SUPPLEMENTARY INFORMATION TO:

The three pillars of natural product dereplication. Alkaloids from the bulbs of *Urceolina peruviana* (C. Presl) J.F. Macbr. as a preliminary test case.

Mariacaterina Lianza¹, Ritchy Leroy², Carine Machado Rodrigues², Nicolas Borie², Charlotte Sayagh², Simon Remy², Stefan Kuhn³, Jean-Hugues Renault², Jean-Marc Nuzillard²

1. University of Bologna, Department of Pharmacy and Biotechnology, 40126 Bologna, Italy

2. Université de Reims Champagne Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France

3. De Montfort University, School of Computer Science and Informatics, Leicester LE1 9BH, UK

Table of Contents

Figure S1. Step-by-step processing by KnapsackSearch of a list of organism genera (*family*_genera.txt, *family* being replaced by an organism family name or an alias, like amaryll standing for Amaryllidaceae) into an SDF file (*family*_knapsack.sdf) with automatically generated 2D structure, basic molecular properties, taxonomic data, and nmrshiftdb2-predicted ¹³C NMR chemical shifts. All scripts are available from https://github.com/nuzillard/KnapsackSearch.

Figure S2. a. Screenshot, response of http://www.knapsackfamily.com/knapsack_core/top.php when searching for Organism "Galanthus". The list of data items was truncated. **b**. Screenshot, response of http://www.knapsackfamily.com/knapsack_core/top.php when searching for C_ID C00001570 (galanthamine), upper part of screen, with molecular data and lower part with botanical data (truncated). **c.** Screenshot, view of galanthamine by EdiSDF as produced by KnapsackSearch and present in database DB2. The list of chemical shifts was truncated.

Figure S3. Comparison of the ¹³C NMR spectra of extracts 1, 2, and 3, drawn in sub-figures a, b, and c, respectively.

Figure S4. Procedure for the semi-automatic supplementation of ACD/Labs databases with predicted chemical shifts. ACD C+H NMR Predictors and DB 2020 and 2019.

Figure S5. Substructures that define eight classes of Amaryllidaceae alkaloids. Sub3 is a substructure of Sub5 and Sub1, thus reducing to six the effective number of substructures.

Table S1. Lists of ¹³C NMR chemical shifts drawn from the spectra of fractions A4, A7, A9, and A11. The number of attached protons, or H multiplicity, is given by symbols between parenthesis: s, d, t, and q for quarternary, methine, methylene, and methyl carbons, respectively. H multiplicity was derived from the inspection of the multiplicity-edited HSQC spectra of fractions.

Table S2. Tentative identification of compounds in DB1, DB2, DB3, DB3' and DB4 that fit with the ¹³C NMR chemical shifts from fractions F4, F7, F9, and F11.

Figure S1. Step-by-step processing by KnapsackSearch of a list of organism genera (*family*_genera.txt, *family* being replaced by an organism family name or an alias, like amaryll standing for Amaryllidaceae) into an SDF file (*family*_knapsack.sdf) with automatically generated 2D structure, basic molecular properties, taxonomic data, and nmrshiftdb2-predicted ¹³C NMR chemical shifts. All scripts are available from https://github.com/nuzillard/KnapsackSearch.

$(\leftarrow) \rightarrow$ C \textcircled{a}	0 🖌	www.knapsackfamily.com/knapsack_co	&word=galanthus 🗐	… ⊠ ☆	lii\ (Ð	۲				
KARA											
input type = org	anism , input word =	galanthus									
Number of matcl	hed data :76			8.0	0						
C_ID	CAS ID	Metabolite	Molecular formula	INW	Orga	nism					
<u>C00000575</u>	484-20-8	Bergaptan	C12H8O4	216.04225874	Brachyclados megalanthus						
<u>C00001417</u>	539-15-1	Hordenine	C10H15NO	165.11536411	Galanthus plicatus s	spp.byzant	inus				
<u>C00001417</u>	539-15-1	Hordenine	C10H15NO	165.11536411	Galanthus elewesii						
<u>C00001570</u>	357-70-0	Galanthamine	C17H21NO3	287.15214354	Galanthus woronow						
<u>C00001570</u>	357-70-0	Galanthamine	C17H21NO3	287.15214354	Galanthus spp.						
<u>C00001570</u>	357-70-0	Galanthamine	C17H21NO3	287.15214354	Galanthus elwesii Hook.						
C00001570	357-70-0	Galanthamine	C17H21NO3	287.15214354	Galanthus elewesii						
C00001570	357-70-0	Galanthamine	C17H21NO3	287.15214354	Galanthus caucasic	us					
C00001570	357-70-0	Galanthamine	C17H21NO3	287.15214354	Galanthus nivalis						
C00001571	466-75-1	Haemanthamine	301.1314081	Galanthus elwesii							
C00001572	477-17-8	Hippeastrine	C17H17NO5	315.11067266	Galanthus nivalis						
C00001576	476-28-8	Lycorine	C16H17NO4	287.11575804	Galanthus woronow	ii Losinsk.					
C00001576	476-28-8	Lycorine	C16H17NO4	287.11575804	Galanthus caucasic	us					
C00001576	476-28-8	Lycorine	287.11575804	Galanthus nivalis							
C00001576	476-28-8	Lycorine	287.11575804	Galanthus elewesii							
C00001578	510-77-0	Narwedine	C17H19NO3	285,13649348	Galanthus nivalis						
C00001578	510-77-0	Narwedine	C17H19NO3	285 136/03/8	Galanthus elwesii						

Figure S2a. Screenshot, response of http://www.knapsackfamily.com/knapsack_core/top.php when searching for Organism "Galanthus". The list of data items was truncated.

Figure S2b. Screenshot, response of http://www.knapsackfamily.com/knapsack_core/top.php when searching for C_ID C00001570 (galanthamine), upper part of screen, with molecular data and lower part with botanical data (truncated).

Figure S2c. Screenshot, view of galanthamine by EdiSDF as produced by KnapsackSearch and present in database DB2. The list of chemical shifts was truncated.

Figure S3. Comparison of the ¹³C NMR spectra of extracts 1, 2, and 3, drawn in sub-figures a, b, and c, respectively.

1. Launch CNMR Predictor. ChemSketch window appears

2. Switch to Database window, bottom menu bar, item 7-Database. The Database interface appears

3. Create database. Database->New... from top menu bar. The "Create New Database" pop-up appears.

4. Indicate directory and name for the database location. Save. Leave passwords blank. OK.

5. Click "Database->Import" from top menu bar. The "Import" pop-up appears.

6. Indicate .sdf file directory and name. The "Import Options" pop-up appears

7. Check for "Search for Duplicated Chemical Structures" and select "Stop and Prompt". OK.

8. The "Import Information" pop-up apprears. OK. The first structure appears in the left-side panel

9. In the toolbar click on the "Copy Chemical Structure to Editor" button, on the left of the "Delete Record" button, the latter shows a red cross.

10. The ChemSketch window appears with the structure inside. Select All (Ctrl-A) and Copy (Ctrl-C) the structure.

11. Click on the "7-Database" button in the bottom menu bar. Back to the database panel.

12. Click on "ACD/Labs -> Spectrus". The Spectrus windows appears.

13. Paste the structure with Ctrl-V. The structure appears in the right-side panel.

14. Click on the pocket calculator icon at the very right of the tool bar of the right-side panel.

Possibly enlarge this panel to let the icon show up if hidden (This may happen).

15. Select HNMR under the calculator icon. The 1H-NMR spectrum and the parameter table show up in the center panel

16. Click "Database -> Update C+H NMR Database". The "Duplicated Structure" pop-up appears. Click "Update".

17. The database window pops-up with 1H NMR data tables in the center panel.

18. Click on "ACD/Labs -> Spectrus". The Spectrus windows appears.

19. Click on the pocket calculator icon at the very right of the tool bar of the right-side panel and select CNMR.

The 13C-NMR spectrum shows up in the center panel, under the 1H spectrum.

20. Click "Database -> Update C+H NMR Database". The "Duplicated Structure" pop-up appears. Click "Update". 21. The database window pops-up with 1H and 13C NMR data tables in the center panel.

22. Click on \gg in the top tool bar to select the next molecule.

23. In the toolbar click on the "Copy Chemical Structure to Editor" button, on the left of the "Delete Record" button.

24. A pop-up appears to ask for deleting the existing structure in ChemSketch. Click the "Yes" button.

25. Select all and copy and go to the database window (7-Database, bottom menu bar). Select "ACD/Labs -> Spectrus"

26. Delete the two spectra, by clicking on the red cross that appears when the mouse hovers above the left-side orange spectrum bar.

Do not save the changes.

27. Copy the structure to the right panel of Spectrus with Ctrl-V and go back to step 14.

28. The process maybe stopped after step 21.

29. Click "Database -> Close" to close the database and "Database -> Exit" to exit the Database. The Spectrus database becomes visible

30. Click "File -> Exit" and then "No All". Spectrus and ChemSketch windows disappear.

Figure S4. Procedure for the semi-automatic supplementation of ACD/Labs databases with predicted chemical shifts. ACD C+H NMR Predictors and DB 2020 and 2019.

Substructure	Туре	SMARTS
1	Lycorine	Oc1cc2C~3~C~C~C~C~4~C~C~N(~C~3~4)~Cc2cc1O
2	Homolycorine	Oc1cc2C~3~C~4~N~C~C~C~4~C~C~C~3OC(~O)c2cc1O
3	Narciclassine	Oc1cc2C~3~C~C~C~C~3~N~Cc2cc1O
4	Galanthamine	Oc1ccc(c24)C~N~C~C~C2~3~C~C~C~C~C~3Oc14
5	Crinine	Oc1cc2C~N(~C~C~4)~C~3~C~C~C~C~C~3~4c2cc1O
6	Tazettine	Oc1cc2COC~3~C~N~C~4~C~C~C~C~C~3~4c2cc1O
7	Norbelladine	c1cc(O)c(O)cc1C~N~C~Cc1ccc(O)cc1
8	Montanine	Oc1cc2C~N(~C~3)~C~4~C~C~C~C~C~4~C~3c2cc1O

Figure S5. Substructures that define eight classes of Amaryllidaceae alkaloids. Sub3 is a substructure of Sub5 and Sub1, thus reducing to six the effective number of substructures.

A4	A7	A9	A11
145.7380(s)	161.2988(s)	145.7999(s)	145.5792(s)
145.6658(s)	156.5513(s)	145.2919(s)	145.1041(s)
129.5609(d)	155.0277(s)	136.5904(s)	138.8210(s)
129.1635(d)	141.8143(s)	129.5186(d)	130.7921(d)
127.9679(s)	141.1331(s)	128.7362(d)	128.4712(d)
126.3558(s)	140.6848(s)	127.3450(s)	126.9639(s)
108.3809(d)	115.0101(d)	106.8113(d)	106.8801(d)
104.1610(d)	110.9643(s)	103.2841(d)	103.1479(d)
101.0643(s)	108.2002(d)	100.5172(t)	100.4552(t)
100.8134(t)	75.7086(d)	80.0883(d)	62.4607(d)
72.6015(d)	65.8267(d)	72.4080(d)	62.3959(d)
69.4049(d)	61.6679(q)	63.7084(t)	61.9272(t)
65.2038(t)	60.7180(q)	62.4698(d)	53.0113(t)
60.7529(t)	56.3367(q)	60.7084(t)	44.1980(t)
55.3574(q)	55.7209(t)	55.6452(q)	43.8661(s)
49.4757(s)	43.9295(d)	49.8956(s)	32.7112(t)
41.8599(q)	43.2234(q)	28.1847(t)	
25.9311(t)	30.3999(t)		
	27.5896(t)		

Table S1. Lists of ¹³C NMR chemical shifts drawn from the spectra of fractions A4, A7, A9, and A11. The number of attached protons, or H multiplicity, is given by symbols between parenthesis: s, d, t, and q for quarternary, methine, methylene, and methyl carbons, respectively. H multiplicity was derived from the inspection of the multiplicity-edited HSQC spectra of fractions.

Solutions										2 isomers of albomaculine	1 1-methylexcentricine				2 isomers of haemanthamine					1 haemanthamine (flat)									
Filter 2 Mumber of										$C_{19}H_{23}NO_5$	C ₁₉ H ₂₅ NO ₅				C17H19NO4					C17H19NO4									
Solutions		isomers of tazettine							Albomaculine	í	×	isomers of albomaculine Albomaculine (flat)			^==			isomers of haemanthamine		haemanthamine, haemanthidine		epi-vittatine, caranine		3 isomers of crinine, caranine		isomers of crinine	isomers of crinine		crinine, caranine (flat)
Number of solutions		7							1 0	30	5	2		0	S			6		2		2		4	0	9	د د		2
Filter 1		18 C, 1-2 N							19 C, 1-2 N	19 C 1-2 N	N 7-7 17 CT	19 C, 1-2 N		N C F J Z F	1/ C [,] 1-7 N			17 C, 1-2 N		17C, 1-2 N		16 C, 1-2 N		16 C, 1-2 N	16 C 1 2 M	10 C' 1-2 N	16 C 1-2 N		16C, 1-2 N
Solutions	Taezttine, Criwelline		isomers of tazettine	Tazettine (flat)	Albomaculine				Secoplicamine (C26) ==>	í	×	<==		Varadine (C18)	^==		isomers of haemanthamine	<==	isomers of haemanthamine	<==	epi-vittatine	<==	caranine	^ #	í		Î		Î
Number of solutions	0 7	22	7	1	1		0		1	7E0	nr / 7	10 28	0	1	10	0	2	229	6	18	1	m	1	13	27	219	0 4	0	17
(ppm) Tolerance		2			2	2	ς γ	4	4	-	t	4	2	ю	4	2	3	m	m	З	2	æ	2	ŝ	2	т	7 N	7	ε
muminiM number of gnindstem C atoms		18				61	1		18 17		17	1				•	17	I				ı			16	I			
Database	DB1 DB2	DB3	DB3	DB4	DB1			- 787		CR3	202	DB3' DB4		DB1			707	DB3	DB3	DB4	D R1			DB2	690		DB3'		DB4
Fraction		A4							A7	I		I				I	A9	I				I			A11 -	I		I	

Table S2. Tentative identification of compounds in DB1, DB2, DB3, DB3' and DB4 that fit with the ¹³C NMR chemical shifts from fractions F4, F7, F9, and F11.