Electronic Supplementary Information

Synthesis of Chiral Helic[1]triptycene[3]arenes and Their Enantioselective Recognition Towards Chiral Guests Containing Aminoindan Groups

Jing Li,^{1,2} Ying Han, ¹ and Chuan-Feng Chen^{1,2,*}

^aBeijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

^bUniversity of Chinese Academy of Sciences, Beijing 100049, China.

E-mail: cchen@iccas.ac.cn

Table of contents

1.	HPLC Charts	S3
2.	NMR Spectra of New Compounds	S5
3.	¹ H NMR Studies on the Complexation Between H and G1-G2	.S13
4.	High Resolution Mass Spectra for the Complexes	.S18
5.	Determination of Association Constants for the Complexes	.S22
6.	Crystal Structures	.S34
7.	DFT Calculations for Complexation Between H and G1-G2	.839
8.	CD Spectra of Chiral Hosts and the Host-Guest Complexes	.S68
9.	¹ H NMR and 2D NMR Spectra for the Complexes	.S69

1. HPLC Charts

Optical Resolution Conditions

Column: Chiralpak[®] IE 50 mm \times 250nm

Mobile Phase: MeOH

Flow Rate: 1 mL/min

Wave Length UV 214nm

Figure S1. HPLC profile of *rac*-1.

 Table S1. The summary of HPLC profiles of rac-1.

Compound	Deals	Ret.	Area	$\Lambda rea0/2$
	TCak	Time	Alta	Alca/0
<i>RR</i> -1	1	4.078	22502285	41.7324
<i>SS</i> -1	2	5.366	31418174	58.2676

Analysis of the Enantiomer Excess of RR-1 and SS-1

Figure S2. HPLC profile of *RR*-1.

Table S2. The summary of HPLC profiles of *RR*-1.

Compound	Peak	Ret. Time	Area	Area%	ee value
<i>RR</i> -1	1	4.093	3371935	99.5847	>99%
<i>SS</i> -1	2	5.439	14063	0.4153	

Figure S3. HPLC profile of SS-1.

 Table S3. The summary of HPLC profiles of SS-1.

Compound	Peak	Ret. Time	Area	Area%	ee value
<i>RR-</i> 1	1	4.114	100132	0.4982	
<i>SS</i> -1	2	5.429	19998978	99.5018	>99%

2. NMR Spectra of New Compounds

Figure S4. ¹H NMR spectrum (300 MHz, CDCl₃, 298 K) of *RR*-1.

Figure S5. ¹³C NMR spectrum (75 MHz, CDCl₃, 298 K) of RR-1.

Figure S7. ¹³C NMR spectrum (100 MHz, CDCl₃, 298 K) of *SS*-1.

Figure S8. ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of *P*-**H**.

Figure S9. ¹³C NMR spectrum (125 MHz, CDCl₃, 298 K) of *P*-**H**.

Figure S10. ¹H NMR spectrum (500 MHz, CDCl₃, 298 K) of *M*-H.

Figure S11. ¹³C NMR spectrum (125 MHz, CDCl₃, 298 K) of *M*-H.

Figure S12. ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of *R*-**G1**.

Figure S13. ¹³C NMR spectrum (100 MHz, CDCl₃, 298 K) of *R*-G1.

Figure S14. ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of S-G1.

Figure S15. ¹³C NMR spectrum (100 MHz, CDCl₃, 298 K) of *S*-G1.

Figure S17. ¹³C NMR spectrum (125 MHz, CD₂Cl₂, 298 K) of *R*-G2.

Figure S18. ¹H NMR spectrum (500 MHz, CD₂Cl₂, 298 K) of *S*-**G2**.

Figure S19. ¹³C NMR spectrum (125 MHz, CD₂Cl₂, 298 K) of *S*-G2.

3. ¹H NMR Studies on the Complexation Between H and G1-G2

Figure S20. ¹H NMR spectra (500 MHz, 298K, CD_2Cl_2) of 2.0mM *rac*-H with different amounts of *R*-G2.

Figure S21. ¹H NMR spectra (500 MHz, 298K, CDCl₃) of (a) *P*-**H**, (b) *P*-**H** + 1.0 equiv. *R*-**G1**, (c) *R*-**G1**. [*P*-**H**]₀ = 3.00 mM.

Figure S22. ¹H NMR spectra (500 MHz, 298K, CDCl₃) of (a) *P*-H, (b) *P*-H + 1.0

equiv. S-G1, (c) S-G1. $[P-H]_0 = 3.00 \text{ mM}.$

Figure S23. ¹H NMR spectra (500 MHz, 298K, CDCl₃) of (a) *M*-H, (b) *M*-H + 1.0 equiv. *R*-G1, (c) *R*-G1. [M-H]₀ = 3.00 mM.

Figure S24. ¹H NMR spectra (500 MHz, 298K, CDCl₃) of (a) *M*-H, (b) *M*-H + 1.0

equiv. S-G1, (c) S-G1. $[M-H]_0 = 3.00 \text{ mM}.$

Figure S25. ¹H NMR spectra (500 MHz, 298K, CD₂Cl₂) of (a) *P*-H, (b) *P*-H + 1.0 equiv. *R*-G2, (c) *R*-G2. [*P*-H]₀ = 3.00 mM.

Figure S26. ¹H NMR spectra (500 MHz, 298K, CD_2Cl_2) of (a) *P*-H, (b) *P*-H + 1.0 equiv. *S*-G2, (c) *S*-G2. [*P*-H]₀ = 3.00 mM.

Figure S27. ¹H NMR spectra (500 MHz, 298K, CD_2Cl_2) of (a) *M*-H, (b) *M*-H + 1.0 equiv. *R*-G2, (c) *R*-G2. [*M*-H]₀ = 3.00 mM.

Figure S28. ¹H NMR spectra (500 MHz, 298K, CD_2Cl_2) of (a) *M*-H, (b) *M*-H + 1.0

equiv. S-G2, (c) S-G2. [*M*-H]₀ = 3.00 mM.

4. High Resolution Mass Spectra for the Complexes

Figure S29. ESI-MS spectrum of the complex *P*-H·*R*-G1.

Figure S30. ESI-MS spectrum of the complex *P*-H·*S*-G1.

Figure S31. ESI-MS spectrum of the complex *M*-H·*R*-G1.

Figure S32. ESI-MS spectrum of the complex *M*-H·*S*-G1.

Figure S33. ESI-MS spectrum of the complex P-H·R-G2.

Figure S34. ESI-MS spectrum of the complex *P*-H·*S*-G2.

Figure S35. ESI-MS spectrum of the complex *M*-H·*R*-G2.

Figure S36. ESI-MS spectrum of the complex *M*-H·*S*-G2.

5. Determination of the Association Constants for the Complexes

Figure S37. Job plot for the complexation of *P*-H and *R*-G1 in CDCl₃ at 298 K.

5.0 4.0 3.5 0.5 7.5 7.0 6.5 6.0 5.5 4.5 3.0 2.5 2.0 1.5 1.0 0.0 Figure S38. ¹H NMR spectra (400 MHz, 298K, CDCl₃) of P-H with different equivalents of *R*-G1: (a) 0.00, (b) 0.20, (c) 0.40, (d) 0.60, (e) 0.80, (f) 1.00, (g) 1.20, (h) 1.40, (i)1.60, (j) 1.80, (k) 2.00, (l) 2.20, (m) 2.40, (n) 2.50. $[P-H]_0 = 3.00 \text{ mM}.$

Figure S39. Plots of $\Delta \delta_{obs}$ (ppm) for the H₁ of *P*-**H** vs *R*-**G1** concentration in CDCl₃ at

298 K.

Figure S40. Job plot for the complexation of *P*-H and *S*-G1 in CDCl₃ at 298 K.

Figure S41. ¹H NMR spectra (400 MHz, 298K, CDCl₃) of *P*-H with different equivalents of *S*-G1: (a) 0.00, (b) 0.20, (c) 0.40, (d) 0.60, (e) 0.80, (f) 1.00, (g) 1.20, (h) 1.40, (i) 1.60, (j) 1.80, (k) 2.00, (l) 2.20, (m) 2.40, (n) 2.50. $[P-H]_0 = 3.00 \text{ mM}.$

Figure S42. Plots of $\Delta \delta_{obs}$ (ppm) for the H₁₃ of *P*-H vs *S*-G1 concentration in CDCl₃

Figure S43. Job plot for the complexation of *M*-H and *R*-G1 in CDCl₃ at 298 K.

7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 **Figure S44.** ¹H NMR spectra (400 MHz, 298K, CDCl₃) of *M*-H with different equivalents of *R*-G1: (a) 0.00, (b) 0.20, (c) 0.40, (d) 0.60, (e) 0.80, (f) 1.00, (g) 1.20, (h) 1.40, (i) 1.60, (j) 1.80, (k) 2.00, (l) 2.20, (m) 2.40, (n) 2.50. $[M-H]_0 = 3.00$ mM.

Figure S45. Plots of $\Delta \delta_{obs}$ (ppm) for the H₁ of *M*-H vs *R*-G1 concentration in CDCl₃

Figure S46. Job plot for the complexation of *M*-H and *S*-G1 in CDCl₃ at 298 K.

Figure S48. Plots of $\Delta \delta_{obs}$ (ppm) for the H₁ of *M*-H vs *S*-G1 concentration in CDCl₃

at 298 K.

Figure S49. Job plot for the complexation of *P*-H and *R*-G2 in CD₂Cl₂ at 298 K.

Figure S50. ¹H NMR spectra (400 MHz, 298K, CD₂Cl₂) of *P*-**H** with different equivalents of *R*-**G2**: (a) 0.00, (b) 0.20, (c) 0.40, (d) 0.60, (e) 0.80, (f) 1.00, (g) 1.20, (h)

1.40, (i)1.60, (j) 1.80, (k) 2.00, (l) 2.20, (m) 2.40, (n) 2.50. $[P-H]_0 = 3.00 \text{ mM}.$

Figure S51. Plots of $\Delta \delta_{obs}$ (ppm) for the H₃ of *P*-H vs *R*-G2 concentration in CD₂Cl₂

Figure S52. Job plot for the complexation of *P*-H and *S*-G2 in CD₂Cl₂ at 298 K.

Figure S53. ¹H NMR spectra (400 MHz, 298K, CD_2Cl_2) of *P*-**H** with different equivalents of *S*-**G2**: (a) 0.00, (b) 0.20, (c) 0.40, (d) 0.60, (e) 0.80, (f) 1.00, (g) 1.20, (h) 1.40, (i) 1.60, (j) 1.80, (k) 2.00, (l) 2.20, (m) 2.40, (n) 2.50. [*P*-**H**]₀ = 3.00 mM.

Figure S54. Plots of $\Delta \delta_{obs}$ (ppm) for the H₂ of *P*-H vs *S*-G2 concentration in CD₂Cl₂ at 298 K.

Figure S55. Job plot for the complexation of *M*-H and *R*-G2 in CD₂Cl₂ at 298 K.

7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 **Figure S56.** ¹H NMR spectra (400 MHz, 298K, CD₂Cl₂) of *M*-H with different equivalents of *R*-G2: (a) 0.00, (b) 0.20, (c) 0.40, (d) 0.60, (e) 0.80, (f) 1.00, (g) 1.20, (h) 1.40, (i) 1.60, (j) 1.80, (k) 2.00, (l) 2.20, (m) 2.40, (n) 2.50. $[M-H]_0 = 3.00$ mM.

Figure S57. Plots of $\Delta \delta_{obs}$ (ppm) for the H₂ of *M*-H vs *R*-G2 concentration in CD₂Cl₂

Figure S58. Job plot for the complexation of *M*-H and *S*-G2 in CD₂Cl₂ at 298 K.

Figure S59. ¹H NMR spectra (400 MHz, 298K, CD_2Cl_2) of *M*-**H** with different equivalents of *S*-**G2**: (a) 0.00, (b) 0.20, (c) 0.40, (d) 0.60, (e) 0.80, (f) 1.00, (g) 1.20, (h) 1.40, (i) 1.60, (j) 1.80, (k) 2.00, (l) 2.20, (m) 2.40, (n) 2.50. [*M*-**H**]₀ = 3.00 mM.

Figure S60. Plots of $\Delta \delta_{obs}$ (ppm) for the H₃ of *M*-H vs *S*-G2 concentration in CD₂Cl₂ at 298 K.

6. Crystal Structures

Figure S61. (a) top view, (b) side view, (c) ORTEP view (the thermal ellipsoids are displayed at 30% probability) of *P*-**H**.

Empirical formula	$C_{51}H_{50}O_8Cl_2$
Formula weight	861
Temperature	169.99(14) K
Crystal system	Monoclinic
Space group	P21
Unit cell dimensions	$a = 11.5661(2) \text{ Å} \alpha = 90^{\circ}$
	$b = 20.5779(2) \text{ Å} \beta = 117.985(2)^{\circ}$
	$c = 12.3105(10) \text{ Å} \gamma = 90^{\circ}$

 Table S4. Crystal Data and Structure Refinement for P-H (CCDC 2041644).

Volume	2587.37(7) Å ³
Ζ	2
Density (calculated)	2.734 g/cm ³
Absorption coefficient	2.723 mm ⁻¹
F(000)	2105.0
Crystal size	0.15 x 0.1 x 0.08 mm ³
Radiation	$CuK\alpha (\lambda = 1.54184)$
Theta range for data collection	8.134 to 150.88°
Index ranges	-14<=h<=13, -25<=k<=22, -14<=l<=15
Reflections collected	23915
Independent reflections	8717 [R _{int} = 0.0210, R _{sigma} =0.0185]
Data / restraints / parameters	8717/91/586
Goodness-of-fit on F ²	1.088
Final R indices [I>2sigma(I)]	$R_1 = 0.0524, wR_2 = 0.1471$
R indices (all data)	$R_1 = 0.0563, wR_2 = 0.1527$
Largest diff. peak and hole	0.19/-0.20 e Å ⁻³

Figure S62. (a) top view, (b) side view, (c) ORTEP view (the thermal ellipsoids are displayed at 30% probability) of *M*-H.

Empirical formula	$C_{51}H_{50}O_8Cl_2$
Formula weight	861
Temperature	169.99(12) K
Crystal system	Monoclinic
Space group	P21
Unit cell dimensions	$a = 11.5764(2) \text{ Å} \alpha = 90^{\circ}$
	b = 20.3868(2) Å β = 117.321(2)°
	$c = 12.2437(10) \text{ Å} \gamma = 90^{\circ}$
Volume	2567.25(8) Å ³
Ζ	2
Density (calculated)	4.012 g/cm ³
Absorption coefficient	24.816 mm ⁻¹
F(000)	3079.0
Crystal size	0.15 x 0.1 x 0.08 mm ³
Radiation	$CuK\alpha (\lambda = 1.54184)$
Theta range for data collection	8.128 to 151.18°
Index ranges	-14<=h<=14, -25<=k<=25, -15<=l<=13
Reflections collected	50060
Independent reflections	10288 [$R_{int} = 0.0604$, $R_{sigma} = 0.0410$]
Data / restraints / parameters	10288/32/596
Goodness-of-fit on F ²	1.050
Final R indices [I>2sigma(I)]	$R_1 = 0.0590, wR_2 = 0.1599$
R indices (all data)	$R_1 = 0.0641, wR_2 = 0.1661$
Largest diff. peak and hole	0.36/-0.20 e Å ⁻³

 Table S5. Crystal Data and Structure Refinement for M-H (CCDC 2041645).

Figure S63. (a) top view, (b) side view, (c) ORTEP view (the thermal ellipsoids are displayed at 30% probability) of *P*-**H**.

Empirical formula	C52H51O8N
Formula weight	817.93
Temperature	169.98(13) K
Crystal system	Orthorhombic
Space group	P212121
Unit cell dimensions	$a = 9.3923(10) \text{ Å} \alpha = 90^{\circ}$
	$b = 21.0240(10) \text{ Å} \beta = 90^{\circ}$
	$c = 22.2936(10) \text{ Å} \gamma = 90^{\circ}$
Volume	4402.18(6) Å ³
Ζ	4
Density (calculated)	1.234 g/cm ³
Absorption coefficient	0.665 mm^{-1}
F(000)	1736.0

 Table S6. Crystal Data and Structure Refinement for P-H (CCDC 2046031).

Crystal size	0.26 x 0.2 x 0.12 mm ³
Radiation	$CuK\alpha (\lambda = 1.54184)$
Theta range for data collection	5.778 to 150.98°
Index ranges	-11<=h<=11, -26<=k<=26, -21<=l<=27
Reflections collected	41387
Independent reflections	8764 [R _{int} = 0.0310, R _{sigma} =0.0201]
Data / restraints / parameters	8764/0/559
Goodness-of-fit on F ²	1.041
Final R indices [I>2sigma(I)]	$R_1 = 0.0331, wR_2 = 0.0885$
R indices (all data)	$R_1 = 0.0353, wR_2 = 0.0912$
Largest diff. peak and hole	0.30/-0.23 e Å ⁻³

7. DFT Calculations for the Complexation Between H and G1-G2

Figure S64. Calculated structure of the complex *P*-H·*R*-G1 (a) top view, (b) side view

at the B3LYP/6-31G level.

The atomic coordinates of P-H·R-G1.

С	4.1961	-3.6494	2.8132
С	4.27806	-3.53302	4.21378
С	3.24571	-2.91804	4.94562
С	2.13037	-2.41857	4.25795
С	2.06029	-2.52577	2.85217
С	3.08243	-3.14609	2.11614
С	0.87911	-1.75674	4.81827
С	-0.12195	-1.81253	3.62018
С	0.75173	-1.95192	2.33789
Ν	0.95219	-0.5627	1.64014
С	0.30398	-0.57104	0.24363
С	0.43071	0.68835	-0.47613
С	0.49729	1.70279	-1.14065
Н	4.99492	-4.14694	2.2657
Н	5.14184	-3.93824	4.73856
Н	3.30776	-2.85061	6.03102
Н	3.02256	-3.25413	1.03211
Н	0.48459	-2.27676	5.70224
Н	1.08418	-0.71763	5.12671
Н	-0.80261	-0.95187	3.57727

Н	-0.74172	-2.71632	3.7036
Н	0.28077	-2.58802	1.5786
Н	0.51078	0.18708	2.21836
Н	1.97179	-0.32871	1.57901
Н	-0.74912	-0.83174	0.40375
Н	0.77226	-1.39302	-0.31167
Н	0.5846	2.61483	-1.68876
0	-1.11252	-4.3039	0.10562
0	-0.80706	-1.52547	-4.45267
0	3.53175	-3.38372	-1.42022
0	3.75288	0.43398	1.58732
С	-2.04701	-3.31684	-0.30807
С	-2.78141	-2.61823	0.67355
С	-3.61616	-1.57091	0.28316
С	-3.74991	-1.24592	-1.08857
С	-3.01922	-1.94549	-2.04993
С	-2.13828	-2.99096	-1.67538
С	-4.68509	-0.04163	-1.32666
С	-6.01689	-0.37109	-0.62932
С	-7.28591	-0.38153	-1.21527
С	-8.40818	-0.69851	-0.42351
С	-1.27587	-3.69719	-2.72232
С	0.1069	-3.06399	-2.87752
С	0.3153	-1.9552	-3.73584
С	1.57333	-1.34138	-3.83199
С	2.67348	-1.80849	-3.08211
С	2.46709	-2.92042	-2.2451
С	1.20662	-3.53355	-2.1445
С	4.00761	-1.06441	-3.12676
С	4.04859	0.07376	-2.10609
С	4.01207	-0.21207	-0.73542
С	3.94595	0.81003	0.21738
0	-2.55678	4.51867	-0.57586
0	-0.20095	1.77492	3.28724
0	2.24827	5.36163	-0.25575
0	4.05471	1.6783	-3.86708
С	-2.99485	3.25297	-0.15743
С	-3.64383	2.34698	-1.01975
С	-4.05322	1.10872	-0.51894
С	-3.86562	0.78802	0.84194
С	-3.19916	1.6864	1.68127
С	-2.73121	2.92367	1.19246
С	-4.39403	-0.61582	1.20623

С	-5.86071	-0.67446	0.74303
С	-6.97306	-0.98993	1.52841
С	-8.25316	-0.99976	0.9382
С	-1.93616	3.87315	2.08721
С	-0.42356	3.78747	1.86357
С	0.37643	2.80424	2.47027
С	1.74909	2.71258	2.21727
С	2.3807	3.54688	1.28748
С	1.59008	4.54799	0.67565
С	0.22333	4.67763	0.97917
С	3.83278	3.29562	0.88502
С	3.95696	2.1686	-0.14668
С	4.01716	2.46027	-1.52593
С	4.04645	1.43605	-2.49002
С	-1.68305	-5.5385	0.67474
С	-0.19603	2.05567	4.73878
С	4.13053	-4.67149	-1.81937
С	4.97256	-0.00948	2.30274
С	-2.9554	5.00053	-1.89293
С	-0.66776	-0.40833	-5.37875
С	1.56494	6.54725	-0.76536
С	4.1475	3.05137	-4.34849
Н	-2.67283	-2.88679	1.72415
Н	-3.08744	-1.67763	-3.10227
Н	-4.8069	0.19726	-2.38869
Н	-7.4089	-0.14782	-2.27257
Н	-9.39963	-0.70936	-0.87252
Н	-1.14861	-4.75009	-2.44037
Н	-1.79519	-3.66737	-3.68774
Н	1.72394	-0.47799	-4.47491
Н	1.0673	-4.36644	-1.45847
Н	4.82336	-1.7673	-2.91125
Н	4.17134	-0.65585	-4.12935
Н	4.00842	-1.25318	-0.41487
Н	-3.81314	2.59183	-2.06532
Н	-3.01792	1.43426	2.72535
Н	-4.27309	-0.85461	2.2688
Н	-6.85511	-1.22405	2.58601
Н	-9.12499	-1.24246	1.54329
Н	-2.25847	4.9059	1.9017
Н	-2.17034	3.64018	3.13429
Н	2.3329	1.93501	2.70238
Н	-0.38326	5.43229	0.48916

Н	4.26002	4.2136	0.4665
Н	4.41236	3.03804	1.78203
Н	4.0046	3.50471	-1.82785
Н	-0.82704	-6.14964	0.97304
Н	-2.30988	-5.31912	1.55018
Н	-2.28219	-6.06796	-0.07909
Н	-0.65964	1.18935	5.21939
Н	0.83283	2.18978	5.10095
Н	-0.78013	2.95972	4.95304
Н	4.9029	-4.88446	-1.07473
Н	3.37681	-5.47068	-1.8167
Н	4.58031	-4.59296	-2.81835
Н	4.68979	-0.0956	3.35772
Н	5.30143	-0.98578	1.92327
Н	5.77188	0.73487	2.17567
Н	-2.59338	6.03067	-1.94527
Н	-2.49342	4.40477	-2.69461
Н	-4.04839	4.98627	-2.00729
Н	0.06774	-0.63185	-6.16422
Н	-1.65726	-0.28178	-5.82542
Н	-0.37627	0.51048	-4.84921
Н	2.30759	7.06469	-1.37794
Н	0.69737	6.27451	-1.38382
Н	1.23994	7.19921	0.05771
Н	4.19074	2.96894	-5.43748
Н	3.26452	3.63782	-4.05394
Н	5.05762	3.54243	-3.97626

Figure S65. Calculated structure of the complex *P*-H·*S*-G1 (a) top view, (b) side view

at the B3LYP/6-31G level.

The atomic coordinates of *P*-H·*S*-G1.

0	1.4946	-0.86282	3.31067
0	-3.45657	-2.49719	3.43173
0	1.01592	-5.7317	2.90584
0	1.04231	-5.85797	-2.46158
С	0.46699	-0.1725	2.72381
С	0.66255	0.71561	1.64809
С	-0.42734	1.42208	1.14259
С	-1.69551	1.27903	1.71988
С	-1.8859	0.35854	2.74575
С	-0.82035	-0.40167	3.24978
С	-2.74697	2.19976	1.08616
С	-2.17743	3.61908	1.15284
С	-2.77966	4.73042	1.7293
С	-2.11728	5.96486	1.69333
С	-1.03162	-1.4523	4.3318
С	-1.152	-2.85915	3.7602
С	-2.38913	-3.34013	3.27824
С	-2.47828	-4.59569	2.67313
С	-1.35244	-5.42201	2.5302
С	-0.13662	-4.96334	3.04872
С	-0.04599	-3.70234	3.65144
С	-1.45083	-6.73008	1.7547
С	-1.42416	-6.48098	0.25349

С	-0.21012	-6.37994	-0.4314
С	-0.15517	-6.03214	-1.78832
0	-4.74186	0.6271	-3.27078
0	0.42709	-0.73564	-4.30339
0	-3.87185	-4.23944	-4.30598
0	-3.78375	-6.40534	0.22621
С	-3.70366	1.03899	-2.47405
С	-3.87407	1.4386	-1.1378
С	-2.76441	1.83173	-0.39779
С	-1.49683	1.89735	-0.99077
С	-1.33382	1.47672	-2.3061
С	-2.42311	1.01649	-3.06054
С	-0.41376	2.40392	-0.03056
С	-0.91875	3.73226	0.53893
С	-0.2612	4.95546	0.50279
С	-0.86814	6.07691	1.08407
С	-2.21782	0.45042	-4.45757
С	-1.97038	-1.05226	-4.4169
С	-0.6798	-1.58493	-4.31192
С	-0.4811	-2.96535	-4.18102
С	-1.5484	-3.86424	-4.15241
С	-2.84697	-3.33136	-4.29842
С	-3.0444	-1.95269	-4.42068
С	-1.31887	-5.35748	-3.96526
С	-1.33822	-5.78604	-2.50339
С	-2.55618	-5.92872	-1.82638
С	-2.61134	-6.27033	-0.47339
С	1.0654	-0.59983	-5.58106
С	-5.18199	-3.78538	-4.62237
С	2.80741	-0.31924	3.21576
С	-6.07221	0.85022	-2.82188
С	-4.74685	-2.96896	3.07408
С	1.37198	-6.47365	4.07745
С	2.15021	-6.66176	-2.05485
С	-5.00758	-6.3689	-0.49406
Н	1.66043	0.9018	1.25959
Н	-2.87395	0.21054	3.17322
Н	-3.72795	2.11337	1.56036
Н	-3.75359	4.6447	2.20527
Н	-2.58136	6.83797	2.14323
Н	-0.19131	-1.42475	5.03128
Н	-1.93954	-1.20922	4.89031
Н	-3.41934	-4.9472	2.26835

Н	0.91958	-3.36194	4.01224
Н	-0.61344	-7.37781	2.02423
Н	-2.37607	-7.24736	2.02174
Н	0.70566	-6.55861	0.12373
Н	-4.85625	1.4349	-0.67628
Н	-0.35038	1.48743	-2.77137
Н	0.56817	2.49408	-0.50413
Н	0.71286	5.04435	0.02736
Н	-0.36118	7.03736	1.0588
Н	-3.09849	0.65445	-5.07216
Н	-1.36562	0.95326	-4.92196
Н	0.53482	-3.34972	-4.12173
Н	-4.04529	-1.54648	-4.49787
Н	-2.0949	-5.90615	-4.50671
Н	-0.3549	-5.62816	-4.40209
Н	-3.46523	-5.74483	-2.38519
Н	1.91418	0.07273	-5.4376
Н	1.42133	-1.56932	-5.95031
Н	0.37684	-0.16854	-6.31753
Н	-5.80562	-4.67994	-4.6633
Н	-5.57015	-3.10564	-3.85288
Н	-5.20491	-3.28058	-5.59571
Н	3.41901	-0.89116	3.91526
Н	3.22605	-0.43605	2.20993
Н	2.81546	0.74048	3.49803
Н	-6.71993	0.57484	-3.65598
Н	-6.31961	0.2249	-1.95338
Н	-6.23587	1.90389	-2.56569
Н	-5.44237	-2.17211	3.3441
Н	-4.81929	-3.16725	1.9967
Н	-5.00772	-3.88074	3.62586
Н	2.28874	-7.01742	3.83715
Н	1.55332	-5.80676	4.92957
Н	0.58337	-7.18751	4.34703
Н	2.8919	-6.57985	-2.85222
Н	2.59423	-6.3034	-1.11752
Н	1.85165	-7.70958	-1.93669
Н	-5.79065	-6.57989	0.23636
Н	-5.18395	-5.38194	-0.94192
Н	-5.03043	-7.1315	-1.28244
С	3.89865	-3.81216	1.89604
С	5.00327	-2.96233	1.77968
С	5.07886	-2.02974	0.74063

С	4.03891	-1.96166	-0.1854
С	2.93745	-2.82593	-0.07363
С	2.85879	-3.75627	0.96514
С	3.90762	-1.06238	-1.3942
С	2.81657	-1.76622	-2.23548
С	2.00528	-2.64186	-1.24948
Ν	0.67884	-1.945	-0.88369
С	-0.29415	-2.7808	-0.06025
С	-1.62825	-2.22027	-0.16102
С	-2.72964	-1.74827	-0.2891
Н	3.84656	-4.53514	2.70383
Н	5.81585	-3.03317	2.49746
Н	5.9448	-1.3793	0.64903
Н	2.02425	-4.44234	1.0653
Н	3.60356	-0.0474	-1.10004
Н	4.84479	-0.95401	-1.94939
Н	3.29167	-2.44669	-2.94987
Н	2.18462	-1.0904	-2.81782
Н	1.67693	-3.58309	-1.69903
Н	0.84353	-1.06324	-0.37521
Н	0.20544	-1.69476	-1.76424
Н	0.07517	-2.79513	0.96819
Н	-0.25851	-3.79671	-0.46231
Н	-3.68507	-1.28911	-0.40124

Figure S66. Calculated structure of the complex *M*-**H**·*R*-**G1** (a) top view, (b) side view at the B3LYP/6-31G level.

The atomic coordinates of M-H·R-G1.

С	3.78202	-3.21894	-1.73644
С	4.69731	-2.21983	-2.08638
С	4.66173	-0.96899	-1.46393
С	3.68788	-0.72192	-0.49642
С	2.75619	-1.71782	-0.16702
С	2.80561	-2.98001	-0.76597
С	3.48539	0.52036	0.34384
С	2.52868	0.03994	1.46427
С	1.83837	-1.2376	0.93093
Ν	0.42034	-0.9068	0.43342
С	-0.36348	-2.07891	-0.13582
С	-1.73886	-1.68531	-0.37531
С	-2.87354	-1.33497	-0.57854
Н	3.84383	-4.19554	-2.20743
Н	5.45969	-2.4264	-2.83224
Н	5.39822	-0.21062	-1.71657
Н	2.12484	-3.77291	-0.46436
Н	4.42431	0.90881	0.75143
Н	3.046	1.33629	-0.24585
Н	1.81662	0.80429	1.79141
Н	3.10644	-0.24682	2.34779
Н	1.65948	-1.96443	1.72264
Н	-0.11662	-0.52946	1.22903
Н	0.42973	-0.15197	-0.27432
Н	-0.29193	-2.89028	0.59269
Н	0.138	-2.38478	-1.05635
Н	-3.86593	-1.01591	-0.80151
0	0.7456	0.85185	-3.78553
0	-4.70573	-0.00269	3.58611
0	-3.93579	-4.83049	3.2972
0	0.48321	-1.51097	3.75205
0	-4.29989	-5.70974	-1.71315
0	0.75735	-5.54824	0.56156
0	-4.28035	-0.8917	-3.90604
0	0.23454	-4.0928	-4.30126
С	-0.20623	1.28294	-2.90144
С	0.10491	1.83203	-1.64126
С	-0.92882	2.29103	-0.82113
С	-0.79737	2.86188	0.59541
С	-1.74665	2.02142	1.46464
С	-1.43803	1.25567	2.58848
		S47	

С	-2.43133	0.53975	3.27978
С	-3.76503	0.65484	2.84037
С	-4.08229	1.40475	1.69709
С	-3.07128	2.06113	1.00795
С	-3.24018	2.87145	-0.27593
С	-2.25289	2.25473	-1.2708
С	-2.55143	1.66743	-2.49693
С	-1.54609	1.14217	-3.31794
С	-1.39951	4.26835	0.53006
C	-0.77228	5.45766	0.87898
С	-1.47164	6.66482	0.74642
C	-2.78121	6.67088	0.26796
C	-3.41264	5.47012	-0.08346
C	-2.7188	4.27379	0.04791
C	-2.08309	-0.35833	4.45913
C	-1.90324	-1.81131	4.03513
С	-3.0088	-2.66801	3.92555
С	-2.8813	-3.96845	3.43134
C	-1.62403	-4.46304	3.02394
C	-0.52065	-3.62639	3.18636
C	-0.65157	-2.32324	3.67848
C	-1.47959	-5.83656	2.38646
C	-1.63213	-5.78508	0.87108
C	-2.90527	-5.81999	0.28217
C	-3.07424	-5.70257	-1.09983
C	-1.95791	-5.55476	-1.95058
C	-0.69516	-5.54099	-1.36061
C	-0.52739	-5.64715	0.02358
C	-2.1245	-5.355	-3.45041
С	-2.07518	-3.88326	-3.83354
С	-3.2213	-3.08781	-3.75482
С	-3.18051	-1.71498	-4.0172
С	-1.97189	-1.10005	-4.38447
C	-0.83146	-1.90265	-4.49621
C	-0.87041	-3.2736	-4.22371
С	-1.88669	0.40486	-4.60455
С	1.25038	-1.69601	4.94992
С	1.39535	-3.5937	-4.94699
С	-5.44794	-6.00052	-0.92982
С	-5.56542	-1.49577	-3.87786
С	-6.08097	0.21671	3.29799
С	-5.20057	-4.44382	3.81778
С	2.09285	1.26401	-3.59999

С	1.52008	-6.75832	0.47899
Н	1.13949	1.96932	-1.33859
Н	0.23291	2.8663	0.96477
Н	-0.41956	1.2231	2.97423
Н	-5.1061	1.47764	1.34648
Н	-4.26875	2.87481	-0.64533
Н	-3.58243	1.59346	-2.83319
Н	0.24927	5.45475	1.25213
Н	-0.98897	7.59926	1.01815
Н	-3.3169	7.61037	0.1663
Н	-4.43389	5.47686	-0.45656
Н	-1.16339	0.00839	4.92193
Н	-2.87671	-0.29762	5.20924
Н	-3.97968	-2.27866	4.20193
Н	0.46382	-3.99338	2.90617
Н	-2.23258	-6.51099	2.8026
Н	-0.49612	-6.23998	2.64073
Н	-3.76367	-5.91429	0.93598
Н	0.17946	-5.42051	-1.99416
Н	-1.32896	-5.89057	-3.97466
Н	-3.07919	-5.7817	-3.76661
Н	-4.14685	-3.56369	-3.45084
Н	0.09761	-1.42661	-4.78491
Н	-1.12522	0.61624	-5.3604
Н	-2.84461	0.77115	-4.98225
Н	2.10234	-1.01457	4.8874
Н	0.6541	-1.45491	5.83809
Н	1.61023	-2.72869	5.0317
Н	2.08021	-4.44036	-5.0295
Н	1.16458	-3.21494	-5.95067
Н	1.87753	-2.79783	-4.36317
Н	-6.2867	-6.02947	-1.62765
Н	-5.35624	-6.97335	-0.43073
Н	-5.62971	-5.22439	-0.17455
Н	-6.28531	-0.67787	-3.95012
Н	-5.70469	-2.18058	-4.72357
Н	-5.73995	-2.04602	-2.94285
Н	-6.63655	-0.31519	4.07213
Н	-6.33291	1.28328	3.33883
Н	-6.35679	-0.18475	2.31415
Н	-5.85794	-5.30285	3.67342
Н	-5.13757	-4.20988	4.88766
Н	-5.60978	-3.57779	3.28145

Н	2.6218	0.97376	-4.50953
Н	2.16295	2.35088	-3.46916
Н	2.5587	0.75877	-2.74435
Н	2.50248	-6.53931	0.90412
Н	1.04314	-7.56287	1.05259
Н	1.63483	-7.08502	-0.56175

Figure S67. Calculated structure of the complex M-H·S-G1 (a) top view, (b) side view

at the B3LYP/6-31G level.

The atomic coordinates of M-H·S-G1.

С	3.77028	-4.2172	1.1757
С	4.90195	-3.59669	1.71276
С	5.05155	-2.21102	1.63069
С	4.04911	-1.45583	1.02483
С	2.90319	-2.07659	0.50289
С	2.76855	-3.46699	0.55352
С	4.02471	0.03596	0.78921
С	2.5457	0.31129	0.44313
С	1.99592	-1.02555	-0.11687
Ν	0.52022	-1.15257	0.23719
С	-0.28748	-2.1565	-0.57295
С	-1.69304	-2.04444	-0.2301
С	-2.85565	-1.92879	0.0634
Н	3.66378	-5.29575	1.23524
Н	5.6723	-4.19578	2.18967
Н	5.9372	-1.72805	2.03486
Н	1.91987	-3.99701	0.13395

Н	4.36548	0.61996	1.65028
Н	4.67796	0.30327	-0.05211
Н	2.41368	1.1414	-0.25426
Н	1.99741	0.56047	1.36091
Н	2.0245	-1.04825	-1.21314
Н	0.42915	-1.35914	1.26223
Н	0.07173	-0.23773	0.07768
Н	0.09829	-3.15384	-0.35778
Н	-0.1158	-1.9291	-1.6302
Н	-3.87958	-1.81333	0.33624
0	0.35188	0.8174	-3.65811
0	-4.76527	-0.65405	3.70727
0	-3.72519	-5.40184	3.71949
0	0.31328	-1.65942	3.04424
0	-4.47676	-5.83066	-1.62824
0	0.7014	-6.12742	0.34061
0	-4.62061	-1.13118	-3.85578
0	-0.04802	-4.24081	-4.30072
С	-0.64807	1.20845	-2.79613
С	-0.37774	1.80452	-1.54949
С	-1.43655	2.16384	-0.71862
С	-1.33834	2.74282	0.69507
С	-2.15975	1.78446	1.56836
С	-1.71557	1.01757	2.64117
С	-2.5839	0.15825	3.32996
С	-3.94167	0.1376	2.95158
С	-4.39308	0.88181	1.84961
С	-3.49225	1.67527	1.14972
С	-3.78792	2.47602	-0.11864
С	-2.75993	1.98326	-1.1433
С	-3.015	1.37794	-2.36759
С	-1.97033	0.95785	-3.20634
С	-2.10019	4.06927	0.65844
С	-1.60762	5.32038	1.00806
С	-2.44563	6.43901	0.90816
С	-3.75861	6.29701	0.46077
С	-4.25425	5.03457	0.10839
С	-3.423	3.92578	0.20802
С	-2.07582	-0.75715	4.43368
С	-1.87176	-2.19002	3.95379
С	-2.87801	-3.15212	4.12233
С	-2.74854	-4.44874	3.61323
С	-1.57771	-4.83807	2.9315

С	-0.56496	-3.89068	2.79804
С	-0.7119	-2.59316	3.28722
С	-1.43882	-6.21172	2.29247
С	-1.6752	-6.14658	0.79088
С	-2.98028	-6.0717	0.28091
С	-3.22035	-5.9149	-1.08607
С	-2.14671	-5.81873	-1.99791
С	-0.85449	-5.91644	-1.48678
С	-0.6151	-6.08068	-0.11862
С	-2.38572	-5.56408	-3.47867
С	-2.35837	-4.08005	-3.81314
С	-3.51835	-3.30707	-3.71075
С	-3.50601	-1.92987	-3.95169
С	-2.30849	-1.28599	-4.3066
С	-1.15201	-2.06323	-4.43577
С	-1.16584	-3.44186	-4.19523
С	-2.25975	0.22199	-4.50609
С	1.4449	-1.79952	3.92233
С	1.09269	-3.71499	-4.95929
С	-5.59412	-6.07982	-0.78876
С	-5.8831	-1.75665	-3.68903
С	-6.16814	-0.57529	3.49292
С	-4.8791	-5.11289	4.49702
С	1.59166	1.51192	-3.60933
С	1.34481	-7.38677	0.1157
Н	0.64241	2.03276	-1.25642
Н	-0.30685	2.85855	1.04156
Н	-0.67781	1.07259	2.96402
Н	-5.43104	0.84083	1.537
Н	-4.81852	2.36408	-0.4644
Н	-4.03696	1.20391	-2.69238
Н	-0.58396	5.43234	1.35788
Н	-2.06865	7.42054	1.18116
Н	-4.40263	7.16848	0.38434
Н	-5.27842	4.92577	-0.24027
Н	-1.13258	-0.35523	4.81597
Н	-2.78689	-0.76364	5.26528
Н	-3.78504	-2.85179	4.63033
Н	0.35211	-4.16946	2.28512
Н	-2.15125	-6.90083	2.75148
Н	-0.43262	-6.59363	2.48392
Н	-3.80419	-6.1176	0.98424
Н	-0.0109	-5.84263	-2.16746

Н	-1.61566	-6.07868	-4.05914
Н	-3.35448	-5.98065	-3.76539
Н	-4.43312	-3.80717	-3.41543
Н	-0.23507	-1.56361	-4.7268
Н	-1.48684	0.46371	-5.24056
Н	-3.21849	0.5653	-4.9031
Н	2.14531	-1.00095	3.66867
Н	1.12542	-1.69351	4.96432
Н	1.93167	-2.7704	3.78406
Н	1.79573	-4.54482	-5.05469
Н	0.84087	-3.33298	-5.95662
Н	1.56699	-2.90981	-4.37978
Н	-6.47013	-6.05197	-1.43935
Н	-5.52565	-7.06593	-0.31263
Н	-5.69556	-5.31162	-0.01034
Н	-6.62385	-0.956	-3.73588
Н	-6.08125	-2.48202	-4.48824
Н	-5.96061	-2.26441	-2.71793
Н	-6.6249	-1.19476	4.2668
Н	-6.53124	0.45489	3.59143
Н	-6.45094	-0.96538	2.50603
Н	-5.47859	-6.02464	4.4905
Н	-4.61256	-4.85964	5.53058
Н	-5.46247	-4.29076	4.06216
Н	2.13022	1.23604	-4.51808
Н	1.4407	2.59759	-3.5874
Н	2.19697	1.21703	-2.74
Н	2.35723	-7.30145	0.5179
Н	0.8139	-8.19574	0.63273
Н	1.39763	-7.62199	-0.95424

Figure S68. Calculated structure of the complex *P*-**H**·*R*-**G2** (a) top view, (b) side view at the B3LYP/6-31G level.

The atomic coordinates of P-H·R-G2.

С	-3.79719	-4.8758	-2.57939
С	-3.44021	-5.11034	-3.91007
С	-2.51246	-4.28397	-4.5654
С	-1.96243	-3.21998	-3.86227
С	-2.33846	-2.9749	-2.51959
С	-3.24294	-3.80194	-1.8655
С	-0.94049	-2.2243	-4.33251
С	-0.60513	-1.37064	-3.08848
С	-1.60686	-1.77533	-1.97717
Ν	-2.60925	-0.63502	-1.74917
Н	-4.51039	-5.53563	-2.08476
Н	-3.88257	-5.95041	-4.45001
Н	-2.2336	-4.48127	-5.59924
Н	-3.51817	-3.64368	-0.81396
Н	-0.03824	-2.72489	-4.73386
Н	-1.33331	-1.60561	-5.16169
Н	-0.63543	-0.28514	-3.321
Н	0.43093	-1.56383	-2.74537
Н	-1.09104	-1.99399	-1.00386
Н	-2.25414	0.05951	-1.07033
Н	-2.78607	-0.11651	-2.64105

Н	-3.54004	-0.98245	-1.40598
0	0.04005	-4.93563	0.07329
0	-0.54542	-2.39521	4.65784
0	-4.48103	-3.8417	1.04854
0	-5.21238	-0.04572	-1.45569
С	0.79079	-3.79544	0.28013
С	1.37621	-3.03906	-0.7495
С	2.07484	-1.89232	-0.39264
С	2.23336	-1.52721	0.9681
С	1.63102	-2.27667	1.97277
С	0.88141	-3.41403	1.63979
С	3.0727	-0.26965	1.16892
С	4.37667	-0.50793	0.41328
С	5.65453	-0.42326	0.94207
С	6.7545	-0.66751	0.09819
С	0.14961	-4.187	2.70107
С	-1.25373	-3.66087	2.82363
С	-1.59908	-2.71641	3.82942
С	-2.88286	-2.17205	3.92028
С	-3.87538	-2.56831	3.00942
С	-3.53239	-3.50927	2.02634
С	-2.24315	-4.05436	1.92829
С	-5.25307	-1.968	3.07195
С	-5.34915	-0.78331	2.1523
С	-5.33465	-0.95458	0.77342
С	-5.37778	0.1636	-0.07332
0	0.80513	4.162	0.35041
0	-1.79252	1.54814	-3.48137
0	-3.83932	4.49164	0.72365
0	-5.44332	0.60377	4.03108
С	1.24289	2.90034	-0.00555
С	1.94133	2.04142	0.86364
С	2.35076	0.81292	0.3708
С	2.11261	0.45229	-0.98464
С	1.383	1.29271	-1.81299
С	0.90563	2.52181	-1.32428
С	2.7119	-0.8995	-1.36328
С	4.18203	-0.83789	-0.9574
С	5.26736	-1.07608	-1.78514
С	6.56403	-0.98735	-1.24417
С	0.05371	3.40942	-2.18883
С	-1.39741	3.27928	-1.81304
С	-2.27154	2.41475	-2.48641

С	-3.61978	2.27271	-2.11862
С	-4.11459	2.94453	-1.00832
С	-3.24315	3.84656	-0.33379
С	-1.91406	4.01031	-0.7295
С	-5.50184	2.66831	-0.50341
С	-5.47224	1.47487	0.41366
С	-5.49502	1.65309	1.80723
С	-5.43754	0.5456	2.65772
С	0.07885	-5.54432	-1.24091
С	-2.00893	2.03275	-4.83546
С	-5.05862	-5.16314	1.22415
С	-6.3686	-0.64381	-2.10505
С	1.3542	4.74636	1.55834
С	-0.82757	-1.58858	5.82831
С	-3.08044	5.52997	1.39563
С	-5.6691	1.89254	4.65686
Н	1.30948	-3.35132	-1.78552
Н	1.72314	-1.98466	3.02093
Н	3.22442	-0.01123	2.23262
Н	5.81628	-0.17577	1.98884
Н	7.76349	-0.60468	0.50542
Н	0.13742	-5.27184	2.44762
Н	0.67848	-4.11697	3.67853
Н	-3.12911	-1.43538	4.68212
Н	-2.00887	-4.77343	1.13799
Н	-6.014	-2.72904	2.78349
Н	-5.5087	-1.67458	4.11609
Н	-5.28158	-1.9665	0.35579
Н	2.15495	2.32602	1.88905
Н	1.18303	1.01821	-2.848
Н	2.57103	-1.16072	-2.42676
Н	5.13291	-1.3276	-2.83423
Н	7.42415	-1.17292	-1.88707
Н	0.38564	4.46878	-2.07407
Н	0.19989	3.16586	-3.26304
Н	-4.27927	1.61518	-2.69075
Н	-1.24007	4.68026	-0.18773
Н	-5.90559	3.56451	0.02233
Н	-6.19895	2.48308	-1.34998
Н	-5.54164	2.66565	2.20607
Н	-0.4708	-6.47972	-1.06979
Н	-0.44161	-4.90919	-1.964
Н	1.11013	-5.75372	-1.54041

Figure S69. Calculated structure of the complex P-H·S-G2 (a) top view, (b) side view

at the B3LYP/6-31G level.

The atomic coordinates of *P*-**H**·*S*-**G2**.

С	2.104	-4.1314	-0.0991
С	3.6262	-4.0796	-0.0991
С	4.3424	-2.7355	-0.0991

С	3.5365	-1.4432	-0.0991
С	2.0143	-1.495	-0.0991
С	1.2981	-2.8391	-0.0991
С	3.9576	0.0204	-0.0991
С	2.6957	0.8732	-0.0991
С	1.4947	-0.0634	-0.0991
Ν	0.0311	0.3577	-0.0991
Н	1.5867	-5.1022	-0.0991
Н	4.2082	-5.013	-0.0991
Н	5.4417	-2.6981	-0.0991
Н	0.1988	-2.8765	-0.0991
Н	4.561	0.2394	0.8102
Н	4.5761	0.2449	-0.9967
Н	2.6739	1.5147	-1.0083
Н	2.6734	1.5308	0.7986
Н	0.8906	0.1104	-1.0175
Н	-0.0317	1.4008	-0.0991
Н	-0.4392	-0.0191	-0.9528
Н	-0.4397	-0.0194	0.7542
0	1.6376	0.4185	4.9233
0	-3.6525	-1.5124	3.7246
0	1.0218	-5.3487	4.3316
0	2.6875	-6.643	-0.6757
С	0.78	0.4822	3.6663
С	1.3106	1.3557	2.4451
С	0.2739	2.1039	1.5248
С	-1.2886	2.0125	1.8192
С	-1.8023	1.1597	3.0413
С	-0.7849	0.3769	3.9806
С	-2.2576	2.885	0.6656
С	-1.6576	4.518	0.6729
С	-2.503	5.8241	0.937
С	-1.7625	7.2326	0.9182
С	-1.3641	-0.6448	5.2542
С	-1.4922	-2.2723	4.681
С	-2.7126	-2.7103	3.7608
С	-2.7594	-4.1568	3.1286
С	-1.598	-5.2063	3.3945
С	-0.3913	-4.7806	4.3278
С	-0.3494	-3.3252	4.9718
С	-1.6455	-6.7623	2.6359
С	-1.001	-6.6912	1.0317
С	0.5625	-6.6171	0.7926

С	1.1757	-6.4596	-0.6624
0	-2.6575	0.5336	-4.9619
0	2.4758	-0.6334	-3.9629
0	-1.6837	-4.9762	-5.1621
0	-3.467	-6.4508	-0.2147
С	-2.1924	0.9639	-3.2772
С	-2.7871	1.562	-1.9263
С	-1.8119	2.2249	-0.882
С	-0.2496	2.3213	-1.1759
С	0.3265	1.7422	-2.5241
С	-0.6267	1.0503	-3.5932
С	0.6493	3.0596	0.1194
С	-0.0893	4.611	0.3923
С	0.6383	6.0111	0.3664
С	-0.2208	7.3255	0.6249
С	0.0288	0.3201	-5.0209
С	0.3012	-1.3652	-4.7393
С	1.5617	-1.8499	-3.9003
С	1.7378	-3.375	-3.5295
С	0.6693	-4.4583	-3.9831
С	-0.5767	-3.9821	-4.837
С	-0.7489	-2.4459	-5.2178
С	0.8565	-6.1128	-3.5072
С	0.2206	-6.3783	-1.9201
С	-1.3416	-6.4821	-1.6835
С	-1.9551	-6.6342	-0.228
С	2.5341	1.6493	4.9561
С	3.9834	-0.8083	-3.8361
С	1.2336	-6.8555	4.3967
С	3.5996	-5.4238	-0.6413
С	-2.6015	-0.9874	-4.9089
С	-3.084	-0.0995	3.7252
С	-3.1189	-4.4838	-5.2932
С	-4.379	-7.67	-0.2492
Н	2.3896	1.4357	2.2462
Н	-2.8814	1.1051	3.2478
Н	-3.3493	2.8301	0.8753
Н	-3.5841	5.7621	1.1305
Н	-2.3357	8.1511	1.1126
Н	-0.653	-0.6088	6.1097
Н	-2.3656	-0.29	5.5859
Н	-3.6109	-4.4419	2.4933
Н	0.4878	-3.048	5.6294

Н	-1.043	-7.4787	3.2381
Н	-2.7057	-7.0958	2.5774
Н	1.2406	-6.6763	1.6567
Н	-3.8673	1.5126	-1.7247
Н	1.4047	1.8178	-2.7287
Н	1.7401	3.1364	-0.0884
Н	1.7192	6.0773	0.1732
Н	0.2694	8.3099	0.5981
Н	-0.6893	0.4432	-5.8623
Н	0.9933	0.8123	-5.2781
Н	2.6155	-3.692	-2.9472
Н	-1.6118	-2.1315	-5.8233
Н	0.3135	-6.7624	-4.2296
Н	1.942	-6.3586	-3.4996
Н	-2.0185	-6.448	-2.5499
Н	3.1701	1.6214	5.8691
Н	3.1837	1.6587	4.0524
Н	1.9041	2.5667	4.9709
Н	4.4799	0.1854	-3.9052
Н	4.221	-1.2736	-2.8534
Н	4.3509	-1.4643	-4.6567
Н	2.3242	-7.078	4.3899
Н	0.7802	-7.2533	5.3321
Н	0.7516	-7.3361	3.5161
Н	4.6623	-5.7543	-0.6571
Н	3.3972	-4.7845	-1.5296
Н	3.4059	-4.842	0.2876
Н	-2.872	-1.4041	-5.9049
Н	-1.5712	-1.311	-4.6394
Н	-3.3198	-1.3586	-4.1441
Н	-3.9184	0.6367	3.6963
Н	-2.4832	0.0577	4.6488
Н	-2.4355	0.0398	2.8314
Н	-3.786	-5.3423	-5.5314
Н	-3.4405	-4.0198	-4.334
Н	-3.1791	-3.7297	-6.1097
Н	-5.4417	-7.3395	-0.2334
Н	-4.1856	-8.2512	-1.1784
Н	-4.1764	-8.3099	0.6387

Figure S70. Calculated structure of the complex M-H·R-G2 (a) top view, (b) side view at the B3LYP/6-31G level.

The atomic coordinates of M-H·R-G2.

С	2.2475	-4.9284	-0.329
С	3.7696	-4.8766	-0.329
С	4.4858	-3.5325	-0.329
С	3.6799	-2.2402	-0.329
С	2.1578	-2.292	-0.329
С	1.4416	-3.6361	-0.329
С	4.101	-0.7766	-0.329
С	2.8392	0.0762	-0.329
С	1.6382	-0.8604	-0.329
Ν	0.1746	-0.4393	-0.329
Н	1.7302	-5.8992	-0.329
Н	4.3517	-5.81	-0.329
Н	5.5852	-3.4951	-0.329
Н	0.3422	-3.6735	-0.329
Н	4.7044	-0.5576	0.5803
Н	4.7196	-0.5521	-1.2266
Н	2.8174	0.7177	-1.2382
Н	2.8168	0.7338	0.5687
Н	1.0341	-0.6866	0.5895
Н	0.1117	0.6038	-0.329
Н	-0.2958	-0.8161	-1.1827
Н	-0.2962	-0.8165	0.5243
0	-3.6716	-0.2203	4.4598

0	1.6142	-0.2324	-4.4279
0	1.0423	-5.6678	-4.7288
0	-4.0772	-2.0081	-4.029
0	2.1862	-6.6868	0.8509
0	-3.8159	-6.9262	-1.395
0	2.1122	-1.7846	3.9859
0	-2.8127	-5.7285	4.3313
С	-2.7041	0.4724	3.4477
С	-3.207	1.2149	2.1204
С	-2.1679	1.8949	1.1726
С	-2.5006	2.6808	-0.3507
С	-1.4979	1.8598	-1.5289
С	-1.9841	1.0863	-2.824
С	-0.9429	0.3589	-3.7796
С	0.6169	0.4451	-3.4167
С	1.1171	1.1934	-2.087
С	0.049	1.8935	-1.1488
С	0.3765	2.7045	0.3645
С	-0.6084	1.8852	1.5453
С	-0.128	1.1329	2.8503
С	-1.146	0.3964	3.8079
С	-1.8356	4.2939	-0.1943
С	-2.637	5.6568	-0.3562
С	-1.8453	7.0392	-0.1122
С	-0.3278	7.0563	0.2774
С	0.4736	5.6745	0.4194
С	-0.2943	4.3072	0.1885
С	-1.4622	-0.58	-5.1528
С	-1.514	-2.2748	-4.8116
С	-0.229	-3.1959	-5.012
С	-0.2362	-4.7324	-4.6114
С	-1.5432	-5.4056	-3.9968
С	-2.8489	-4.4951	-3.8368
С	-2.8329	-2.9558	-4.2093
С	-1.5353	-7.0413	-3.4112
С	-1.1636	-7.0997	-1.7197
С	0.3444	-6.9496	-1.2093
С	0.7191	-6.8915	0.3158
С	-0.4306	-7.0273	1.4278
С	-1.9457	-7.1606	0.9152
С	-2.2911	-7.1667	-0.6211
С	-0.0488	-6.9351	3.1243
С	-0.2254	-5.3068	3.7064

С	1.0279	-4.3236	3.6069
С	0.915	-2.8065	4.088
С	-0.4501	-2.2354	4.6748
С	-1.6881	-3.2231	4.7747
С	-1.585	-4.7271	4.2895
С	-0.5917	-0.574	5.1312
С	-4.7364	0.0206	4.5508
С	-5.1694	-2.0512	-3.9564
С	-3.8774	-5.4875	4.4222
С	-4.9082	-6.9693	-1.3224
С	2.6595	0.0918	-4.4772
С	3.2044	-1.7416	3.9133
С	2.0876	-5.3435	-4.7781
С	3.2784	-6.6437	0.7783
Н	-4.2794	1.2459	1.8774
Н	-3.5796	2.6789	-0.6236
Н	-3.0569	1.0523	-3.0648
Н	2.1865	1.2197	-1.8309
Н	1.4551	2.7201	0.6385
Н	0.9437	1.1221	3.0981
Н	-3.7031	5.6566	-0.6273
Н	-2.3826	7.9928	-0.2218
Н	0.1862	8.0129	0.4529
Н	1.5437	5.6755	0.6741
Н	-2.4809	-0.2444	-5.4499
Н	-0.7247	-0.4209	-5.9711
Н	0.685	-2.7566	-5.4382
Н	-3.7779	-4.9479	-3.46
Н	-0.7694	-7.6233	-3.9711
Н	-2.5486	-7.4756	-3.5647
Н	1.1508	-6.8845	-1.9547
Н	-2.7583	-7.2493	1.6512
Н	-0.7375	-7.6016	3.6901
Н	1.007	-7.2552	3.2714
Н	1.9804	-4.6962	3.2019
Н	-2.638	-2.8553	5.1897
Н	-1.3171	-0.4896	5.9711
Н	0.4128	-0.2072	5.4397
Н	-5.1945	-0.6137	5.3423
Н	-4.8514	1.0936	4.8232
Н	-5.2447	-0.1731	3.5798
Н	-5.5741	-1.0225	-3.8272
Н	-5.5852	-2.4987	-4.8868

Н	-5.4586	-2.676	-3.0819
Н	-4.4727	-6.428	4.42
Н	-4.0533	-4.9401	5.3752
Н	-4.188	-4.85	3.5644
Н	-5.3578	-6.6451	-2.2876
Н	-5.2237	-8.0129	-1.0988
Н	-5.2526	-6.2939	-0.5075
Н	3.1975	-0.5043	-5.2479
Н	2.7004	1.1706	-4.748
Н	3.1424	-0.0614	-3.4861
Н	3.532	-0.6789	3.8672
Н	3.6546	-2.2296	4.8065
Н	3.5361	-2.2722	2.9928
Н	2.7497	-6.2347	-4.8563
Н	2.2326	-4.6948	-5.6707
Н	2.3423	-4.772	-3.8576
Н	3.7072	-6.3892	1.7734
Н	3.6672	-7.6334	0.4495
Н	3.5705	-5.8651	0.0385

Figure S71. Calculated structure of the complex M-H·S-G2 (a) top view, (b) side view

at the B3LYP/6-31G level.

The atomic coordinates of M-H·S-G2.

С	2.55581	-4.22755	-2.72785
С	2.2229	-4.40458	-4.07358
С	1.32355	-3.53716	-4.7153
С	0.77733	-2.49104	-3.98298

С	1.12921	-2.30426	-2.62448
С	2.00533	-3.1719	-1.98451
С	-0.21717	-1.45986	-4.4352
С	-0.56364	-0.64822	-3.16635
С	0.40717	-1.11327	-2.05121
Ν	1.42411	-0.00091	-1.75874
Н	3.2469	-4.91862	-2.24463
Н	2.66198	-5.23125	-4.63641
Н	1.06315	-3.68971	-5.76145
Н	2.26114	-3.0589	-0.92229
Н	0.2035	-0.81731	-5.23191
Н	-1.11937	-1.92844	-4.87363
Н	-1.60993	-0.83529	-2.85211
Н	-0.50938	0.44462	-3.35627
Н	-0.13291	-1.35967	-1.0979
Н	1.06693	0.67325	-1.06073
Н	2.34137	-0.37809	-1.4105
Н	1.62857	0.54827	-2.62597
0	-1.95198	4.77181	0.45544
0	-1.33656	-4.32073	-0.15971
0	3.18092	-3.34613	0.95013
0	-0.80526	-1.96964	4.53119
0	4.03008	0.52979	-1.38908
0	4.15512	0.96331	4.1224
0	0.68147	2.26197	-3.42138
0	2.68851	5.00334	0.93666
С	-2.40354	3.53285	0.04168
С	-3.13482	2.65365	0.86222
С	-3.55455	1.45258	0.31363
С	-4.31161	0.35309	1.05398
С	-3.48976	-0.91058	0.82167
С	-2.92178	-1.70886	1.80861
С	-2.1848	-2.84574	1.44712
С	-2.07185	-3.17606	0.07578
С	-2.62224	-2.37019	-0.93545
С	-3.30861	-1.22573	-0.54867
С	-3.90787	-0.185	-1.49285
С	-3.29383	1.14028	-1.04965
С	-2.5326	1.99887	-1.82948
С	-2.04485	3.1995	-1.28357
С	-5.6031	0.16744	0.26296
С	-6.89029	0.25447	0.76824
С	-7.97608	0.06263	-0.10697

С	-7.7626	-0.20857	-1.45655
С	-6.45643	-0.29952	-1.97376
С	-5.38503	-0.11284	-1.11522
С	-1.48901	-3.67204	2.49233
С	-0.07983	-3.17618	2.66413
С	0.92154	-3.55254	1.77472
С	2.21752	-3.03473	1.92039
С	2.55554	-2.1386	2.94614
С	1.55079	-1.76002	3.85109
С	0.26013	-2.27745	3.71276
С	3.94163	-1.56586	3.0603
С	4.07743	-0.34852	2.1896
С	4.08937	-0.46629	0.80508
С	4.16954	0.68268	0.00352
С	4.27592	1.97237	0.54294
С	4.27208	2.09635	1.94253
С	4.17768	0.95813	2.74799
С	4.34533	3.19949	-0.32626
С	2.97401	3.51973	-0.8484
С	2.49149	2.90034	-1.99403
С	1.15397	3.08062	-2.38364
С	0.28063	3.93391	-1.69508
С	0.78658	4.6131	-0.5734
С	2.10397	4.41042	-0.15719
C	-1.15975	4.10444	-2.09522
C	-2.51665	5.31892	1.67358
C	-0.53437	-1.21366	5.73756
C	1.93336	6.02823	1.633
C	4.39001	2.2227	4.80231
C	-1.35777	-4.87757	-1.4971
C	0.93502	2.79465	-4.75074
C	3.73192	-4.68351	1.08592
C	5.18942	-0.06356	-2.03723
Н	-3.36531	2.90228	1.89332
Н	-4.48148	0.57296	2.12358
Н	-3.03116	-1.45584	2.86521
Н	-2.53889	-2.64344	-1.98124
Н	-3.74888	-0.40752	-2.56257
Н	-2.31542	1.761	-2.87007
Н	-7.07001	0.46427	1.82031
Н	-8.99228	0.12772	0.28155
Н	-8.6119	-0.35383	-2.12375
Н	-6.30402	-0.51277	-3.02886

Н	-2.03726	-3.63032	3.46069
Н	-1.48994	-4.74634	2.19714
Н	0.69188	-4.23637	0.95245
Н	1.79332	-1.05775	4.6459
Н	4.69542	-2.32871	2.75816
Н	4.17999	-1.3175	4.1201
Н	4.02797	-1.4603	0.34748
Н	4.32742	3.09181	2.38134
Н	4.7531	4.06742	0.24208
Н	5.05696	3.03453	-1.16491
Н	3.15163	2.25375	-2.57775
Н	0.11276	5.27354	-0.01986
Н	-1.47588	5.16435	-1.94609
Н	-1.28727	3.90518	-3.18087
Н	-2.1113	6.33881	1.67259
Н	-3.61005	5.33975	1.61634
Н	-2.16532	4.75095	2.53902
Н	-1.52487	-1.19019	6.21183
Н	0.18561	-1.74369	6.36848
Н	-0.19396	-0.20604	5.48494
Н	2.6489	6.34601	2.40312
Н	1.69878	6.85504	0.95519
Н	1.03334	5.59746	2.08067
Н	4.37043	1.91119	5.85593
Н	5.37183	2.62465	4.5343
Н	3.58327	2.9277	4.58468
Н	-0.82775	-5.82844	-1.35123
Н	-2.38587	-5.05697	-1.82559
Н	-0.81146	-4.2244	-2.18415
Н	0.47409	2.04752	-5.40462
Н	0.4491	3.76935	-4.86067
Н	2.01199	2.87484	-4.92241
Н	4.48861	-4.71306	0.2954
Н	4.1876	-4.80359	2.07333
Н	2.94939	-5.42977	0.92267
Н	4.91331	-0.04874	-3.09622
Н	6.07248	0.55601	-1.85018
Н	5.3435	-1.08347	-1.67341

Table S7. Computed Energies.

Energy (Hartree/Particle)	Thermal Correction to G	G
Р-Н	0.790794	-2535.16831
<i>R</i> -G1	0.196528	-519.961289
<i>S</i> -G1	0.195489	-519.958565
<i>P</i> -H · <i>R</i> -G 1	1.010296	-3055.150322
<i>P-</i> H <i>·S-</i> G1	1.009938	-3055.146189

Table S8. Free Energies for *P*-H·*R*-G1 and *P*-H·*S*-G1 in the Gas Phase at 298K.

Complexes	ΔG (kcal mol ⁻¹)
<i>P</i> -H· <i>R</i> -G1	-13.003890
<i>P</i> - H · <i>S</i> - G 1	-12.119728

8. CD Spectra of Chiral Hosts and the Host-Guest Complexes

Figure S72. CD spectra of chiral hosts and the host-guest complexes (CH₂Cl₂, $c = 5 \times 10^{-6}$ M⁻¹, T = 298 K).

9. ¹H NMR and 2D NMR Spectra for the Complexes

Figure S73. Partial ¹H NMR spectra (400 MHz, 298K, CDCl₃) of *M*-**H** with different equivalents of *S*-**G1**: (a) 0.00, (b) 0.20, (c) 0.40, (d) 0.60, (e) 0.80, (f) 1.00, (g) 1.20, (h) 1.40, (i)1.60, (j) 1.80, (k) 2.00, (l) 2.20, (m) 2.40, (n) 2.50. [*M*-**H**]₀ = 3.00 mM.

Figure S74. Partial 2D ROESY spectrum (400 MHz, 298K, CDCl₃) of *M*-H·S-G1.

Figure S75. Partial 2D ROESY spectrum (500 MHz, 298K, CDCl₃) of *P*-H·*R*-G1.

Figure S76. Partial 2D ROESY spectrum (400 MHz, 298K, CDCl₃) of P-H·S-G1