SUPPLEMENTARY MATERIALS

Self-assembly of Discrete Porphyrin/Calix[4]tube Complexes Promoted by Potassium Ion Encapsulation

Massimiliano Gaeta¹, Elisabetta Rodolico¹, Maria E. Fragalà¹, Andrea Pappalardo¹, Ilenia Pisagatti², Giuseppe Gattuso², Anna Notti^{2,*}, Melchiorre F. Parisi^{2,*}, Roberto Purrello^{1,*} and Alessandro D'Urso^{1,*}

² Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy; ggattuso@unime.it (G.G.); ipisagatti@unime.it (I.P.)

Table of Contents:

Figure S1. pH titration of C4T	2
Figure S2. UV/vis titration spectra of CuTPPS	3
Figure S3. UV/vis titration spectra of the CuTPPS/C4T complexes	3
Figure S4. UV/vis spectra of the CuTPPS/C4T@K+ assemblies	4
Figure S5. UV/vis spectra of the 5:4- and 13:16-(CuTPPS/C4T@K ⁺) assemblies	4
Figure S6. ¹ H NMR of octa-nitro calix[4]tube 2	5
Figure S7. ¹³ C NMR of octa-nitro calix[4]tube 2	5
Figure S8. ¹ H NMR of octa-amino calix[4]tube C4T	5
Figure S9. ¹³ C NMR of octa-amino-calix[4]tube C4T	5
Figure S10. HMQC NMR of octa-amino calix[4]tube C4T	6
Figure S11. ESI-MS spectrum of C4T@K⁺	6

¹ Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy; gaetamassimiliano@libero.it (M.G.); elisabetta.rod27@gmail.com (E.R.); me.fragala@unict.it (M.E.F.); andrea.pappalardo@unict.it (A.P.)

^{*} Correspondence: adurso@unict.it (A.D.); anotti@unime.it (A.N.); mparisi@unime.it (M.F.P.); rpurrello@unict.it (R.P.)

Figure S1. Absorbance variation (at 271 nm) vs pH of a 20 μ M water solution (pH = 3.0) of octa-amino calix[4]tube C4T.

Figure S2. UV/vis absorption spectra of **CuTPPS** in aqueous solution at pH = 3.0 ([**CuTPPS**] ranged from 0.25 to 1 μ M).

Figure S3. UV/vis absorption spectra recorded over the course of the titration of a 2 μ M aqueous solution of **C4T** at pH 3.0 with successive aliquots of an aqueous solution of **CuTPPS** ([**CuTPPS**] ranged from 0.25 to 3.0 μ M).

Figure S4. UV/vis absorption spectra recorded over the course of the titration of a 2 μ M aqueous solution of C4T@K⁺ at pH = 3 with successive aliquots of an aqueous solution of CuTPPS ([CuTPPS] ranged from 0.25 to 4.5 μ M).

Figure S5. UV/vis absorption spectra ($\lambda_{max} = 412 \text{ nm}$) recorded over the course of the titration of a 2 µM aqueous solution of **C4T**@K⁺ at pH = 3 with: *i*) successive aliquots of an aqueous solution of **CuTPPS** ([**CuTPPS**] ranged from 0.25 to 2.5 µM) (black traces) and *ii*) successive aliquots of **CuTPPS** ([**CuTPPS**] ranged from 2.5 to 8.5 µM) after increasing the concentration of **C4T**@K⁺ to 8 µM. The inset shows the spectra of the 5:4-(**CuTPPS/C4T**@K⁺) and the 5:16-(**CuTPPS/C4T**@K⁺) assemblies (black and red traces respectively).

Figure S6.¹H NMR (DMF-*d*⁷, 298 K) of octa-nitro calix[4]tube **2**. The hashtag and the asterisks indicate the H₂O and the residual solvent peaks respectively.

Figure S7.13C NMR (DMF-d7, 298 K) of octa nitro calix[4]tube 2. Asterisks indicate the residual solvent peaks.

Figure S8.¹H NMR (DMF-*d*⁷, 298 K) of octa-amino calix[4]tube **C4T**. The hashtag and the asterisks indicate the H₂O and the residual solvent peaks respectively.

Figure S9.¹³C NMR (DMF-*d*₇, 298 K) of octa-amino calix[4]tube **C4T**. Asterisks indicate the residual solvent peaks.

Figure S10. HMQC NMR (DMF-dz, 298 K) of octa-amino calix[4]tube C4T.

Figure S11. ESI(+)-MS spectrum of the potassium complex of octa-ammonium calix[4]tube C4T@K⁺.