software types utilize peptide informa-
tion as an input [11–14] and use two kinds of languages for peptide annotation—biological
and chemical [15,16]. The biological languages (also named residue-based notations [17])
describe large biomolecules composed of repeatable units, like, e.g., amino acid residues
annotated with the one-letter and multi-letter code that serve for peptide annotation.

In turn, the chemical languages (atom-based notations) serve mainly to reflect the
chemical diversity of small molecules and enable annotating individual atoms in molecules.
SMILES [18] is the most commonly used chemical language. Other chemical languages
include SYBYL Line Notation (SLN) [19,20] and InChI [21].

Amino acid sequences written in a one-letter code are utilized in specialized peptide
databases such as EROP-Moscow [22], PepBank [23], or BIOPEP-UWM [24]. The BRENDA
database of enzymes [25] and the Norine database of non-ribosomal peptides [26] utilize a
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multi-letter code for amino acid description. In turn, the SATPdb database [27] utilizes a
mixed code—protein amino acids and their D-enantiomers are annotated using a one-letter
code, whereas non-protein amino acids—using a multi-letter code. All databases and other
bioinformatic and cheminformatic tools cited in this paper are summarized in Table 1.
The HELM notation [28,29] designed as a universal language for biopolymer description or
LINUCS [30] designed for oligosaccharide description are also used to annotate peptides.
The chemical languages are used to annotate peptides in chemical databases, such as
PubChem, ChemSpider, and ChEMBL. Codes used for peptide annotation have been
recently discussed by David et al. [31].

Table 1. Bioinformatic and cheminformatic tools cited in this article.

Name of Database or Software 1 Website Reference

BIOPEP-UWM http://www.uwm.edu.pl/biochemia/index.php/pl/
biopep [24]

BRENDA https://www.brenda-enzymes.org/ [25]
ChEMBL https://www.ebi.ac.uk/chembl/ [32]

Chemical Identifier Resolver https://cactus.nci.nih.gov/chemical/structure [33]
ChemSpider http://www.chemspider.com/ [34]

CycloPs—source code https://github.com/fergaljd/cyclops [35]
EROP-Moscow http://erop.inbi.ras.ru/ [22]
NCBI Glycans https://www.ncbi.nlm.nih.gov/glycans/index.html [36]

Norine https://bioinfo.lifl.fr/norine/ [26]
OpenSmiles http://opensmiles.org/ Provider: Blue Obelisk Initiative

PepBank http://pepbank.mgh.harvard.edu/ [23]
PubChem https://pubchem.ncbi.nlm.nih.gov/ [37]
SATPdb http://crdd.osdd.net/raghava/satpdb/links.php [27]

SwissSidechain https://swisssidechain.ch/ [38]
UniProt https://www.uniprot.org/ [39]
ZINC http://zinc15.docking.org/ [40]

1 All tools summarized in the table were accessed in November 2020.

There is no standardized and commonly accepted biological code enabling the an-
notation of sequences containing modified (e.g., phosphorylated) amino acid residues.
The simplest way is to write an amino acid sequence in a one-letter code and complete
the information about the modification in the comments. In texts designed as human-
readable, amino acid residues containing the phosphate group may be highlighted in
sequences (underlined, displayed using color or bold fonts). Recent examples of this way
of phosphate annotation may be found in the articles published by Savastano et al. [41,42],
Pourjoula et al. [43], and Bekker-Jensen et al. [44]. The phosphorylation of amino acid
residues is recently annotated using the letter “p” before one letter symbol of the amino
acid [45–48]. This notation is applied mainly to describe the results of proteomic experi-
ments. It is very simple (e.g., compared with HELM), compact, and easily human-readable.
The above notation of peptides provides information about phosphorylation together with
an amino acid sequence. However, this type of annotating phosphorylation has some
severe limitations. The symbol “p” may mean phosphorylation or amino acid D-proline.
The second opportunity is utilized, e.g., in peptide databases such as BIOPEP-UWM
or SATPdb.

A machine-readable code describing the molecular diversity of peptides should dis-
criminate between one-letter symbols of amino acids and symbols of post-translational
modifications. The annotation of phosphate groups using the symbol “*” (for instance,
S* indicating phosphoserine) fulfills this recommendation and has been used for many
years [49,50]. Moreover, a database of phosphopeptides should be easily screened using
unmodified amino acid sequences as a query. For instance, the BIOPEP-UWM database [24]
has an option named “profile of potential biological activity” that enables finding bioactive
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fragments in any protein sequence taken from, e.g., the UniProt database. This type of
search should also be feasible for phosphopeptides.

The present work aims to propose a code for phosphopeptide annotation with the
following features:

• Enabling the description of the diversity of phosphorylation sites and phosphate
groups naturally occurring in amino acid and peptide molecules;

• Maintaining the balance between human and machine readability;
• Compatible with a standard one-letter code of amino acid sequences;
• Enabling easy conversion into the chemical code SMILES;
• Enabling future development aimed at the annotation of other amino acid modifica-

tions apart from phosphorylation.

2. Annotation of Amino Acids and Phosphate Groups

Sequences of peptides consisting of 20 common proteinogenic amino acids, seleno-
cysteine, pyrrolysine, and their D-enantiomers are encoded using a standard one-letter
code (“A” and “a” for alanine and D-alanine, respectively; “C” and “c” for cysteine and
D-cysteine, respectively, etc.). Non-proteinogenic and unnatural amino acids are usually
annotated using a multi-letter code. It has been developed based on a three-letter code of
protein amino acids.

Our proposal includes a multi-letter abbreviation written between “<” and “>” charac-
ters. In the case of hydroxyproline and hydroxylysine, the hydroxylation makes the carbon
atom asymmetric. Its configuration is indicated by the symbol (R)—rectus or (S)—sinister
(see Table 2 in the main text and Tables S1 and S2 in the Supplementary Materials). Text or
other symbols in such parentheses should be considered equivalent to a one-letter symbol
of a protein amino acid.

Table 2. Symbols used to annotate amino acids and phosphate residues.

Symbol 1,2 Explanation

A; C; D . . . Symbols of proteinogenic amino acids
a; c; d . . . Symbols of D-enantiomers of proteinogenic amino acids

< . . . > (e.g., <Hyp3(S)>; <D-Hyp3(R)>) Symbols of non-proteinogenic, unnatural, and modified amino acids
(Examples: 3-hydroxyproline; 3-D-hydroxyproline

[3*]; [4*]; [5*] . . .
Symbol “*” means phosphate group, the brackets indicate the start and the end of a
compound representation fragment annotating modification. The number indicates

modification site in the amino acid residue

[3***] Example: a chain containing three phosphate residues connected to the amino acid
residue via the atom No. 3

[3*~]; [4*~]; [5*~] . . . Annotation of amidated phosphate groups; the amide group indicated using the
character “~”; modification site in the amino acid residue indicated using a number

S[3*]; T[3*]; <Hyp3>[6*] . . . Examples of phosphorylated amino acids: phosphoserine, phosphothreonine,
hydroxyproline (phosphorylation via the hydroxyl groups)

S[1*][3*] Serine residue with two phosphate groups linked via α-carboxyl group and
hydroxyl group

S~[3*] Serine residue with amidated α-carboxyl group and phosphorylated hydroxyl group

S[3**~] Serine residue modified by the attachment of two phosphate groups connected via a
phosphodiester bond; amidation of the terminal phosphate group

S[3*~*] Serine residue modified by the attachment of two phosphate groups connected via the
amide group

S[3*[~]*]
Serine residue modified by the attachment of two phosphate groups connected via a
phosphodiester bond. Phosphate group linked directly to the amino acid residue is

amidated Amide group is annotated as phosphate group modification
Example of phosphopeptide:

AS[3*]<Hyp3(S)>[6*]Ga Peptide: alanine-phosphoserine-phospho-3-hydroxyproline-glycine-D-alanine

1 More details concerning the structure of phosphorylated amino acids may be found in Table S1 in Supplementary Materials. 2 The num-
bering of atoms in amino acid residues is presented in the next section and Table 3.
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Table 3. Possible location of phosphate groups in amino acid residues.

Amino Acid
Phosphorylation or Other Modification

Location 1 Annotation

α-Carboxyl group in all amino acids mentioned in this text Atom C1 [1 . . . ]
α-Amine group in all amino acids mentioned in this text;

nitrogen atoms in proline and hydroxyproline isomers Atom C2 [2 . . . ]

Serine hydroxyl group Atom C3 [3 . . . ]
Threonine hydroxyl group Atom C3 [3 . . . ]
Tyrosine hydroxyl group Atom C7 [7 . . . ]

3-Hydroxyproline hydroxyl group Atom C6 [6 . . . ]
4-Hydroxyproline hydroxyl group Atom C5 [5 . . . ]
5-Hydroxylysine hydroxyl group Atom C5 [5 . . . ]
Aspartic acid β-carboxyl group Atom C4 [4 . . . ]
Glutamic acid γ-carboxyl group Atom C5 [5 . . . ]

Lysine and hydroxylysine ε-amine group Atom C6 [6 . . . ]
Arginine guanidine group Atom C7 [7 . . . ]

Histidine nitrogen atoms within the imidazole ring Atom N5 or N7 [5 . . . ] or [7 . . . ]
Tryptophan indole nitrogen atom Atom N6 [6 . . . ]

Cysteine thiol group Atom C3 [3 . . . ]
1 More details concerning the numbering of atoms in the amino acid residue may be found in Table S1 in the Supplementary Materials.

The code for the well-known amino acids utilizes abbreviations of their common
names. This rule cannot be considered as obligatory. The entire chemical space of small
molecules contains hundreds of billions of stable compounds containing up to 17 atoms [51].
The entire subspace of amino acids (all possible amino acids understood as components
containing at least one carboxyl and at least one amine group) also should be very large.
We can expect that more and more amino acids will be discovered and synthesized in the
future. Incorporating unnatural amino acids into peptide and protein sequences is the
object of intensive investigations [52–54].

Abbreviations used to describe amino acids should enable their unambiguous descrip-
tion and provide some information about compound structure, if necessary and possible.
They may play a role similar to InChIKeys in chemical information [21]. The main fea-
ture of the biological codes is their compactness [16]. Abbreviations used to annotate
non-proteinogenic and unnatural amino acids should be short (ultimately: shorter than
SMILES or other chemical representations). Hydroxyproline and hydroxylysine annota-
tions (Table 2 in the main text and Table S1 in Supplementary Materials) are examples of
attempts to fulfill the above recommendations.

Amino acid symbols may include Latin letters, numbers, Greek letters, and any other
characters. The “∆F” symbol of didehydrophenylalanine (PubChem CID: 17902612), used
in the SATPdb database (or the <∆F> symbol according to the convention proposed in
this article), may serve as an example of using Greek letters for amino acid annotation.
Abbreviations of systematic (IUPAC) names of amino acids may also be used due to their
major advantage. They may be generated automatically by computer software. The vo-
cabulary of amino acid multi-letter symbols should include traditional abbreviations used
to date in literature and such databases as SwissSidechain, Norine, and SATPdb. All bio-
logical and chemical representations of amino acids should be easily applicable in search
engines. Abbreviations used to describe other classes of compounds (e.g., abbreviations of
monosaccharides used in one of the many existing formats for carbohydrates and carbohy-
drate moieties annotation [17,55–57]) should be avoided if possible. The proposal of this
restriction is justified because using the same abbreviation to describe compounds from
various classes may appear confusing and lead to errors in computer programs, as pointed
out in our previous paper [58] on the example of amino acid and nucleotide sequences.
The symbols proposed to encode phosphopeptides are summarized in Table 2.

There is no unique system for annotating modifications of amino acid residues in
sequences. Parentheses “( )“ are used to indicate modifications [50,59]. We propose writing
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symbols of modifications in the following brackets “[ . . . ]”. The IUPAC recommends these
brackets for annotating sugar residues in glycopeptides. Examples of such annotations
are presented at the NCBI Glycans website. It seems to be logical to apply the same
notation to present other modifications, e.g., phosphorylation. Amidation of phosphate
groups is indicated with the symbol “~” (see Table 2 in the main text and Table S1 in
the Supplementary Materials) used to date in the BIOPEP-UWM database to annotate
C-terminal amidation [24]. The amidation of C-terminal carboxyl groups of peptides is
indicated in the BIOPEP-UWM database with the symbol without parentheses. The same
convention is proposed for the amide group modifying the terminal phosphate group or
connecting two phosphate groups. The symbol of amide group linked to the non-terminal
phosphate group is written in parentheses (see Table 2 in the main text and Table S1 in the
Supplementary Materials).

3. Location of Modifications in Amino Acid Residues

The numbering of atoms being the potential modification sites in amino acid residues
is presented in Table 3. In some cases (hydroxyproline isomers, histidine), there is more than
one phosphorylation site [5,7,8]. In most of the proteinogenic amino acids, the numbering
of carbon atoms is univocal and follows the rules designed for carboxyl acids where the
carbon atom in the α-carboxyl group possesses No. 1.

The same rule is continuously applied to all amino acids mentioned in this article. Such
numbering may appear controversial in the case of amino acids containing rings (tyrosine,
hydroxyproline, histidine, tryptophan). Atom numbering according to IUPAC recommen-
dations and used in, e.g., PubChem database includes separate numbering for chains and
rings, especially heterocyclic ones. For instance, in histidine (PubChem CID 6274), a sys-
tematic name presented in the databases assigns number 1 to two atoms—a carbon atom
in a carboxyl group (according to the rules designed to describe carboxyl acids) and one of
the nitrogen atoms within the ring (according to the rules designed for the description of
heterocyclic compounds).

Such numbering seems confusing from the viewpoint of designing a machine-readable
biological code, although it is easily human-readable due to tradition. Continuous atom
numbering in amino acid residues enables the unambiguous location of any modification
(not only phosphorylation) in the amino acid residue. Our proposal mimics atom num-
bering in sugar residues. Formats for the annotation of carbohydrates and carbohydrate
moieties [17,55–57] use names and abbreviations assigning No. 1 to hemiacetal or acetal
carbon atom, whereas the notation used in general chemical databases (e.g., PubChem)
assigns No. 1 to the oxygen atom, considering a sugar molecule as a heterocyclic compound.
The INChI code [21] and the ReactionCode [60] also contain unambiguous numbering
of atoms in a molecule. The rules of atom numbering proposed below seem to be more
intuitive than these used in the above codes.

Examples of numbering atoms in amino acid molecules are presented in Figure 1.
Atoms in amino acid residues are numbered according to the following rules:

1. Carbon atom within the carboxylic group receives No. 1 (like in the IUPAC names of
carboxylic acids).

2. If there are more carboxyl groups, the nearest from the amine group receives No. 1;
3. Atoms other than carbon (N, O, S, etc.) receive numbers only if they are not terminal.

(Atoms in groups: -NH-; -N=; -O-; -S- possess numbers, whereas atoms in groups
-NH2; -OH; -SH—not).

4. Atoms in the rings are numbered according to the rule of the smallest sum of digits,
including rules 1–3. The atom connected with a substituent containing the carboxyl
group No. 1 possesses priority over heteroatoms and other substituents.

5. Atoms within the ring have priority over atoms in substituents (except for the sub-
stituent containing the carboxyl group No. 1).
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6. Atoms in side chains bound to the main chain (a chain containing the carboxyl group
with carbon atom No. 1) or to the ring are numbered following the location of these
chains (including rule 5).

7. Among different substituents at the same carbon or other atom, priority is established
based on the Cahn-Ingold-Prelog rules [61].
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Figure 1. Examples of the continuous numbering of atoms in amino acid molecules: (a) tyrosine ((2S)-
2-amino-3-(4-hydroxyphenyl)propanoic acid); (b) 3-hydroxyproline ((2S,3S)-3-hydroxypyrrolidine-2-
carboxylic acid); (c) arginine ((2S)-2-amino-5-carbamimidami-dopentanoic acid); (d) histidine ((2S)-2-
amino-3-(1H-imidazol-5-yl)propanoic acid); (e) tryptophan ((2S)-2-amino-3-(1H-indol-3-yl)propanoic
acid); (f) (2S)-2-amino-3-(4-ethoxy-2-ethylphenyl)propanoic acid. Figure prepared using Marvin
Sketch editor (Chem Axon, Budapest, Hungary).

All molecules presented in Figure 1 are α-amino acids. All carbon atoms in the
carboxyl group have No. 1. Nitrogen atom No. 6 in the arginine residue (Figure 1c),
nitrogen atoms within the rings in hydroxyproline (Figure 1b), histidine (Figure 1d), and
tryptophan (Figure 1e), as well as the oxygen atom within the ethoxyl group (Figure 1f) are
examples illustrating Rule 3.

Examples of potential errors in the proposed biological code are presented in Table 4.
The first type of error is indicated by a symbol of amino acid with a phosphate group
attached to a carbon atom without any functional group (e.g., carbon atom No. 4 in threo-
nine residue) in a natural peptide representation. Phosphate groups are not attached to
such carbon atoms. These atoms may be the sites of the attachment of the phosphoric acid
derivative linked via a carbon-phosphorus bond [62]. However, such an amino acid or
peptide derivatives, named phosphonoamino acids and phosphonopeptides respectively,
should be considered as a separate class of compounds. Most of the known phosphonopep-
tides contain a phosphone group instead of a C-terminal carboxyl group [62]. Few peptides
containing phosphonoalanine [63] were synthesized in a laboratory, but natural peptides
containing amino acids with phosphonated side chains remain unknown to date.
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Table 4. Examples of possible errors in peptide annotation.

No. Inappropriate Representation of Peptide Explanation

1. AT[4*]G Inappropriate location of a phosphate group in the threonine residue

2. AH[5*][7*]G Two phosphorylated nitrogen atoms in the imidazole ring being part
of the histidine residue

3. AS[1*]G Carboxyl group simultaneously phosphorylated and involved in the
formation of a peptide bond

4. AS[2*]G Amine group simultaneously phosphorylated and involved in the
formation of a peptide bond

Another potential error is the attachment of two phosphate groups to the imidazole
ring (Error No. 2). Although two phosphate groups can be attached to the same amino
acid residue via different functional groups, nitrogen atoms built into imidazole rings
make an exception. Only one nitrogen atom in this ring reveals basic properties and can be
phosphorylated. It is impossible to perform the phosphorylation of both nitrogen atoms
simultaneously.

Representations of No. 3 and No. 4 are inappropriate because carboxyl and amine
groups cannot be simultaneously phosphorylated and involved in peptide bond formation.

4. Recommendations Concerning Search Engines

Search engines available in a peptide database using the code described here should
include the following options: exact match or search for longer peptides containing the
query fragment. Peptide sequences, annotated using the proposed code, should be available
for the search using traditional sequences as a query. Shorter fragments (subsequences)
should be possible to be found in a particular sequence. Traditional sequences, used in such
databases as UniProt [39], PepBank [23], EROP-Moscow [22], or BIOPEP-UWM [24], consist
of proteinogenic amino acid symbols, annotated using a one-letter code. The compatibility
of peptide representations in the proposed code with traditional sequences may be achieved
in two ways. The first one is the double annotation of the same peptide. Representations in
the proposed code could serve to convert into chemical codes or calculation of molecular
masses and masses of fragment ions to enable the identification with mass spectrometry.
Representations consisting of one-letter symbols of proteinogenic amino acids may serve
for protein database screening or sequence alignments performed using BLAST [64] or a
related algorithm.

Among the amino acids mentioned in this article, hydroxyproline isomers and hydrox-
ylysine are products of the post-translational modification (hydroxylation) of proline and
lysine, respectively. Symbols of modifications annotated in parentheses [ . . . ] are not in-
cluded in unmodified sequences. Operations on particular symbols during the conversion
from the code described here into traditional sequences written using a one-letter code are
presented in Table 5. The conversion of an exemplary peptide AS[3*]<Hyp3(S)>[6*]A into
an unmodified sequence ASPPA is presented in Figure 2. The program working according
to the scheme presented in this figure would start from N-terminal residue, leave one-letter
symbols of proteinogenic amino acids, skip modification symbols annotated in parentheses,
and replace hydroxyproline representation with the proline symbol. The scheme presented
in Figure 2 is not applicable if a peptide contains amino acid residues not resulting from
the post-translational modifications of the proteinogenic ones (e.g., unnatural amino acids).
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Table 5. Conversion of a modified peptide representation into an unmodified sequence consisting of proteinogenic amino acids.

Symbol Operation

One-letter symbol of proteinogenic amino acid Include into unmodified sequence.
Symbol of modification: “[ . . . ]” Skip during building unmodified sequence.

Symbols of L-hydroxyproline isomers: “<Hyp3(S)>; <Hyp4(R)>” Replace by symbol of proline “P”.
Symbol of L-hydroxylysine: <Hyl5(R)> Replace by symbol of lysine “K”.

[ . . . ]—Brackets indicate any modification of amino acid residue. For details see Table 2.

Molecules 2021, 26, x FOR PEER REVIEW 8 of 16 
 

 

terminal residue, leave one-letter symbols of proteinogenic amino acids, skip modification 
symbols annotated in parentheses, and replace hydroxyproline representation with the 
proline symbol. The scheme presented in Figure 2 is not applicable if a peptide contains 
amino acid residues not resulting from the post-translational modifications of the protein-
ogenic ones (e.g., unnatural amino acids). 

Table 5. Conversion of a modified peptide representation into an unmodified sequence consisting of proteinogenic amino 
acids. 

Symbol Operation 
One-letter symbol of proteinogenic amino acid Include into unmodified sequence. 

Symbol of modification: “[…]” Skip during building unmodified sequence. 
Symbols of L-hydroxyproline isomers: “<Hyp3(S)>; <Hyp4(R)>” Replace by symbol of proline “P”. 

Symbol of L-hydroxylysine: <Hyl5(R)> Replace by symbol of lysine “K”. 
[…]—Brackets indicate any modification of amino acid residue. For details see Table 2. 

 

Figure 2. Steps of peptide AS[3*]<Hyp3(S)>[6*]A conversion into an unmodified sequence using 
rules summarized in Table 5. One-letter symbols of proteinogenic amino acids in the initial peptide 
representation are presented using black font, modifications not included in the final sequence using 
blue front, whereas the representation of hydroxyproline and the symbol of a corresponding proline 
residue using red font. 

5. Conversion of the Biological Code into SMILES 
The SMILES code [18] is the most popular among the chemical codes and commonly 

used to annotate peptide structures in chemical databases or as an input for programs 
predicting and modeling their physicochemical properties and biological activity [65]. 
SMILES may be easily converted into other chemical codes. An algorithm for the construc-
tion of peptide SMILES representations has been described by Siani and co-workers [66]. 
A simplified version of this algorithm has been applied in such programs as CycloPs [35] 
and BIOPEP-UWM [24]. 

SMILES strings of amino acids should be arranged as follows: α-amine group, α-car-
bon atom, side chain, and α-carboxyl group. This arrangement of α-amino acid represen-
tations is used in several bioinformatic and cheminformatic tools, such as Chemical Iden-
tifier Resolver [33], CycloPs source code [35], SwissSideChain [38], and BIOPEP-UWM 

Figure 2. Steps of peptide AS[3*]<Hyp3(S)>[6*]A conversion into an unmodified sequence using
rules summarized in Table 5. One-letter symbols of proteinogenic amino acids in the initial peptide
representation are presented using black font, modifications not included in the final sequence using
blue front, whereas the representation of hydroxyproline and the symbol of a corresponding proline
residue using red font.

5. Conversion of the Biological Code into SMILES

The SMILES code [18] is the most popular among the chemical codes and commonly
used to annotate peptide structures in chemical databases or as an input for programs
predicting and modeling their physicochemical properties and biological activity [65].
SMILES may be easily converted into other chemical codes. An algorithm for the construc-
tion of peptide SMILES representations has been described by Siani and co-workers [66].
A simplified version of this algorithm has been applied in such programs as CycloPs [35]
and BIOPEP-UWM [24].
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SMILES strings of amino acids should be arranged as follows: α-amine group,
α-carbon atom, side chain, and α-carboxyl group. This arrangement of α-amino acid
representations is used in several bioinformatic and cheminformatic tools, such as Chemi-
cal Identifier Resolver [33], CycloPs source code [35], SwissSideChain [38], and BIOPEP-
UWM [24]. SMILES strings of amino acids, arranged according to the above rule, may be
generated by the Chemical Identifier Resolver program [33]. Representations of proteino-
genic amino acids and their D-enantiomers are available in the BIOPEP-UWM database
and can be displayed using the “SMILES” application [24]. CycloPs source code in Github
(address in Table 1) includes a list of rearranged SMILES strings of unnatural and non-
proteinogenic amino acids taken from the ZINC database.

Representations of amino acids can also be rearranged manually. In such a case, careful
verification of their correctness is necessary. The simplest way to do that is to translate
SMILES codes of a given amino acid into InChIKey using Chemical Identifier Resolver,
Marvin Sketch, or other program enabling the conversion between various chemical codes.
InChIKey obtained before and after the rearrangement should be the same. Verification of
amino acid representations retrieved from databases by, e.g., the confrontation between
various resources (e.g., PubChem, ChemSpider, ChEMBL, and ZINC) or displaying and
checking the structure using a molecule editor is always recommended [65].

Building peptide SMILES strings is easier if they correspond to non-protonated amine
groups and non-dissociated carboxyl groups. SMILES representations that include ions are
often presented in databases because they are sufficient to predict their metabolism or bio-
logical activity. Aromatic rings may be annotated using two SMILES versions—“Kekule”
and “aromatic”. The second one is recommended at the OpenSmiles website as describing
true electron distribution. However, the first one is used in the PubChem database and
recommended as enabling the construction of a standardized version of the molecule struc-
tures [67]. Moreover, some search engines do not accept the aromatic version of conjugated
or heterocyclic aromatic rings [68], as is the case with histidine and tryptophan among the
proteinogenic amino acids. The list of exemplary SMILES strings of phosphorylated amino
acids is presented in Table S1, whereas the list of representations of amino acids without
phosphate groups—in Table S2 of the Supplementary Materials.

The insertion of phosphate group representations into amino acid SMILES strings may
be done in two ways. The first assumes adding SMILES representations of phosphorylated
amino acids (see Table S1 in the Supplementary Materials) to the vocabulary. This is the
simplest way and can be recommended to annotate a limited number of phosphorylated
amino acids (e.g., peptides containing only proteinogenic amino acids, phosphorylated via
hydroxyl groups).

If the code is intended to be expanded by annotating other modifications, another
opportunity can be considered, as illustrated in Figures 3 and 4. Amino acid residues may
be considered as scaffolds understood by Arús-Pous et al. [69] as partially-built molecules
with defined attachment points. A simple procedure proposed to recognize representa-
tions of attachment points in amino acid SMILES strings relies on recognition patterns
(Figure 3, Tables S2 and S3). This term mimics the so-called recognition sequences under-
stood as the fragments of polynucleotide sequences recognized by restriction enzymes
(endonucleases) [70–72].

Here, the recognition pattern is understood as a fragment of the SMILES string at-
tributed to the particular attachment point and enabling its unambiguous recognition.
Two attachment points in the same amino acid molecule should not possess the same recog-
nition pattern, but the same pattern may occur in different molecules (see Tables S2 and S3).
For instance, the symbol “N” may serve as a recognition pattern if there is only one
nitrogen atom in an amino acid molecule. In that case, it indicates the α-amine group.
If there are more nitrogen atoms in a molecule—longer patterns are necessary to describe
them. The phosphate group representation may be inserted before, after, or instead of the
recognition pattern (Tables S2 and S3, Figure 3).
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threonine residue modified by the addition of two phosphate groups connected via a phosphodiester bond. The phosphate
group linked directly to the amino acid residue is amidated (see Table 2). Color code used in SMILES strings: α-amine
group—blue; α-carbon atom—black; side chain—green; phosphate group–pink; α-carboxyl group—red, according to the
convention used by Minkiewicz et al. [65] (see Tables S1–S3 in the Supplementary Materials). Recognition patterns in amino
acid SMILES strings are underlined, whereas fragments added in a given step are shaded. Terms “After” and “Instead of”
mean the location of a new fragment relative to the recognition pattern (see Tables S2 and S3 in the Supplementary Materials).
Modification sites are indicated by red arrows.

Figures 3 and 4 illustrate the construction of a SMILES representation of HT[3*[~]*]A
tripeptide as an example. The construction begins from the N-terminal amino acid residue—
histidine (H). Residue No. 2 is modified threonine; its modification should be annotated
before its incorporation into the peptide structure. The modification’s insertion starts
from the unmodified threonine representation (T). The program constructing the SMILES
representation should find the recognition pattern: ([C@H](O corresponding to a hydroxyl
group being the attachment point in a threonine string and add phosphate group (*) rep-
resentation: P(=O)(O)O (shaded in Figures 3 and 4) in the appropriate position (after
the recognition pattern). The resulting residue is T[3*]. Phosphate group representation
serves as a recognition pattern for the insertion of another phosphate group. It may be
done by adding a SMILES string fragment P(=O)(O)O after an identical fragment inserted
previously. The resulting residue is T[3**]. The incorporation of an amide group is the
next step in modified threonine residue preparation. It is difficult to label unambigu-
ously the oxygen atom in a diphosphate group which should be replaced by a nitrogen
atom. Thus, the entire diphosphate group representation: P(=O)(O)OP(=O)(O)O, should
be replaced by P(=O)(N)OP(=O)(O)O to obtain a modified threonine residue T[3*[~]*]
representation. This representation should be added to the N-terminal histidine string to
annotate HT[3*[~]*] Dipeptide. The final step involves the addition of a C-terminal alanine
residue (A).

According to our experience [65], the conversion of biological codes into SMILES is a
critical step in processing peptide structures. Such programs are often designed and written
by interdisciplinary groups including, e.g., chemists, biochemists, and informaticians.
The design and validation of codes is a crucial step in the workflow [73].
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The manual construction of a set of peptide SMILES strings is the first step of work on
the program. A set of manual SMILES strings should be corrected and all details of the
procedure should be well explained to achieve the communication between team members
representing various specialties. On the other hand, many errors are unavoidable while
constructing SMILES representations. This problem has been discussed in our previous
publication [65]. Examples of errors in peptide SMILES representations, constructed
manually based on the code proposed in this article, are presented in Figures S1–S5 in the
Supplementary Materials. The errors include the inappropriate arrangement of amino acid
representations, e.g., missed parentheses in SMILES code, leading to errors in side-chain
structures and inappropriate connection between amino acid representations leading to the
inappropriate structure of peptide bonds. All errors were corrected based on the structures
displayed using a molecule editor.

6. Final Remarks

The article presents a proposal of a standardized, human- and machine-readable code
for annotating phosphopeptides. The code is designed to be used in databases annotating
phosphopeptides and programs processing their sequences. The proposed code can be
translated into SMILES using the procedure being an extension of the CHUCKLES algo-
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rithm. It is more specialized than the existing codes for biomacromolecule description,
such as LINUCS or HELM, but simpler than the above codes. The proposed notation
includes, e.g., the unambiguous numbering of atoms in amino acid residues. It can be
extended to utilize symbols of non-proteinogenic or unnatural amino acid symbols and an-
notation. The extended code may also be used to annotate other types of post-translational
and chemical modifications of peptides in the future.

Supplementary Materials: The following are available online, Tables S1–S3, Figures S1–S5.
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Abbreviations

* Proposed symbol of phosphate group
~ Proposed symbol of amidation
BLAST Basic Local Alignment Search Tool
BRENDA Braunschweig Enzyme Database
[C@] and [C@@] Symbols of chiral carbon atoms in SMILES code
CID Compound Identifier (in PubChem database)
∆F Symbol of dehydrophenylalanine according to the SATPdb database
EMBL European Molecular Biology Laboratory
EROP-Moscow Endogenous Regulatory OligoPeptide knowledgebase-Moscow
HELM Hierarchical Editing Language for Macromolecules
Hyl Hydoxylysine
Hyp Hydroxyproline
InChI International Chemical Identifier
InChIKey Key of International Chemical Identifier
IUPAC International Union of Pure and Applied Chemistry
LINUCS LInear Notation for Unique description of Carbohydrate Sequences
NCBI National Center for Biotechnology Information
P Depending on the context, one-letter symbol of proline or phosphorus symbol
p Depending on context, one-letter symbol of D-proline or symbol of

phosphorylation of amino acid residue
R One-letter symbol of arginine
(R) Proposed symbol of configuration of substituents around asymmetric

atom: “Rectus”
S One-letter symbol of serine
(S) Proposed symbol of configuration of substituents around

asymmetric atom: “Sinister”
SATPdb Structurally Annotated Therapeutic Peptides database
SLN SYBYL Line Notation
SMILES Simplified Molecular Input Line Entry System or Simplified Molecular Input

Line Entry Specification
UWM University of Warmia and Mazury in Olsztyn, Poland
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