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Abstract: Kinetic modeling and degradation study of liquid polysulfide (LPS)/clay nanocomposite is
possible through Ozawa–Flynn–Wall (OFW) and Kissinger methods. Comparing the results of these
models with experimental data leads to provide an accurate degradation kinetic evaluation of these
materials. To this aim, the morphology and distribution of clay nanoparticles (CNPs) within the LPS
matrix were investigated using Field Emission Scanning Electron Microscopy (FESEM) and X-ray
diffraction (XRD). To evaluate the interaction between the LPS and the CNPs, the Fourier transform
infrared (FTIR) identification was utilized. Furthermore, to investigate the kinetics of degradation,
the thermal gravimetric analysis (TGA) and derivative thermogravimetry (DTG) of the samples were
used in the nitrogen atmosphere with the help of Kissinger and Ozawa–Flynn–Wall (OFW) models.
The characterization results confirmed the homogenous dispersion of the CNPs into the LPS matrix.
In addition, the presence of CNPs increased the thermal stability and activation energy (Ea) of the
samples at different conversion rates. Moreover, the OFW method was highly consistent with the
experimental data and provided an appropriate fit for the degradation kinetics.

Keywords: liquid polysulfide resin; clay nanoparticle; thermal properties; nanocomposite; thermal
degradation; modeling

1. Introduction

In 1840, polysulfide was discovered by the reaction of ethylene dichloride and potas-
sium sulfide [1]. Eighty-five years later, polysulfide elastomers were synthesized based on
1,2-dichloroethane and sodium polysulfide in sodium hydroxide solution [2]. However,
due to significant bad odors and the production of toxic and dangerous gases (e.g., hydro-
gen sulfide and carbon disulfide) during the synthesis of these polymers, polysulfide has
been produced based on Bis(2-chloroethyl) formal since 1940 [2,3]. The most important
properties of polysulfide-based polymers are their resistance to most solvents, oils, vapors,
gases, light, and ozone, which allow them to be used in applications such as aircraft fuel
tank sealants, printer rolls, and modifiers in the rubber industry [4–7]. Polysulfide polymers
are available as crude rubber, suspended material, and liquid [8,9]. In the manufacturing
of polysulfide resins, high-weight elastomeric polysulfides are first synthesized and then
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depolymerized to become liquid resins with a proportional molecular weight [8,10,11]. Un-
like natural rubber, polysulfide polymers are not processable in rubber mills. Polysulfides
show low thermal stability, and in the industry, they are commonly referred to by the brand
name Thiokol, which its liquid form has the most application among polysulfides [12].
Approximately 94% of LPS are used as sealants, and about 75% of these sealants are used
in doors and windows sealants in the construction industry [8,13].

However, the low thermal stability of polysulfide polymers is one of their crucial
weak points [14–16]. Limited research has been conducted on the use of nanoparticles
to improve the thermal and mechanical properties of polysulfide resins. Guchhait et al.
examined the morphology of polysulfide/silica nanocomposites [7]. Their results showed
that the rigid structure of polysulfide resin becomes brittle with the addition of nano-silica.
In another study, the thermophysical properties of polysulfide nanocomposites contain-
ing graphene particles have been investigated by TGA and thermal differential scanning
calorimetric (DSC) [9,13]. It was proven that the increase of graphene nanoparticles has
a significant effect on the crystallization, glass temperature, and thermal degradation of
the resulting compound. It was also found that the thermal degradation of the resulting
nanocomposite is affected by the presence and the concentration of graphene particles.
Compared to conventional fillers, clay nanoparticles (CNPs) present excellent characteris-
tics due to their high aspect ratio, natural availability, and low cost [7,17,18]. More notably,
throughout the composition of polymer/clay, clay can be divided into nanometer-particles,
thereby preventing the agglomeration issue that usually occurs in the production of other
nanocomposites made up of polymer and nanofillers [19]. In this regard, polysulfide/CNPs
nanocomposites have been investigated in some studies. Macadam et al. observed that
when CNPs were introduced to sunflower oil-based polysulfide, the glass temperature and
the thermal resistance increased [10]. Pradhan et al. have studied the effect of CNPs on the
adhesion and mechanical properties of LPS [17]. They concluded that the strength of the
cured polysulfide structure increases significantly with an increase of CNPs amount.

However, based on the early literature studying the thermal behavior of polysul-
fide/CNPs nanocomposites, there is a lack in the study of the degradation kinetics with the
view of comparing and matching different modeling methods with experimental results.
Methods including Ozawa–Flynn–Wall (OFW), Friedman, Kissinger, and Coats-Redfern are
widely utilized in determining the parameters of thermal degradation [18]. Some of these
methods, such as OFW and Kissinger, can be applied to study the kinetics degradation of
polymer nanocomposites using the results of TGA and DSC analyses [20,21]. Therefore, in
the current study, in addition to the fabrication and characterization of LPS/CNP nanocom-
posites, the modeling of the thermal degradation behavior was performed by Kissinger
and OFW methods. Furthermore, proportional fitting of degradation kinetics due to the
presence of the CNPs in different amounts up to 5 wt.% are provided.

2. Materials and Methods
2.1. Materials

LPS was purchased from Troy Company (Hanover, Germany) with the specifications
mentioned in Table 1. Manganese dioxide and (MnO2) (CAS # 1313-13-9; molecular weight:
86.94; particle size: 200 mesh; crystalline powder; manganometric ≥ 89.0%) and diphenyl
guanidine (DPG) (CAS # 102-06-7; molecular weight: 211.26; white to pale pink powder
97%) were obtained from Kimia Sazan company (Tehran, Iran). The type of CNPs used
was Closite 30B, produced by Southern Clay Company (Louisville, KY, United States). The
Closite 30B is a montmorillonite modified quaternary ammonium salts.
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Table 1. Technical properties of used polysulfide.

Appearance Content SH (%) Viscosity (pa.s) Average Molecular Weight (g/mol) Sulfur Content (%)

Brown liquid 5–7 1.3 1100 37–38

2.2. Fabrication of LPS/CNPs Nanocomposite

First, CNPs were placed in an oven at 80 ◦C for 4 h to remove absorbed moisture.
Then, 20 g of LPS along with CNPs according to Table 2 were poured into a beaker and
stirred with a homogenizer for 15 min at a speed of 5000 rpm. Subsequently, 0.2 g of DPG
as an accelerator was added to the system, and the homogenization continued at the same
rate for 10 more minutes to disperse the CNPs well into the LPS matrix. In the next step, 3 g
of MnO2 as a curing agent was added to the mixture, and mixing was continued through
the homogenizer for another 5 min. During the mixing process, the mixing container was
placed in an ice bath to hinder the increase in temperature and prevent the pre-curing of
the resin. Then, the prepared resins were put in a sealed container, and the air inside it was
removed using a vacuum pump. Next, the resins were quickly poured into a silicone mold
with a thickness of 500 microns using a film applicator. Finally, to complete the samples’
curing process, the silicone molds were aged at ambient temperature for one day and then
were placed in an oven at 90 ◦C for 4 h [22].

Table 2. The composition of LPS and LPS/CNPs nanocomposites.

Samples LPS (g) DPG (g) MnO2 (g) CNP (g)

LPS 20 0.2 3 0
LPS/CNPs 1% 20 0.2 3 0.2
LPS/CNPs 3% 20 0.2 3 0.6
LPS/CNPs 5% 20 0.2 3 1

2.3. Characterization

To investigate the morphology of the fabricated LPS/CNPs nanocomposite samples,
FESEM studies were performed using Oxford Instruments (INCA) equipped with Energy
Dispersive X-ray (EDX) analyzer. In addition, the XRD test for all samples, including
the neat CNPs, was performed using Analytical Diffractometer (PW1800) using CuKα

radiation with a voltage of 40 kV and a current of 30 mA. Moreover, FTIR spectroscopy was
conducted via a Vertex 80 device (Bruker, Karlsruhe, Germany) to ensure the successful
preparation of LPS/CNPs nanocomposites. To investigate the thermal degradation of the
samples, TGA measurements (Perkin-Elmer STA 6000, Waltham, MA, USA) were used at
heating rates of 10 ◦C/min, 15 ◦C/min, and 20 ◦C/min under a nitrogen atmosphere.

2.4. Kinetic Analysis Techniques

Different techniques can be used to explore the thermal behavior of materials, such
as TGA, DTG, DSC, and differential thermal analysis (DTA) [23,24]. Evaluating the data
obtained in these techniques provides significant information about the reactivity and
stability of materials based on the kinetic analysis. The Kissinger method is one of the most
popular kinetic analysis techniques that can be used in thermally stimulated processes to
estimate and evaluate the Ea through an unparalleled simple way [25].

According to an article by Kissinger [26], Equation (1) was obtained based on the
Arrhenius theory in which the rate constant depends on the temperature, and the reaction
order model corresponds to the conversion function.

Ln
β

T2
m

= ln
AR
Ea

+ ln
[
n(1− αm)n−1

]
− Ea

RTm
(1)

where β is the heating rate, A is the pre-exponential factor, Ea is the activation energy, n is
the reaction order, α is the conversion degree, Tm is the maximum weight loss temperature,
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and R is the universal gas constant. For a given value of n, the component ln[n(1 − αm)n−1]
is constant, and consequently, Ea can be obtained by estimating the slope of the plot
ln
(

β

T2
m

)
vs.
(

1
Tm

)
.

The OFW method is also one of the methods that can be used to estimate the Ea of
the heat degradation reaction [27]. In this method, it is presumed that for all conversion
values (α), the conversion function f(α) would not change by changing the heating rate.
Temperatures corresponding to the percentage of constant conversion (α) are often calcu-
lated at various heating rates (β), and the plot of ln (β) versus

(
1
T

)
is finally produced. The

relationship is described as an equation in this technique (Equation (2)):

ln(β) = ln
(

Af(α)
dα/dT

)
− Ea

RT
(2)

where A is the projection coefficient that is considered independent of temperature, E is
the activation force, T is the absolute temperature, and R is the fundamental gas constant.
The plot of ln(β) versus

(
1
T

)
gives a straight line, from the slope of which it is possible to

obtain the Ea.
Kissinger and OFW methods are model-free analyses that estimate the Ea without

considering a kinetic model for a reaction process. In these analyses, it is not required to
determine the reaction type in which the activation energy should be estimated. These
methods are integral and iso-conversional and require positive heating rates. In addition,
these methods can be used in multiple-step reactions without parallel reaction steps and
can evaluate each reaction point individually. Using these methods, the thermal kinetic
parameters that characterize the thermal degradation process can be estimated. Hence,
these widely known mathematical models were used in this study to calculate the activation
energy of the thermal degradation process for LPS and LPS/CNPs [28].

3. Results and Discussion

It is well-known that the incorporation of highly dispersed CNPs helps with enhanc-
ing polymeric matrices properties, and an illustration of the cured LPS/CNPs structure
intercalated within the gallery regions of the CNPs is shown in Figure 1.
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3.1. Morphological Assessment

The FESEM-EDX micrographs of the LPS/CNPs 1%, LPS/CNPs 3%, and LPS/CNPs
5% samples are shown in Figure 2. The distribution maps of the Si element (Figure 2A,C,E)
indicate that CNPs have a uniform distribution in the LPS matrix. Good compatibility and
interaction between the CNPs and LPS matrix led to a high level of distribution with no
sign of agglomeration for all samples, and with a higher amount of CNPs, the marked
points were also augmented.
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Figure 2. FESEM images for (A) LPS/CNPs 1%, (C) LPS LPS/CNPs 3%, (E) LPS/CNPs 5%, and the
distribution map for Si element for (B) LPS/CNPs 1%, (D) LPS LPS/CNPs 3%, (F) LPS/CNPs 5%.

3.2. Structural Characterization

The FTIR spectra of neat LPS and LPS/CNPs 3% are presented in Figure 3. By com-
paring the two spectra of neat LPS and LPS/CNPs 3%, it was found that there are three
absorption bands in the LPS matrix at 2185, 2120, and 1990 cm−1 that have been removed
in nanocomposites, and this could be due to the good interaction between sulfide groups
and CNPs. The broad absorption band at 3600 cm−1 corresponds to the -OH groups of the
CNPs, and the bands in the region of 500 cm−1 to 600 cm−1 suggest the C-Cl bond and are
attributed to the curing agent.
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Figure 3. FTIR spectra of (A) neat LPS and (B) LPS/CNPs 3%.

Further, XRD was used to characterize the crystallinity level of the samples. Figure 4
displays the XRD patterns of the LPS/CNPs 1%, LPS/CNPs 3%, and LPS/CNPs 5%
samples in the range of 2θ = 0–7◦. One reflection at 2θ = 5.1◦ was represented by the XRD
pattern of the CNPs (Figure 4), which measured the interlayer distance (d-value) about 20
A◦ according to Bragg’s equation and showed the crystallinity of the structure. The peak
intensity at 2θ = 5.1◦ was sharp for the neat CNPs, which decreased due to the introduction
of CNPs in the LPS matrix, and the crystal structure was no longer visible easily. The
change in the crystallinity of the samples occurred possibly for two reasons: first, due to
the changes in the layered structure of CNPs after homogenizing with the LPS matrix, and
second, because of the good distribution of nanoparticles in the LPS matrix and the lack of
agglomeration [29].
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3.3. Thermal Properties

(Figure 5A–D) display the TGA curves for the neat LPS and LPS/CNPs nanocompos-
ites in three different heating rates of 10 ◦C/min, 15 ◦C/min, and 20 ◦C/min.
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(C) LPS/CNPs 3%, and (D) LPS/CNPs 5%.

In addition, Table 3 shows the relevant data obtained from TGA analyses for neat LPS
and the LPS/CNPs nanocomposites.

Table 3. Thermal properties data of LPS and LPS/CNPs nanocomposites.

10 ◦C/min

Samples T0.1(◦C) a T0.5(◦C) b Tm (◦C) c

LPS 252 290 280

LPS/CNPs 1% 256.7 294.5 281

LPS/CNPs 3% 258.7 297.9 292

LPS/CNPs 5% 257 295 290

15 ◦C/min

Samples T0.1(◦C) a T0.5(◦C) b Tm (◦C) c

LPS 258.5 300.5 300

LPS/CNPs 1% 264.9 302.4 302

LPS/CNPs 3% 267.9 301.3 300

LPS/CNPs 5% 265 300.5 297

20 ◦C/min

Samples T0.1(◦C) a T0.5(◦C) b Tm (◦C) c

LPS 264.5 304.7 306

LPS/CNPs 1% 268.8 306.5 303

LPS/CNPs 3% 269.5 306.9 302

LPS/CNPs 5% 268.6 308.6 304
a Temperature at 10% mass loss; b temperature at 50% mass loss; c maximum mass loss temperature
was obtained from DTG thermograms.

Comparing the results for the neat LPS and LPS/CNPs nanocomposites in three
heating rates revealed the fact that LPS/CNPs nanocomposites showed higher thermal
resistance than the neat LPS matrix. All thermal temperatures were increased by increasing
the heating rates from 10 ◦C/min to 15 ◦C/min and then 20 ◦C/min. T0.1, T0.5, and Tm
temperatures in the LPS/CNPs 5% were decreased in all heating rates compared to the
LPS/CNPs 3%, except in T0.5 and Tm related to the heating rate of 20 ◦C/min. These
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reductions in mass loss temperatures for LPS/CNPs 5% can be compared to the destructive
effect of active free radicals due to catalytic properties or possible agglomeration by a higher
amount of CNPs in the samples [7]. The increase in the temperature of the heat degradation
of nanocomposites containing lower percentages of CNPs than 5% can be justified by the
decrease in the free movement of volatile products in polymer nanocomposites due to the
heat degradation (gases emitted during sample pyrolysis) [17,30]

In general, it can be observed from Table 3 and Figure 5 that the inhibitory effect
of CNPs increases the thermal stability of the final nanocomposites, which is typically
the primary effect at low clay concentrations. The thermal stability of the samples at low
percentage clay incorporation is due to the proper interaction between the CNPs and the
LPS matrix as shown in Figure 1, as well as the shielding effect of the charred polymer on
the surface, which stops oxygen from being widely absorbed into the polymer matrix and
raises the temperature of degradation [21,31].

3.4. Determination of Degradation Kinetic Parameters

In this study, the methods of Kissinger and OFW were used to estimate Ea for thermal
degradation of neat LPS and LPS/CNPs nanocomposites. To estimate the Ea of heat
degradation, the Kissinger method equation was obtained at the Tm, in which the first
derivative weight loss is equal to zero (dw/dt = 0). In TGA, measurements at a constant
heating rate, time, and temperature derivatives of weight loss rates are linearly correlated,
and the data can be plotted as a function of time or temperature and then can be analyzed
using Kissinger’s method. Based on the data obtained from the TGA profile, the plots of
ln
(

β

T2
m

)
vs.
(

1
Tm

)
for neat LPS and LPS/CNPs nanocomposites are shown in Figure 6. The

Ea can then be obtained from the slope of the corresponding fitted lines.
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As shown in Figure 6, the slope of all fitted lines is negative, including neat LPS and
LPS/CNPs nanocomposites. Table 4 shows the Ea and correlation coefficient (R2) for all
samples obtained from Kissinger’s method. Accordingly, by adding 1% of CNPs to LPS, Ea
increased from 119 kJ for neat LPS to 136 kJ. By a further increase in CNPs concentration,
the Ea reached 206 KJ/mol for LPS/CNPs 3%. However, by adding the CNPs from 3 to
5wt.%, the Ea dropped significantly due to the destructive effect of active free radicals.
The pattern of these observations indicates that the Ea improved by increasing the amount
of CNPs in the samples up to 3 wt.% and before the catalytic effect domination. In other
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words, without considering the effect of active free radicals in a specific range of CNPs
concentration and with the inclusion of CNPs, the rate of thermal degradation of samples
decreased, and consequently, the thermal stability of samples containing CNPs improved
compared to neat LPS.

Table 4. The Ea and the correlation coefficient calculated by the Kissinger method.

R2 Ea (Kj/mol) Samples

0.9712 119 LPS
0.9451 136 LPS/CNPs 1%
0.8888 206 LPS/CNPs 3%
0.9542 181 LPS/CNPs 5%

Another technique based on the OFW method was also used in this study to model
the thermal degradation kinetics and estimate the Ea of the samples. The plots of ln(β)
versus

(
1

Tm

)
for neat LPS and LPS/CNPs nanocomposites based on the data obtained

from the TGA are shown in Figure 7, and all fitted lines have a negative slope. At constant
conversion rates of 10 to 90%, LPS/CNPs nanocomposites demonstrated a reasonably good
linear relationship, suggesting that the OFW analysis is a good method in the explanation
of these nanocomposites’ thermal degradation kinetics based on TGA analysis results. The
results of this study were plotted for LPS/CNPs nanocomposites in addition to the neat
LPS at a constant conversion rate (from 10 to 90%) in the form of ln(β) vs.

(
1
T

)
. Except for

a few cases, these diagrams illustrate that the lines derived from this process are parallel to
each other and that the Ea can be determined for each CNPs percentage by measuring the
average slope of all corresponding fitted lines.
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Figure 8 displays a diagram of the activation energies obtained in terms of the conver-
sion percentage, and the Ea varies with an increase in the rate of conversion. In compliance
with Figure 8, for neat LPS and LPS/CNPs nanocomposites, the average sum of Ea is highly
consistent with the Kissinger process’s corresponding value.
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Table 5 presents the Ea of the thermal degradation reaction of neat LPS and the
LPS/CPNs nanocomposites measured by the OFW method. According to Table 5, the
average Ea of LPS/CPNs nanocomposites were higher than neat LPS. This also reveals
that the Ea increased with an increase in the concentration of CNPs to 3 wt.%, and then
decreased by increasing the percentage of CNPs to 5 wt.%.

Table 5. The Ea and the correlation coefficient calculated by the OFW method.

R2 Ea (Kj/mol) Samples

0.9859 105 LPS
0.9198 126 LPS/CNPs 1%
0.9859 186 LPS/CNPs 3%
0.9728 170 LPS/CNPs 5%

The reduction in Ea for LPS/CNPs 5% is due to the catalytic effect, which stems from
the destructive activity of active macroradicals. The good interaction between CNPs with
the LPS matrix as well as the blockage of volatile gas produced by the thermal decom-
position of the LPS structure is the source of improving thermal stability in LPS/CNPs
nanocomposites. Thermal decomposition begins from the surface of the nanocomposites
according to the barrier model [32], which results in an increase in the amount of CNPs
in the degrading nanocomposite and the forming of a protective layer on the surface of
the matrix where oxygen prevents the matrix from expanding under this layer. Newly
shaped radicals arising from the degradation of the polymer are also trapped by the CNPs
surfaces according to the nano-amplification theory [33], and a sequence of intermolecular
reactions will occur. The CNPs steadily move to the surface as the degradation process
continues, forming a surface barrier due to the reduction of surface energy [10]. In addition,
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from the findings of Table 5 (larger R2 values and OFW analyses), the superiority of the
OFW method in explaining the thermal degradation of nanocomposites relative to the
Kissinger method is clear. In other words, improving the thermal stability of LPS-CPNs
nanocomposites depends on the development and stabilization of CPN bonded macro
radicals. Different effects of the presence of CNPs can result in a considerable increase
in thermal stability, which results in a decrease in diffusion, producing ash as a matrix
defender on the CNPs surface, slowing down the escape of volatile materials by CNPs
during decomposition, and absorption of gases released by the pyrolysis effect by CNPs.

In either case, the low percentage incorporation of CNPs (up to 3 wt.%) with an
inhibitory effect postpones the degradation of samples and increases their Ea. On the
other hand, the catalytic effect was prominent in LPS/CNPs nanocomposites with 5 wt.%
incorporation of CNPs, the increase in Ea proportionately decreased, and the thermal
activity was also impaired by agglomeration and poor distribution of nanoparticles [34].

4. Summary

In this study, LPS/CNPs nanocomposites were prepared, and the presence of CNPs
and their interactions with the LPS matrix were assessed via FTIR, XRD, FESEM, and
EDX analyses. The results of the FESEM-EDX images confirmed the good distribution of
CNPs in the LPS matrix. The TGA and DTG analyses were used to model the thermal
degradation of the neat LPS as well as the LPS/CNPs nanocomposites using Kissinger and
OFW methods. The results of this study showed that the thermal stability and the increase
in Ea of the samples were caused by the presence of CNPs with high compatibility with the
polymer matrix. On the other hand, while the slope of fitted lines in both Kissinger and
OFW modeling methods was approximately the same, the OFW approach offered a better
fit for the sample’s degradation kinetics.
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