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Abstract: Autocatalytic reactions are in certain contrast with the linear algebra of reaction stoichiome-
try, on which rate equations respecting the permanence of atoms are constructed. These mathematical
models of chemical reactions are called conservative. Using a non-equilibrium thermodynamics-
based theory of chemical kinetics, it is shown how to introduce autocatalytic step into such (con-
servative) rate equation properly. Further, rate equations based on chemical potentials or affinities
are derived, and conditions for the consistency of rate equations with the entropic inequality (the
second law of thermodynamics) are illustrated. The theory illustrated here can be viewed as a tool
for verifying and generalizing traditional mass-action kinetics by means of modern non-equilibrium
thermodynamics, which is able to deal also with such rather problematic cases.
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1. Introduction

“A reaction whose rate is proportional to the concentration of a product is said to be
autocatalytic.” is written in the comprehensive textbook on physical chemistry written by
Berry et al., on p. 879, [1]. Similar definitions of autocatalysis and autocatalytic reactions
can be found in other textbooks (e.g., [2,3]) or papers ([4,5]). Houston [3] broadens this
definition on reacting systems with multiple reactions: “...a product of one reaction appears
as a catalyst in the same or another coupled reaction.” The same author, as well as, for
example, Schuster [6], give a basic example of the autocatalytic reaction in the form
A + X — 2X; its rate (in the forward direction) is usually given by the product of rate
constants and concentrations: kcacx. Autocatalytic reactions are known and studied for
more than a century [4]. They are known for their complex behavior like self-organization
or oscillatory phenomena [6] and play or are believed to play important roles in the system’s
chemistry [7], the natural selection [6], the emergence of life [4], or prebiotic evolution [5].

Kinetics of autocatalytic reactions is studied by both deterministic and stochastic
approaches [6], often using formal chemical reactions like Lotka’s scheme [3] A + X — 2X,
X+Y — 2Y, Y — Z, which are non-stoichiometric and do not follow the permanence of
atoms (mass conservation); such models are based on the atom-free stoichiometry [8].

During the last years, we have been developing a thermodynamics-based theory
of chemical kinetics, i.e., a theory naturally consistent with thermodynamics. This the-
ory originates in the non-equilibrium continuum thermodynamics of the linear fluids,
which represents many reacting systems of interest in chemistry. The theory respects the
permanence of atoms (the atomic structure of the reacting components) and belongs to con-
servative approaches in the terminology used by Erdi and Téth [8]. The thermodynamics
and the basics of its application in kinetics are presented in the book [9]. More details on
the related theory of kinetics can be found in papers [10,11]. Very briefly, the thermody-
namics shows that in the case of linear fluids, the reaction rate is a function of temperature
and concentrations only. This is just a general statement, giving no explicit form for this
function. Therefore, this function is approximated by a polynomial of a suitable degree in
concentrations with temperature-dependent coefficients. The polynomial is simplified by
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its application on an equilibrium where the reaction rate vanishes by definition and where
expressions for equilibrium constants can be used. The resulting polynomial, the final form
of rate equation, is called the thermodynamic polynomial [9,10]. The whole procedure can
be viewed as verification and generalization of the traditional kinetic mass-action law by
non-equilibrium thermodynamics.

The methodology of the thermodynamic polynomial operates on independent re-
actions only, which is followed as a linear-algebraic result of the permanence of atoms
(mass conservation) in chemical reactions; in other words, as a result of reaction stoi-
chiometry [12]. It is thus in contrast with the formal—atom-free stoichiometry—approach
mentioned above. This raises a question on the application of the stoichiometry-based
methods on autocatalytic reactions, which, in principle, as illustrated below, are in contrast
with the linear algebra of stoichiometry and can be viewed as a “purely chemical” con-
cept. To answer such a question, this note analyzes two simple examples of autocatalytic
reactions using the referenced methodology and shows that and how it simply introduces
autocatalytic step into rate equation (thermodynamic polynomial).

2. Results and Discussion
2.1. Single Reaction

Perhaps the simplest autocatalytic reaction ([6], see Introduction) expressed generally
in terms of atom-conserving components (that is not in just general symbols of substances)
is written as

X+ BX=2X + B (R1)

(Because the discussed thermodynamic approach is a mathematical theory, which
views stoichiometric equations as equations, the “=" symbol is used instead of the double
arrow common in kinetics). The autocatalysis is seen in the fact that two reactant X
molecules are produced, while one of them is consumed in the forward direction of (R1).
Traditionally, the rates in the forward and reversed directions would be written in this way:

— L
7= kexepx; 1 = kckes (1)
The thermodynamic methodology starts with writing down the compositional matrix

and finding its rank (for details, see [9], pp. 150-151, [12]). Numbering the “atoms” as
1 =X, 2 = Band components as 1 = X, 2 = BX, 3 = B, the matrix has the dimension

2 x 3 and is
1 1 0
Isi={o 1 1] @

Its rank & = 2. The total number of the components in this reacting mixture is
n = 3; thus, the number of the independent reactions is n —h = 1 [9] (p. 153), [12].
The stoichiometric matrix ||P|| of the only one independent reaction is of the dimension
(n —h) x n =1 x 3 and should fulfill the condition ||P|| S| = [|0]| [13]. The entry ||PP¥||
is the stoichiometric coefficient of « in the reaction p. If the matrix ||P|| is written generally
as[ a b c ], the condition results in:

a+b=0,b+c=0. 3)

The reaction R1 calls for two stoichiometric coefficients of X that are forbidden by
(3), and this reaction cannot be considered and selected as an independent reaction in
the discussed reacting mixture. Further, from (3), it is followed that a = —b, i.e., the
components X and BX should be stated at the opposite sides of the stoichiometric equation
(of independent reaction). Nevertheless, the thermodynamic methodology still enables to
formulate rate equation with the autocatalytic step.

Suitable and allowable selection of the independent reaction is

BX = B + X. (R2)
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Its equilibrium constant is (ideal system, unit standard concentration)

. CB,eq CX,eq

K 4)

CBX,eq

The rate of this reaction (J) as a function of temperature and concentrations, as stated
in the Introduction, is first approximated by a polynomial of the third degree in concen-
trations, which is sufficient to obtain meaningful results (the first or second degree does
not lead to the occurrence of an autocatalytic term in the resulting rate equation). The
simplification procedure gives the following thermodynamic polynomial (for details, see
Supplementary Material):

] = kowo(cBx — K™ exce) + koo (cBy — K~ texcmxes) + kiio(exenx — K~lekes) + koi1(cexes — K~ excd)
+k120 (cxczBX — K~ cpx)

©)

(The subscripts of the polynomial coefficients reflect the powers of the concentrations
in the corresponding term, e.g., k11gc1c2 = k119cxcpx; see also ref. [14,15]).

As suggested earlier [10,11], the individual terms in the thermodynamic polynomial
are interpreted in the view of the traditional mass-action kinetics as representing steps in
the reaction scheme hidden in the polynomial. The scheme corresponding to (5) is:

BX = X + B, (R3a)
2BX =X + BX + B, (R3b)
X + BX =2X + B, (R3¢)
BX + B=X + 2B, (R3d)

X + 2BX =2X + BX. (R3e)

The selected independent reaction (R2) is recovered as (R3a), the supposed autocat-
alytic step (R1) as (R3c). Although this autocatalytic step is excluded by the starting linear
algebra of stoichiometry, cf. discussion below (3), the methodology of the thermodynamic
polynomial allows its presence in the rate equation. Regardless of the occurrence of the
single independent reaction, its reaction rate (5) contains up to four additional reaction
steps, forming the 5-step scheme (R3). Among them, there are additional autocatalytic
steps like (R3d) or (R3e). The full scheme (R3) should be viewed as a mathematical result,
i.e., a mathematically allowable set of steps in kinetic equations. Some or even many of
these steps could not be those that real-chemistry should state or detect, i.e., which steps
are reliable and which remain as “pure mathematics”. This is illustrated after Equation (6);
for more detailed discussion, see ref. [14].

From the linear algebra of the stoichiometry of the studied reaction mixture (for details,
see [9], p. 154, [12]), it is followed that

F=7=J5 =] (6)

where ] is the component rate. When only (R1) really occurs, the mass-action rate equation
is obtained k119 # 0,kp10 = koo = ko1 = k1o = 0. If both (R1) and (R2) occur, then
k110 # 0,ko10 # 0, ko20 = ko11 = k120 = 0.

The thermodynamic methodology presented in this paper includes also proper trans-
formations of rate equation into the function of chemical potentials or affinities. We have
illustrated both ways in the following simplified thermodynamic polynomial:

] = koo (CBX - K_lCXCB) + k110 (CXCBX - K_1€§<CB)' ()



Molecules 2021, 26, 585 4 0f 8

The transformation to the function of chemical potentials is straightforward and is
based on the relationship between the equilibrium constant and standard chemical potentials:

—RTInK =) pgP'™ = pg — g + g ®)
14

The traditional model of chemical potential as a function of concentration (in ideal systems):

Ca
Pa =My + RTln(C—O) )
where unit standard concentration will be used. The result is
_ —HBx MBX —HX — HBx Hx t+ MBX _ Bx — pBx + pB
J= (k010 eXp —or €XP T + kijoexp RT exp RT 1—exp =T ) (10)

The transformation to the function of affinities requires the knowledge of the relation-
ships between chemical potentials and affinities. Note that in the proper mathematical
derivation, not only the traditional chemical affinity but also another affinity, called the
constitutional affinity, appears [13]. There is only one chemical affinity (of the only one
independent reaction) in our system defined as (cf. [9], p. 181):

A=Y paP"™ = px — upx + ps (11)

There are two constitutional affinities (B®) defined by (cf. [9], p. 182)

3 2
BC = 2 2 HaStaf'5; =1, 2, (12)

a=17t=1

where f77 (the contravariant metric tensor) is obtained as an inversion of the covariant
metric tensor fyr = fo-f [9] (pp. 295-296), [12]. The basis vectors are defined (see [9], p. 152)
fr = Y, Sone” and, in our case, have the components: f; = (1,1;0), £, = (0;1;1). Thus,

— 2/3 —1/3
Now it is not difficult to see that
2 1 1
B'=Zux + JHBX — 3MB, (14)
1 1 2
B* = —3kx + gHBx + FHB. (14b)
Combining (11) and (14), we obtain
1 1 1 1 2 1 2
nx=3A + Bl ppx=—ZA + Bl + B’ pp=2A + B (15)

Introducing (15) into (10), we obtain the reaction rate as a proper function of affinities:

B iy BB A B 2B B (A
J= (kmo eXp —pr XP ——m— €XP oo + ky10 €xp RT exXp —— 1—exp RT (16)
Note that in equilibrium, where A = 0, the rate is zero, as expected.

Entropy inequality, or the second law of thermodynamics, puts a restriction on reaction
rates expressed as functions of affinities [9] (p. 211). In our case, this restrictive condition is
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d] 2
<aA>eq(A) <0. (17)

Evidently, (17) is fulfilled when (9] /9A) eq =0 Elaborating on this condition enables
to derive additional restrictions on rate coefficients. Carrying out the partial derivative, we
come to the following restriction:

—us 2ng + ng
RT

koo + k110 exp RT &P > 0. (18)

This condition can be further modified substituting from (14), (8), and (4):

2\ ¢BX,
fono -+ o (exp 5 ) 20 > 0 (19)
q

Inequality (19) should be valid for any equilibrium (any equilibrium concentrations at
a given temperature). Using previously published theorem [15], we conclude that kpjg > 0
and kq19 > 0. The non-negativity of rate coefficients is consistent with (6) and (7) and the
traditional kinetic view on positive rate constants (rate coefficients). This kinetic tradition
is followed here, naturally, as a condition to fulfill the entropy inequality (the second law
of thermodynamics).

2.2. Lotka’s Scheme

This scheme, mentioned in the Introduction, comprises three steps. Houston states [3], p. 70:
“Although Lotka mechanism does not ( ... ) correspond to any observed chemical system,
its simple mechanism illustrates the basic principles in the more complex oscillatory
system.” Here, it serves a very similar purpose—to illustrate the performance of the
thermodynamic approach in the case of problematic reaction schemes. In terms of atom-
conserving components, Lotka’s scheme could be written as

AX + X = 2X + A, (Rda)
X + Y + BY =2Y + BX, (R4b)
Y=2 (Rdc)

These steps retain the principal features of Lotka’s steps. Step (R4.1) represents an
autocatalytic step for X, whereas (R4.2) represents an autocatalytic step for Y (together
with the consumption of X); (R4.3) is the consumption of Y and is identical with the third
Lotka’s step. This reacting mixture is composed of four atoms, A =1, X =2, Y =3, B=4,
forming seven (n = 7) components, AX =1, X=2, A=3,Y=4BY =5 BX=62=7;
the compositional matrix is

ISII = (20)

SO ==
o O = O
o O O
O = O O
—_ -0 o
_ o =L O
o= OO

Its rank (h) is equal to four. Consequently, there are n — h = 3 independent reactions
in this mixture. They can be selected as follows:

AX= X + A, (R5a)

X + BY=Y + BX, (R5b)
Y =2 (R5¢)
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The corresponding stoichiometric matrix

-1 11
P = 0 -1 0
0 0

0 00 0
1 -1 10 (21)
0 1 001

fulfills the condition ||P||||S||T = [|0]|, as can easily be checked. As in the previous example,
no component can be on both sides of the stoichiometric equation of independent reactions
at the same time.

To have autocatalytic steps in the resulting rate equation (thermodynamic polynomial),
a third-degree-approximating polynomial should again be used in this case. In this example,
the general rate function is a vectorial function [9] (pp. 153-154), whose components are
the rates of the individual independent reactions: J = (J;, ]2, J3). Both the initial and
final (simplified) polynomials are lengthy, and more details on their derivation and full
forms are given in Supplementary Material. Here, we reproduce the reduced version of
the final thermodynamic polynomial (the rate equation), which retains only the terms
corresponding to the independent reactions, or the steps of Lotka’s scheme in the form
of classical mass action kinetics (superscripts at concentrations or equilibrium constants
mean powers):

J=k; (CAX — K;lCXCA> + ko (CXCBY — KElCYCBx> + k3 (CY — K;lCZ) + ky (CA)(CX — Kflcf(cA>

(22)
+k5 (cX0ycBy — Kz 1C%{CB)()

Note that the vectors k; contain the rate coefficients (constants) corresponding to
p (=1, 2, 3) individual independent reactions (indicated in superscripts); for example,
ki = (k}, k3, k3); K,, refers to their equilibrium constants. The presence of the autocatalytic
terms in (22) is evident, though autocatalytic steps are not among the independent reactions.
The transformation of the rate Equation (22) to the function of chemical potentials is:

— HAX MR —Hax + Hx + J X+ HBY —HX R + UBX X
J_klexpTAX(l_eXpW) + kpexp X IR XTIy (] yp B HBC I HnY

~ 0 _ _ 4,0 _ 0 _
+ kg exp VYRTVY (1 —exp ;tzRTHY) + Kkyexp pax + .”)I({TVAX HX (1 — exp —lax +R;£X + yA) (23)
BX + By + UBY —HX—HBy —HY —Mx + Hy—MBY + EBX

RT RT

+ ks exp 1—exp

In this example, there are three chemical affinities of the independent reactions
(AP, p = 1, 2, 3) and four constitutional affinities (B, ¢ = 1, 2, 3, 4). Their links
to the chemical potentials are shown in Supplementary Material, together with the full
expression for the rate as a function of affinities. Here, the entropic inequality condition, cf.
also (17), is a quadratic form in chemical affinities [9] (p. 211):

- i Z( a]rp) APAT > 0. (24)
97 )

Thus, this quadratic form is positive semidefinite. The well-known (Sylvester) theorem
of linear algebra states that in this case, all major sub-determinants of the matrix belonging
to this quadratic form are non-negative. The matrix can be found in Supplementary
Material; here, we use only the first sub-determinant and the condition corresponding to it:

Il
_ (8Al>eq >0. (25)

ki + kjcxeq > 0. (26)

From it, we have finally:
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Using the same theorem as above, published in [15], it follows that k% > (0 and k}L > 0.
Stating that the numbering of (independent) reactions makes no difference, we can derive,
after proper renumbering, additional results: k% >0, k% >0, kg > 0.

Now we return to the rate Equation (22) and write explicitly the equations for the
rates of the independent reactions, following from it but retaining only those terms that
correspond to the tradition of mass action kinetics (i.e., selecting the remaining kf equal
to zero):

= k% (CAX — Kf1CXCA) + kzll (CA)(CX — K;1C§CA>, (27a)
J=k3 (CXCBY - KflcYCBx) + i3 (CXCYCBY - Kglc%ch), (27b)
=K (CY - K;lcz). (27¢)

The component rates are given, according to the stoichiometric matrix (21), by relations:
==, P =h =T 0" =] = =I5, J? = =], J?* = ]o, J* = J3. Selecting
k% = k% = 0, we obtain, from (27), traditional rate equations corresponding exactly to
Lotka’s scheme (R4):

=k (CAXCX - KflcicA), 2=k (CXCYCBY - Kflc%(CBx), J3 =ks (CY - Kgch) (28)

where k1 = k}L, ko = k%, and k3 = kg. Rate Equations (27) and (28) are all consistent with
the restrictions on their rate constants derived above on the basis of the entropic inequality.
Thus, traditional phenomenological mass-action kinetics is again shown to be consistent
with the non-equilibrium thermodynamics theory of reaction kinetics.

3. Methods

The methodology has already been described in detail elsewhere. It originated in the
paper [16]; its general framework and evolution within non-equilibrium thermodynamics
can be found in the book [9]. Specific examples and illustrations of the whole procedure
are accessible, for example, in the papers [10,14,15].

The main steps are summarized here:

determining the components of a reaction mixture and their atomic composition,
finding the number of independent reactions, selecting them appropriately, and find-
ing the corresponding stoichiometric matrix using the linear algebra approach devised
and justified by Bowen [12],

e selecting the degree of the thermodynamic polynomial and writing down the full
polynomial,

e  expressing some concentrations from the equilibrium constants of the selected inde-
pendent reactions and making corresponding substitutions in the equilibrium form of
the thermodynamic polynomial,

e finding restrictions on the polynomial (rate) coefficients, which are followed from the
requirement of the general validity of equilibrium [9],

e introducing these restrictions into the thermodynamic polynomial, thus giving its
final, simplified form—the rate equation.

The full polynomial approximates the rate function J = J(T,c) derived by non-
equilibrium thermodynamics of linear fluids [9] (p. 248). J is the vector whose components
are the rates of independent reactions, and c is the vector of concentrations. The choice
of the polynomial degree is guided by the correspondence between the powers of the
polynomial terms and the reaction orders; third-degree, at most, should be appropriate; in
many cases, first or second degree is sufficient [9] (p. 249). The full polynomial is as follows:

n

Z n
J= Y kv [Tea ¥ vpa <M. (29)
p=1 o=1

a=1
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Here, c« is the molar concentration of component o, and 7 is the total number of
components. The vector ky, contains polynomial coefficients dependent on temperature
only, the vector vg = (vg1, Vg2, ..., Vpn) contains polynomial powers and is also used
as subscripts to index various vectors of polynomial coefficients. For the total number of
terms Z, see [10,13].

4. Conclusions

The application of the stoichiometry-based methods in the chemical kinetics of autocat-
alytic reactions is rather problematic because these reactions are in certain contrast with the
linear algebra of stoichiometry. Construction of rate equations in the form of a thermody-
namic polynomial, a technique based on the results of non-equilibrium thermodynamics of
linear fluids, has shown how this restriction can be overcome, with autocatalytic step(s) of
the rate equations formulated properly. This technique has also enabled the mathematically
consistent transformation of the rate equation from the concentration-based form to the
form, based either on the chemical potentials or the affinities. Finally, the conditions for the
consistency of the derived rate equations with entropy inequality (second law of thermo-
dynamics) have been derived—non-negativity of the rate coefficients (rate constants). The
theory illustrated here can be viewed as a tool for verifying and generalizing traditional
mass-action kinetics by means of modern non-equilibrium thermodynamics, which is able
to deal also with such rather problematic cases.

Supplementary Materials: The following is available online, file containing details on the derivations
described in the main text.
Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this theoretical study. Data
sharing is not applicable to this article.

Conflicts of Interest: The author declares no conflict of interest.

Sample Availability: Not available.
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