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Abstract: The pivotal role played by potassium ions in the noncovalent synthesis of discrete
porphyrin-calixarene nanostructures has been examined. The flattened-cone conformation adopted by
the two cavities of octa-cationic calix[4]tube C4T was found to prevent the formation of complexes
with well-defined stoichiometry between this novel water-soluble calixarene and the tetra-anionic
phenylsulfonate porphyrin CuTPPS. Conversely, preorganization of C4T into a C4v-symmetrical
scaffold, triggered by potassium ion encapsulation (C4T@K+), allowed us to carry out an efficient
hierarchical self-assembly process leading to 2D and 3D nanostructures. The stepwise formation
of discrete CuTPPS/C4T@K+ noncovalent assemblies, containing up to 33 molecular elements, was
conveniently monitored by UV/vis spectroscopy by following the absorbance of the porphyrin
Soret band.

Keywords: noncovalent synthesis; hierarchical control; calixarenes; calix[4]tubes; metallo-porphyrins

1. Introduction

Porphyrins, owing to their redox [1,2] and opto-electronic properties [3–5], relative
ease of derivatization [6] and propensity to self-organize in architectures of different size
and topology [7–9], are very attractive building blocks for the synthesis of functional
nanomaterials useful for light harvesting [10,11], sensing [12], catalysis [13], imaging [14]
and photodynamic therapy [15] applications. Rods [16–18], wires [19–21], tubes [22],
sheets [23], spheres [24] and rings [25] are examples of porphyrin-based nanostructure
motifs reported to date.

In aqueous solution, however, one of the main obstacles to the development of discrete
nanostructures is created by the pronounced tendency of porphyrins to spontaneously self-
aggregate (via π–π stacking interactions), precluding the formation of arrays of well-defined
shape and size. To overcome this, early endeavors have mainly focused on targeted covalent
derivatizations or the formation of coordination bonds [26]. More recently, the rational
design of porphyrin-based supramolecular assemblies has been successfully carried out in
the presence of templating agents such as: polyelectrolites [27,28], peptides [29], inorganic
molecules bearing metal-coordination centers [30–33] and macrocyclic compounds [34–36],
by taking advantage of single or multiple metal coordination, hydrogen bonding, π–π
stacking, electrostatic and hydrophobic interactions.

Multi-charged water-soluble calix[n]arenes [37–40], because of their remarkable affin-
ity towards charge- and shape-complementary substrates [41–44], have been successfully
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employed as templating agents for the assembly of hybrid porphyrin-calixarene nanos-
tructures in aqueous media [45,46] and in the solid state [47–50]. We have shown that
both anionic [51] and cationic [52] calix[4]arenes quantitatively interact with oppositely
charged porphyrins, under rigid hierarchical rules, providing assemblies with predictable
sequence and stoichiometry. By replacing the calixarene framework with ditopic or tritopic
bis- [53] or tris-calixarene [54] scaffolds we were able to control the dimensionality of the
assembly, hierarchically forming 2D and 3D noncovalent architectures of considerable size.
We were also able to induce chirality in some of these multi-component assemblies by using
appropriate enantiopure agents [52,54,55]. The self-assembly in aqueous solution is mainly
driven by electrostatic interactions between differently charged components as well as
solvophobic effects and other noncovalent weak forces, all of which ultimately contribute
to the thermodynamic stability of the species formed. The stability and kinetic inertness of
these multicomponent assemblies have been assessed by light scattering, diffusion NMR
studies [56] and a number of single-crystal XRD analyses [51,56].

As a follow up to these studies, to test the limits of the noncovalent approach to the
synthesis of porphyrin-calixarene nanostructures we have synthesized a water-soluble
congener of the known p-tert-butylcalix[4]tube 1 (Scheme 1), first reported by Beer and
coworkers [57], and now wish to report the profound effect played by a single potassium ion
on the overall self-assembly process carried out in water in the presence of copper(II) meso-
tetrakis-(4-sulfonatophenyl)porphyrin tetrasodium salt (CuTPPS). Unlike CT4 (Scheme 1),
the corresponding potassium complex (C4T@K+), because of the preorganization of its
cavities and the rigidity of its ditopic tubular structure, is able to promote the noncovalent
assembly of discrete porphyrin/calixtube nanostructures with a stoichiometry as high
as 17:16.

Scheme 1. The synthesis of the octa-amino calix[4]tube C4T. Reaction conditions: (i) HNO3,
CHCl3/AcOH, r.t., 72 h; (ii) H2, Raney/Ni, DMF, r.t., 24 h.

2. Results and Discussion

Octa-amino calix[4]tube C4T was synthesized in overall 70% yield from p-tert-butylcalix
[4]tube 1 [57] by exhaustive nitration followed by reduction of the resultant nitro derivative
2 (Scheme 1).

Analogously to the parent p-tert-butylated derivative 1 [57] and a number of other
calix[4]tubes [58–62], the two cavities of octa-amino calix[4]tube C4T adopt a preferen-
tial flattened-cone conformation (C2v symmetry) in solution (DMF-d7, 298 K). Consistent
with this, the 1H NMR spectrum displays pairs of equally intense broad singlets for the
ArH, OCH2 and NH2 groups and a single AX-system for the ArCH2Ar bridging moieties
(Figure 1a). Signal doubling is also seen in the 13C NMR spectrum of C4T.
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Figure 1. 1H NMR (DMF-d7, 298 K) of: (a) octa-amino calix[4]tube C4T; (b) the potassium complex of the octa-amino
calix[4]tube C4T@K+. The hashtag and the asterisks indicate the H2O and the residual solvent peaks, respectively.

To assess the ability of calixtube C4T to act as a templating agent for the noncovalent
synthesis of porphyrin-based supramolecular architectures, a 2.0 µM aqueous solution
(pH = 3.0 [63]) of C4T was titrated with increasing aliquots of an aqueous solution of
copper(II) meso-tetrakis-(4-sulfonatophenyl)porphyrin tetrasodium salt (CuTPPS). Earlier
studies carried out on several water-soluble calix[4]arenes [51,52], bis-calix[4]arenes [52,55]
and tris-calix[4]arenes [54], and a number of metallo-porphyrins (Chart 1), had shown that
the formation of discrete calixarene/porphyrin assemblies proceeds in a step-wise hierar-
chical fashion [64] with the display of clear-cut spectral changes (absorption or emission).
More specifically, the formation of any complex/assembly of well-defined stoichiometry is
always pinpointed by a specific break-point on a diagram where the absorbance values of
the porphyrin Soret band are plotted vs. the [porphyrin] × 4/[calixarene] ratio (vide infra).
That is, an experimental data point of the titration curve where the slope variation is
larger than 10%. Different slopes indicate the presence in solution of discrete assemblies,
each of these characterized by a different molar extinction coefficient. In other words,
the presence of break-points confirms that the species formed are not in equilibrium with
each other, otherwise a straight line would only be observed over the entire course of a
titration experiment.

Chart 1. Calix[4]arene derivatives and metallo-porphyrins used in previous studies [51–55].
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In the case of the ditopic calix[4]tube C4T and the tetratopic porphyrin CuTPPS,
however, no such trend was observed (Figure 2), despite the fact that the absorption data
collected over the course of the titration displayed—with respect to the blank experiment
carried out in the absence of C4T—hypochromicity and a broadening of the CuTPPS Soret
band and, therefore, a clear indication of porphyrin–calixtube interactions (Figures S2 and
S3, see the Supplementary Materials). The porphyrin–calix[4]tube assembly process was
best analyzed by plotting the CuTPPS absorbance values at 412 nm vs. the [CuTPPS]
× 4/[C4T] ratio. The trace joining the experimental data-points (Figure 2, trace b) is
straight (i.e., no detectable break-points) up to the equivalence ([CuTPPS] = [C4T] = 2 µM)
and then its slope becomes steeper upon further addition of CuTPPS (up to a 3 µM
total concentration). This absorbance trend is consistent with an initial formation of
CuTPPS/C4T complexes with a 1:1 stoichiometry, followed by a marked hyperchromic
effect due to the absorbance of the porphyrin molecules present in excess in solution; the
slope of the second segment of trace b approaches the one observed in CuTPPS solutions
of increasing concentration (Figure 2, trace a). One possible explanation for this unexpected
lack of stoichiometric complementarity between this oppositely charged pair is that the
C4T cavities are forced to adopt a flattened-cone conformation by the four ethylene linkages
(see above), resulting in poor preorganization. These structural features, because of steric
hindrance and weaker electrostatic interactions, prevent the simultaneous binding of four
calix[4]tube molecules to a single porphyrin and, as a result, the formation of a stable
CuTPPS/C4T complex with a 1:4 stoichiometry and a cruciform structure (vide infra).

Figure 2. Variation in the absorbance of the CuTPPS Soret band (λmax = 412 nm) observed upon: (i)
increase of the porphyrin concentration in water (dotted black trace labelled as (a)); (ii) portion-wise
addition of CuTPPS to a 2 µM aqueous solution of calix[4]tube C4T at pH = 3.0 (solid black trace
labelled as (b)); (iii) portion-wise addition of CuTPPS to a 2 µM aqueous solution of C4T@K+ at
pH = 3.0 (multicolored trace labelled as (c)).

Given the known proclivity of p-tert-butylcalix[4]tube 1 to encapsulate potassium ions
within the cryptand-like binding site, provided by the four dioxyethylene bridges, Beer’s
findings [57,58] were exploited to “freeze” the cavities of the octa-amino calix[4]tube into a
more favorable cone conformation. Accordingly, stirring of C4T in DMF in the presence of
a large excess of KI, afforded the corresponding C4T@K+ potassium complex (Figure 1b).

To test whether the potassium complex of calix[4]tube C4T was able to promote
supramolecular assembly as a result of its cavities being preorganized in a C4v-symmetry,
the templating-agent potentials of C4T@K+ were reassessed under the conditions described
earlier. The UV/vis titration was similarly carried out by adding increasing amounts
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of CuTPPS to a solution of C4T@K+ (2 µM) in water at pH = 3.0 [63]. As seen above,
the spectra acquired in the course of the titration, showed that the absorbance of the
porphyrin Soret band broadens and undergoes a hypochromic effect (Figure S4). However,
compared with the CuTPPS/C4T system (Figure 2, trace b), in this case, the assembly
process proceeds under stoichiometric control up to a [CuTPPS] = 4 µM, as unambiguously
proven by the presence of several break-points coinciding with CuTPPS/C4T@K+ complexes
of precise stoichiometry (i.e., 1:4-, 2:4-, 3:4-, 4:4-, 5:4-, 6:4-, 7:4- and 8:4-(CuTPPS/C4T@K+);
see Figure 2, trace c). As the titration proceeds and further aliquots of porphyrin are added
to the solution (i.e., for [CuTPPS] > 4 µM), the absorbance sharply increases and the related
slope is seen to closely match the one detected for CuTPPS on its own (Figure 2, compare
traces a with the last segment of trace c). These findings indicate that the excess porphyrin
molecules now present in solution are no longer interacting with the supramolecular
complex. As for the largest species obtained under these conditions, the absorption data
of Figure 2 (trace c) suggests the formation of an 8:4-(CuTPPS/C4T@K+) supramolecular
structure, similar to those observed elsewhere by single-crystal X-ray analysis [48–51],
likely obtained as a result of the stacking of three additional porphyrin molecules above
and/or below the plane containing the parent 5:4-(CuTPPS/C4T@K+) assembly [65], the
latter having radially grown around the central CuTPPS unit in a step-wise and hierarchical
fashion. Compared to the case analyzed at the beginning, where the two C2v-symmetrical
cavities of C4T were seen to prevent efficient porphyrin binding, the result observed in the
presence of the ditopic C4v-arranged C4T@K+ calixtube complex is quite dramatic in terms
of stoichiometric control of the assembly process.

Similar to the case of bis-calix[4]arene BC4 (Chart 1, [53]), the 5:4-(CuTPPS/C4T@K+)
assembly is a “fork-point” precursor, key to the subsequent 2D or 3D syntheses of larger
porphyrin/calixtube supramolecular architectures (Figure 3).

Figure 3. Variation in the absorbance of the CuTPPS Soret band (λmax = 412 nm) observed upon: (i)
increase of the porphyrin concentration in water (dotted black trace labelled as (a)); (ii) portion-wise
addition of CuTPPS to a 2 µM aqueous solution of C4T@K+ at pH 3.0 (solid black trace labelled
as (b)); (iii) initial portion-wise addition of CuTPPS to a 2 µM aqueous solution of C4T@K+ at
pH 3.0 up to the formation of the 5:4-(CuTPPS/C4T@K+) assembly (see the black arrow of trace (b)),
followed by portion-wise addition of C4T@K+ (up to a final [C4T@K+] = 8 µM) to form the 5:16-
(CuTPPS/C4T@K+) assembly (see the blue arrow of trace (c)) and then final increment of the CuTPPS
concentration from 2.5 to 8.5 µM to yield the 17:16-(CuTPPS/C4T@K+) assembly (multicolored
portion of trace (c)).

Addition of porphyrins leads to the above-mentioned 8:4-(CuTPPS/C4T@K+) species,
where the extra CuTPPS molecules are stacked above and/or below the planar 5:4-
(CuTPPS/C4T@K+) assembly (second section of trace b), whereas an increase in the
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calixtube concentration (in a parallel titration experiment) from 2 to 8 µM prompts a
planar growth of the assembly, yielding the 5:16-(CuTPPS/C4T@K+) species (Figure 3). As
expected, given the absence of ‘free’ porphyrin molecules in solution, the formation of the
latter proceeds with no variations in the absorbance at 412 nm, (blue arrow close to trace
c in Figure 3, see also Figure S5). On the other hand, once the 5:16-(CuTPPS/C4T@K+)
species has formed, a total of twelve cavities of calix[4]tube become available. As a
result, upon subsequent increase of the CuTPPS concentration from 2.5 to 8.5 µM the
solution undergoes—with respect to the blank, see trace a—a noticeable hypochromic effect
(Figure 3, blue and red segments of trace c) which is consistent with the formation of an
assembly with a 13:16 CuTPPS/C4T@K+ stoichiometry (Figure 3, red arrow close to trace
c). In agreement with the even larger hypochromicity observed in the green segment of
trace c (Figure 3), the formation of a new discrete species (i.e., 17:16-(CuTPPS/C4T@K+) is
finally observed. This latter is probably formed by further piling of four CuTPPS molecules
above and/or below the planar 13:16-(CuTPPS/C4T@K+) assembly. After reaching the
17:16 molar ratio the titration experiment was halted because of an incipient precipitate
formation in solution.

3. Materials and Methods
3.1. General

Commercial reagent grade chemicals were used as received without any further
purification. Solvents were dried by standard methods. Melting points were determined on
a Kofler hot stage apparatus and are uncorrected. 1H and 13C NMR spectra were acquired
at 25 ◦C in DMF-d7, at 500 and 125 MHz respectively. Chemical shifts are reported in ppm
and are referenced to the solvent residual peak (δH = 2.75 ppm and δC = 29.8 ppm). The
ESI-MS spectrum of C4T@K+ (dissolved in H2O at pH = 3.0) was recorded on an ES-MS
Thermo-Finnigan LCQ-DECA instrument (positive ion mode) using a low declustering
potential. UV/vis measurements were carried out at room temperature on a JASCO V-530
spectrophotometer. Quartz cuvettes with 1 cm path-length were used for all measurements.
Routinely, 3 to 5 different solutions were used for each determination.

p-tert-Butylcalix[4]tube 1 was prepared according to a known literature procedure [57].
Copper(II) meso-tetrakis-(4-sulfonatophenyl)porphyrin tetrasodium salt (CuTPPS) was
synthesized from the corresponding metal oxides (CuO) by heterogeneous metal-insertion
in water, according to a previously reported procedure [65].

CuTPPS, C4T and C4T@K+ stock solutions (about 4× 10−4, 3.2× 10−4 and 5.4× 10−4 M,
respectively) were prepared in ultrapure water obtained from Elga Veolia Purelab flex and
their concentrations were calculated spectrophotometrically (UV/vis in H2O) by looking at
the maximum intensity of the porphyrin Soret band λmax(ε) = 412 nm (416,000 M−1 cm−1).
CuTPPS/C4T@K+ assemblies were obtained at room temperature by adding increasing
aliquots of CuTPPS (so that the concentration of the porphyrin in the titrating solution
was 0.25 µM higher after each addition) to a 2 µM aqueous solution (pH = 3.0) of the
C4T@K+ complex, up to desired molar ratio [CuTPPS]/[C4T@K+]. In water, under acidic
conditions (pH = 3.0), the octa-amino calix[4]tube C4T is converted to its fully protonated
octa-ammonium form(see Figure S1).

3.2. Syntheses of Calix[4]tube C4T and the Potassium Inclusion Complex C4T@K+

3.2.1. Octa-Nitro Calix[4]tube 2

Fuming HNO3 (4.5 mL) was slowly added to a cooled (T = −15 ◦C) solution of p-
tert-butylcalix[4]tube 1 (630 mg, 0.45 mmol) in CHCl3 (180 mL) and AcOH (13.5 mL) and
the mixture was then left to stir vigorously at room temperature. Addition of the same
amounts of AcOH and HNO3 was repeated after 24 and 48 h. After 72 h, the solvent was
evaporated under vacuum and the resulting residue was triturated with CH3OH (30 mL).
Several recrystallizations from DMF of the solid thus obtained yielded derivative 2 as an
off-white powder (554 mg, 94%). M.p. > 230 ◦C. 1H NMR (DMF-d7) δ 8.62 (s, ArH, 8H),
7.64 (s, ArH, 8H), 5.51 (s, OCH2, 8H), 4.85 and 4.03 (AX system, J = 13.6 Hz, ArCH2Ar,
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16H), 4.84 (s, OCH2, 8H) ppm. 13C NMR (DMF-d7) δ 164.1, 162.1, 143.7, 143.1, 125.8, 124.5,
73.8, 73.4, 31.6 ppm. Anal. Calcd for C64H48N8O24: C, 58.54; H, 3.68; N, 8.53. Found: C,
58.23; H, 3.92; N, 8.37.

3.2.2. Octa-Amino Calix[4]tube C4T

A suspension of 2 (100 mg, 0.076 mmol) and Raney/Nickel in DMF (50 mL) was
stirred under H2 (1 atm) at room temperature for 24 h. The catalyst was filtered off and the
eluate was evaporated to dryness under vacuum to provide a residue that upon treatment
with MeOH gave C4T as a brown powder that was collected by suction filtration (61 mg,
75%). M.p. > 230 ◦C. 1H NMR (DMF-d7): δ 6.45 (br s, ArH, 8H), 6.03 (br s, ArH, 8H), 5.06
(br s, OCH2, 8H), 4.51 and 3.02 (AX system, J = 12.3 Hz, ArCH2Ar, 16 H), 4.47 (br s, NH2,
8H), 4.23 (br s, OCH2, 8H), 4.04 (br s, NH2, 8H) ppm. 13C NMR (DMF-d7): δ 150.6, 148.5,
143.3, 142.7, 135.9, 133.0, 115.07, 114.96, 73.7, 32.6 ppm. Anal. Calcd for C64H64N8O8: C,
71.62; H, 6.01, N, 10.44. Found: C, 71.31; H, 6.23; N, 10.29.

3.2.3. Formation of the C4T@K+ Complex

A suspension of C4T (10 mg, 9 µmol) and KI (100 mg, 600 µmol) in dry DMF (30, mL)
was kept under vigorous stirring at room temperature for 12 h. Excess of the inorganic
salt was removed by suction filtration and the organic eluate was concentrated to dryness
under vacuum to afford C4T@K+ as a solid residue. 1H NMR (DMF-d7): δ 6.60 (s, ArH,
16H), 4.63 and 3.26 (AX system, J = 13.8 Hz, ArCH2Ar, 16H), 4.53 (br s, OCH2, 16H), 4.48
(br s, NH2, 16H) ppm; ESI(+)-MS: m/z 287 ([M + K + 4H + Cl]4+, 17%).

4. Conclusions

Our findings show how minute structural modifications, of no apparent significance,
may dramatically change the overall outcome of a self-assembly process, by either prevent-
ing or promoting the association of complex supramolecular nanostructures. Here, a single
potassium ion is seen to produce an allosteric effect which triggers the subsequent non-
covalent assembly of octa-cationic calix[4]tube C4T and the complementary tetra-anionic
metallo-porphyrin CuTPPS. K+ binds to the cryptand-like binding site, formed by the
four dioxoethylene bridging moieties of the calix[4]tube and, by acting as an “effector”,
promotes the conformational change of its two cavities from C2v to C4v. As a result,
C4T@K+ is then able to act as an efficient templating agent, providing a variety of 2D and
3D CuTPPS/C4T@K+ assemblies of predictable sequence, topology and stoichiometry.
The noncovalent synthesis of these species follows a strict hierarchical pattern which can,
in principle, be exploited to introduce a given property (e.g., chirality [52]) at a specific
location in the assembly so as to modulate the reactivity of the entire nanostructure.

We are currently investigating the ability of other ionic and neutral species to act as
effectors of discrete noncovalent porphyrin-calixarene functional materials.

Supplementary Materials: The following are available online, UV/Vis titration spectra, NMR and
MS spectra.
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