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Abstract: Pathological angiogenesis is a hallmark of cancer; accordingly, a number of anticancer FDA-
approved drugs act by inhibiting angiogenesis via different mechanisms. However, the development
process of the most potent anti-angiogenics has met various hurdles including redundancy, multiplic-
ity, and development of compensatory mechanisms by which blood vessels are remodeled. Moreover,
identification of broad-spectrum anti-angiogenesis targets is proved to be required to enhance the
efficacy of the anti-angiogenesis drugs. In this perspective, a proper understanding of the structure
activity relationship (SAR) of the recent anti-angiogenics is required. Various anti-angiogenic classes
have been developed over the years; among them, the heterocyclic organic compounds come to the
fore as the most promising, with several drugs approved by the FDA. In this review, we discuss
the structure–activity relationship of some promising potent heterocyclic anti-angiogenic leads. For
each lead, a molecular modelling was also carried out in order to correlate its SAR and specificity to
the active site. Furthermore, an in silico pharmacokinetics study for some representative leads was
presented. Summarizing, new insights for further improvement for each lead have been reviewed.

Keywords: anticancer; heterocyclic; anti-angiogenics; structure–activity relationship; in silico phar-
macokinetics; molecular modelling

1. Introduction

As the second leading cause of mortality globally, cancer has become the focus for
extensive research [1,2]. Although cancer progression and metastasis consist of multiple,
complex, interacting, and interdependent steps [3], angiogenesis plays an essential part
of the tumor’s growth and metastasis [4], owing to the fact that growth beyond the size
of l–2 mm3 requires tumors to develop an adequate blood supply [5,6]. Angiogenesis is
the processes whereby new blood and lymphatic vessels form [7]. Angiogenesis and its
induction remain a major hallmark of cancer as it flourishes nutrient-deprived tumors with
oxygen and nutrients, thus routing tumor metastasis [8,9].

Under normal conditions, angiogenesis is essential for formation of a new vascular
network to supply nutrients, oxygen, and immune cells, as well as to remove waste
products [10]. This process is regulated by a balance between pro- and anti-angiogenic
molecules, and once that delicate balance is disturbed [11], it could lead to various diseases,
especially cancer [12]. Angiogenesis is a vital mediator of tumor development [13]. As
tumors enlarge, diffusion distances from the current vascular supply rise, leading to
hypoxia [14]. Continued expansion of a tumor mass needs new blood vessel formation to
offer rapidly proliferating tumor cells with a suitable supply of oxygen and metabolites [15].
Without the proper blood supply, tumors cannot grow beyond a critical size or metastasize
to another organ [16]. Therefore, targeting angiogenesis is one of the most effective ways
to stop a tumor progression [17].

Molecules 2021, 26, 553. https://doi.org/10.3390/molecules26030553 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-4882-5621
https://orcid.org/0000-0001-7398-6155
https://doi.org/10.3390/molecules26030553
https://doi.org/10.3390/molecules26030553
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26030553
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/1420-3049/26/3/553?type=check_update&version=3


Molecules 2021, 26, 553 2 of 17

Most of the drugs that have been developed to combat angiogenesis have heterocyclics
in their backbone as a common feature. This is demonstrated by heterocyclics occupying
the major part of the number of FDA-approved anti-angiogenic drugs, as demonstrated in
Figure 1. This domination of FDA-approved drugs is likely due to the wide availability
of various heterocyclic fragments that have different potency, physicochemical properties,
and lipophilicity. This versatility makes heterocyclic fragments a sound rational choice
when developing new drugs or altering an existing one.
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In order to develop more potent and targeted anti-angiogenics, a proper understand-
ing of their structure–activity relationship is required. In this review, we discuss some of
the most potent heterocyclic anti-angiogenics. In each class of heterocyclics, we illustrate
the structure–activity relationship (SAR) of some promising leads that have been chosen
thanks to their future potential for development into more potent anti-angiogenics as well
as the availability of enough supporting data to predict their SAR. A molecular modeling
was then conducted to illuminate how these leads interact with their active sites and which
parts should be improved in order to obtain a more potent and specific drug candidate.

2. Nitrogen-Based Heterocycles

The number of anti-cancer candidates possessing a nitrogen heterocycle is an in-
dicator of the structural significance of nitrogen-based heterocycles in the fight against
cancer [20–22]. More than 75% of drugs approved by the FDA and currently available in
the market are nitrogen-containing heterocyclic moieties [23]. One of the most important
targets in angiogenesis inhibition is vascular endothelial growth factor receptors (VEGFRs).

Vascular endothelial growth factor is an important signaling protein involved in both
vasculogenesis (the formation of the circulatory system) and angiogenesis (the growth of
blood vessels from pre-existing vasculature) [24,25]. As its name implies, VEGF activity
is restricted mainly to cells of the vascular endothelium [26]. The expression of VEGF
is potentiated in response to hypoxia, by activated oncogenes, and by a variety of cy-
tokines [27]. VEGF induces endothelial cell proliferation, promotes cell migration, and
inhibits apoptosis [28]. VEGF induces angiogenesis as well as permeabilization of blood
vessels, and plays a central role in the regulation of vasculogenesis [29,30].

Deregulated VEGF expression contributes to the development of solid tumors by pro-
moting tumor angiogenesis and to the etiology of several additional diseases characterized
by abnormal angiogenesis [31]. Consequently, inhibition of VEGF signaling abrogates the
development of a wide variety of tumors [32]. All members of the VEGF family stimulate
cellular responses by binding to tyrosine kinase receptors (the VEGFRs) on the cell surface,
causing them to dimerize and become activated through transphosphorylation [33,34].

Several nitrogen-based heterocyclic drugs have been used to inhibit VEGF, for example,
agents that inhibit the VEGFR tyrosine kinase such as the pyrrolidinone-based Sunitinib
were approved by the FDA for the treatment of renal cell carcinoma (RCC) and imatinib-
resistant gastrointestinal stromal tumor [35,36]. Another example is the phthalazine-based
vatalanib, which is under investigation for the treatment of metastatic colorectal cancer
and non-small cell lung cancer (NSCLC) [37,38]. Indole ring is one of the nitrogen-based
heterocyclics that have been involved in VEGF inhibition [39]. It has demonstrated the
ability to inhibit the proliferation, growth, and invasion of human cancer cells. Panobinostat
is an indole-based drug approved in 2015 for the treatment of multiple myeloma [40].

Renhowe et al. synthesized a series of quinolin-2-one analogues that showed promis-
ing VEGFR-2 inhibition activity (Table 1) [41]. Upon examining the series of analogues
synthesized by Renhowe et al., it was found that the free NH of the hydroquinolin-2-
one scaffold (Figure 2), the quinolinone carbonyl, and the benzimidazole NH formed
donor–acceptor motifs that would bind to the hinge region of the VEGFR-2, which could
be implicated in tumor vasculature formation and maintenance [42,43]. The importance
of a hydrogen donating group was found through substituting different groups at the
C4 position, observing the potency increasing with (NH2 > OH > H). The incorporation
of large basic amine at the C4 position such as an amino quinuclidine resulted in much
more potent activity; however, it negatively affected the pharmacokinetics. Therefore, the
NH2 substitution at C4 was maintained and subsequent efforts focused on modifying the
substitution on both rings A and D to attain additional enzymatic affinity and to improve
physicochemical properties.
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Table 1. In vitro inhibition of vascular endothelial growth factor receptor 2 (VEGFR-2) by the quinolin-2-one analogues
(1–10) [41].

Compound Y R1 R2 VEGFR-2 (IC50 µM) PDGFRβ (IC50 µM)

1 OH H H 0.24 0.020
2 NH2 H H 0.058 0.010
3 NHMe H H 0.22 0.030

4
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tives.

As illustrated in Figure 3, the interaction of compound 10 with VEGFR-2 receptor
active site (IC50 = 0.026 µM) was subjected to docking studies using Schrodinger maestro.
The modelling simulation shows a significant docking score of −9.058, along with the
formation of two hydrogens bonds as well as two π–cation bonds. These interactions were
found to be energetically significant as all the formed bonds among the donor and acceptor
atoms are within about 3.7 Å.

Although VEGF is an important pathway in angiogenesis, several other targets are
also involved in angiogenesis. Matrix metalloproteinases (MMPs) are one such target
involved in angiogenesis [44]. MMPs are implicated in early steps of tumor evolution
including stimulation of cell proliferation and modulation of angiogenesis [45]. During
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angiogenesis, new vessels develop from present endothelial lined vessels to encourage
the degradation of the vascular basement membrane and remodel the extracellular matrix
(ECM), followed by endothelial cell migration, proliferation, and formation of the new
generation of matrix components [46,47].
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Matrix metalloproteinases participate in the disruption, tumor neovascularization, and
successive metastasis, while tissue inhibitors of metalloproteinases (TIMPs) downregulate
the activity of these MMPs [48]. Therefore, MMPs, through the modulation of the balance
between pro- and anti-angiogenic factors, can directly or indirectly mediate the angiogenic
response [49].

The relation between MMP overexpression in tumor and cancer progression has
encouraged the progress of preclinical trials with a series of inhibitors designed to block
the proteolytic activity of these enzymes.

Thus far, no FDA-approved MMP inhibitors for the treatment of cancer have emerged.
However, several leads have been developed; for example, Becker et al. reported new
piperidine α-sulfone hydroxamates with potent matrix metalloproteinase inhibition activ-
ity [50]. The α- and β-sulfone derivatives showed a difference in the inhibitory activity
toward the metalloproteinases. The β-sulfone hydroxamate showed potency for the tar-
geted MMPs and selectivity for MMP-1, but generally exhibited poor oral bioavailability.
In addition, some β-sulfones with α-hydrogens can undergo β-elimination. On the other
hand, the α-sulfones possess both potency and selectivity and provide an improvement
in oral exposure demonstrated by a higher Cmax value and bioavailability relative to the
β-sulfones.

On further investigation, they concluded that α-sulfone derivatives are two to four
times more potent and bioavailable than the β-sulfones. The higher bioavailability and
Cmax may be due to greater steric bulk around the hydroxamate, protecting it from the
usual modes of hydroxamate metabolism including N-O bond cleavage, hydrolysis, and
glucuronidation. The findings of Becker et al. can be explained through the comparison of
the different activities of α- and β-sulfone derivatives, as demonstrated in Table 2.

Looking at the interaction of the α- and β-sulfone derivatives (Figures 4 and 5) with
the active site residues of MMP-2 [51], the difference in potency can be elucidated because
of the fact that the α-derivative showed a docking score of−7.054, while its counterpart, the
β-derivative, exhibited a docking score of −5.22. This difference in the docking scores as
well as forming different interactions with the active site could explain why the α-sulfone
derivative would be a more promising lead for further development.
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Table 2. Comparing α- and β-sulfone derivatives for their matrix metalloproteinase 1 (MMP-1) activity [50].
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3. Heterocyclic Sulfonamides

Sulfonamides significance stems from the fact that they constitute a significant class of
drugs with various types of pharmacological effects including antitumor, anti-carbonic an-
hydrase, and diuretic activity [53–56]. There are many reports of a multitude of structurally
novel heterocyclic sulfonamide derivatives that have been stated to display significant
antitumor activity [57,58]. Although the mechanism by which they combat cancer may vary,
the majority of anti-cancer sulfonamides act on angiogenesis through several pathways.

As of today, there are no FDA-approved heterocyclic sulfonamide anti-angiogenics
in the market, but there are several promising leads being developed. One of such leads
is E7820, which is now in phase II clinical trial for colorectal cancer treatment through
the inhibition of integrin α2 [59]. Integrins are transmembrane receptors that are central
to the biology of many human pathologies, where they act through the mediation of the
cell-extracellular matrix and cell–cell interaction [60]. This mediative action is carried out
through the transduction of information from the extracellular environment to modulate
cell responses, together with adhesion, spreading, migration, growth signaling, survival
signaling, secretion of proteases, and invasion [3,61,62]. Numerous studies report that the
increased levels of integrin α2 facilitate the spread of cancer [63–66]. Thus, inhibitors of
integrin α2, such as that shown in Figure 6, will slow the spread of cancer and its metastasis.
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Hypoxia inducible factors (HIFs) are another promising anti-angiogenic inhibitor [67].
This is because of the requirement of an adequate oxygen supply for the macroscopic
tumor to grow [68]. This need is fulfilled through tumor angiogenesis, which results from
an increased synthesis of angiogenic factors and a decreased synthesis of anti-angiogenic
factors [49,69].

The shift of the balance between pro- and anti-apoptotic factors due to the metabolic
adaptation of tumor cells to decrease the oxygen availability by increasing glucose transport
and glycolysis to promote survival is prominent in hypoxia [69,70]. In this regard, HIF-1,
which is induced by many factors, is mainly implicated in tumor angiogenesis.

A class of heterocyclics based on the lead sulfonamide hits identified by Gerguson et al.
showed potent activity against hypoxia (Table 3) [71,72]. It was found that the oxygen atom
in ring A was essential for the activity, while the double bond in the same ring resulted
in increased hepatotoxicity, leading to the conclusion that the double bond should be
removed. Furthermore, the sulfonamide moiety as well as the hydrophobic substitutions
in ring B increased the activity significantly. In ring C, the methoxy substituent at para
position is essential for activity, while meta methoxy is not. Additionally, upon replacing
the para methoxy with electron withdrawing groups, the activity was lost, demonstrating
that only electron donating groups should occupy this position. This SAR is summarized
in Figure 7.
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Table 3. In vitro inhibition of hypoxia inducible factor 1 (HIF-1) transcriptional activity in cell-based HRE reporter assay by
the benzenesulfonamide analogues (13–18) [72].
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The interaction of compound 13, possessing IC50 of 0.6 μM, with HIF-1 active site 
residue, is demonstrated in Figure 8. It showed better binding energy and inhibition con-
stant as compared with N-((2,2-dimethylchroman-6-yl) methyl) sulfonic amide, with 
docking scores of −6.85 and −5.4, respectively. This could be owing to the ability of the 
sulfonamide derivative (13) to form a hydrogen bond and metal interaction with the active 
site residue. 
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The interaction of compound 13, possessing IC50 of 0.6 µM, with HIF-1 active site
residue, is demonstrated in Figure 8. It showed better binding energy and inhibition
constant as compared with N-((2,2-dimethylchroman-6-yl) methyl) sulfonic amide, with
docking scores of −6.85 and −5.4, respectively. This could be owing to the ability of the
sulfonamide derivative (13) to form a hydrogen bond and metal interaction with the active
site residue.
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4. Oxygen-Based Heterocycles

About 15% of all FDA-approved drugs are oxygen-based heterocycles [73]. To date,
there are several FDA-approved oxygen-based anti-angiogenic cancer drugs. Some of
these drugs (Figure 9) are based on the oxetane ring such as paclitaxel (PTX, Taxol®) and
cabazitaxel (Jevtana) acting via microtubule-targeting [74].
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Microtubules are cytoskeletal elements that are necessary for many functions including
intracellular transport, motility, morphogenesis, and cell division [75,76]. α–β tubulin het-
erodimers make up the microtubules by assembling in sequence to form the protofilaments
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of the tube [77]. This microtubule polymerization leads to a characteristic heterogeneity
among the two ends of the microtubule, giving rise to different kinetics of the addition
and subtraction of heterodimers at the two ends [78]. At the ‘plus’ end, the kinetics of the
polymerization and depolymerization are faster than those at the other end, the slower
so-called ‘minus’ end. Inside the cell, microtubules are attached by their minus ends at
the microtubule-organizing center, placing their plus ends to the cell border [79]. The plus
ends constantly grow and shorten, which is a property vital for various cellular processes
including cell division [80].

Throughout mitosis, normal cells could arrest owing to interference in the dynamic
properties of microtubules, where microtubules continuously polymerize and rapidly
depolymerize, making a ‘pulling device’ for the duplicated chromosomes [81]. MTAs
(microtubule-targeting agents) act through the stabilization of microtubules against depoly-
merization [82–84]. One of the most promising microtubule targeting agents is paclitaxel.
In a study conducted by Ganesh et al., the cytotoxicity of some paclitaxel derivatives was
measured as illustrated in Table 4 [85].

Table 4. Cytotoxic activity of some paclitaxel analogues (19–24) [85].
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From the study of Ganesh et al., it was found that any changes to rings C and D led to
loss of activity, indicating the importance of their structural rigidity. The following groups
were found to be essential for activity: the N-acyl group, the free 2′-hydroxy group, and
the acyloxy group substitution on ring E. In addition, the ortho and meta substitutions on
ring E increased the activity. On the other hand, when the acetate group on ring D was
removed, the activity decreased significantly. The SAR of the above-mentioned paclitaxel
analogues is illustrated in Figure 10.
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The interaction of paclitaxel with microtubule active site (Figure 11) further illumi-
nated this SAR, where paclitaxel showed a very high binding affinity with the active site
(docking score of −9.48) [87]. Furthermore, paclitaxel formed three hydrogen bonds and
one π–π interaction within the active site, showing a remarkable ability to interact with the
microtubule active site.
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sulfonamide ligand inside the receptor’s active site. (b) Ligand interaction diagram; violet lines represent hydrogen bonds
and green lines represent π–π interactions.
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5. Drug Likeness and Absorption Distribution Metabolism Excretion (ADME)
Prediction of the Chosen Inhibitors

Computational approaches have become an essential part of interdisciplinary drug
discovery research. Understanding the science behind computational tools and their
opportunities is essential to make a real outcome on drug discovery at different stages. If
applied in a scientifically meaningful way, computational methods improve the ability to
identify and evaluate potential drug molecules [90–95]. A good antagonistic interaction of
inhibitors with a receptor protein or enzyme does not assure the capability of an inhibitor
as a drug; consequently, absorption distribution metabolism excretion (ADME) analysis
is important in the drug development [96]. ADME is based on Lipinski’s rule of five and
assists in the approval of inhibitors for biological systems.

One of the major causes of the failure of most medicines in clinical experiments is
having poor ADME characteristics and unfavorable toxicology [97]. Apart from efficacy
and toxicity, various drug development failures are due to poor pharmacokinetics and
bioavailability [98]. Gastrointestinal absorption and brain access are two pharmacokinetic
behaviors crucial to be evaluated at various stages of the drug discovery [99]. Therefore,
four leads belonging to each class were subjected to an in silico pharmacokinetic study
using the SwissADME server (compound 10 as representative for nitrogen-based drugs
(referred as molecule 1 in the BOILED-Egg chart), compound 12 as a representative for
MMPIs (molecule 2), compound 13 as a representative for the heterocyclic sulfonamides
(molecule 3), and paclitaxel as a representative for oxygen-based heterocycles (molecule 4)).
The pharmacokinetic study is demonstrated in Figure 12 using the brain or intestinal
estimated permeation method (BOILED-Egg).
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Upon looking at the BOILED-Egg chart, we can see that, even though the four leads
exert their pharmacological action through different mechanisms, three compounds (10, 12,
and 13) were found to obey Lipinski’s rule of five, indicating their absorbance in the GIT if
taken orally, but avoiding any side effects resulting from passing the blood–brain barrier
(BBB). However, compound 10 is predicted to be expelled from the central nervous system
by P-glycoprotein (Pgp), resulting in a possible poor bioavailability. Even though paclitaxel
showed promising biological activity, it fails to obey Lipinski’s rule of five, leading to poor
oral bioavailability.
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6. Conclusions

Throughout this review, several leads were investigated for SAR, molecular interac-
tion, and in silico pharmacokinetics study. The following outlines were concluded, aiming
to develop more active analogues of the discussed leads. Compound 10 and its derivatives
would benefit from both a modification to prevent its efflux by the PGP as well as modifica-
tions to increase its interaction with the VEGFR-2 active site. Both compounds 12 and 13
and their derivatives show good drug-likeness properties, but would benefit from further
isosteric changes to their structures to increase their interactions with their respective active
site. Paclitaxel and its derivatives have shown the highest binding potential to MTA active
site residue, with docking scores around −9.5. However, they all violated Lipinski’s rule
of five, leading to poor bioavailability. Therefore, further modification to their chemical
structure is highly needed.
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