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Abstract: Perfluoroaromatics, such as perfluoropyridine and perfluorobenzene, are privileged syn-
thetic scaffolds in organofluorine methodology, undergoing a series of regioselective substitution
reactions with a variety of nucleophiles. This unique chemical behavior allows for the synthesis of
many perfluoroaromatic derived molecules with unique and diverse architectures. Recently, it has
been demonstrated that perfluoropyridine and perfluorobenzene can be utilized as precursors for
a variety of materials, ranging from high performance polyaryl ethers to promising drug scaffolds.
In this work, using density functional theory, we investigate the possibility of perfluoropyrimidine,
perfluoropyridazine, and perfluoropyrazine participating in similar substitution reactions. We have
found that the first nucleophilic addition of a phenoxide group substitution on perfluoropyrimi-
dine and on perfluoropyridazine would happen at a site para to one of the nitrogen atoms. While
previous literature points to mesomeric effects as the primary cause of this phenomenon, our work
demonstrates that this effect is enhanced by the fact that the transition states for these reactions result
in bond angles that allow the phenoxide to π-complex with the electron-deficient diazine ring. The
second substitution on perfluoropyrimidine and on perfluoropyridazine is most likely to happen
at the site para to the other nitrogen. The second substitution on perfluoropyrazine is most likely
to happen at the site para to the first substitution. The activation energies for these reactions are in
line with those reported for perfluoropyridine and suggest that these platforms may also be worth
investigation in the lab as possible monomers for high performance polymers.

Keywords: fluorine; diazine; aromatic; density functional theory

1. Introduction

Perfluoroaromatics are a privileged scaffold in organofluorine chemistry, often used in
the production of various drugs, agrochemicals, and high-performance fluoropolymers [1–3].
Fluoropolymers, particularly those with fluoroaromatics in their architectures, are widely
known for their desirable properties such as chemical resistance, thermal stability, and
solution and melt processability [3–6]. Fluoroaromatics have also shown great promise for
use in biomedical applications [7–10], including as substituents to allow medications to
more easily cross the blood brain barrier [11,12] and penetrate cells [13].

The chemistry of selected systems such as perfluoropyridine is now well established
by experiment and supported by theory, demonstrating that these systems can undergo a
series of regioselective substitution reactions with a variety of nucleophiles owing to its
unique electronic structure [14]. Previous work has provided experimental and theoretical
explanations of reaction site selectivity for this system and has also shed light on the
significance of the perfluorination effect, caused by the inductive effect of fluorine that
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withdraws the electron density, leaving a region of diminished negative charge (a “hole”)
that can then give rise to noncovalent interaction, which can have a significant impact
on chemical reactivity. The perfluorination effect in hexafluorobenzene is experimentally
well documented, with one of the more striking examples of the effect being the formation
of a solid from the 1:1 mixture of hexafluorobenzene with mesitylene, both of which are
liquids at room temperature [15]. Other work has also shed light on the perfluorination
effect in perfluoropyridine and how it enables significant non-covalent interactions, which
was recently shown to enhance the SNAr substitution of perfluoropyridine [16,17]. The
theoretical study of how these interactions affect chemical reaction outcomes and transi-
tion state geometries during the SNAr substitution of perfluoroaromatics remains sparse.
In the pursuit of other potential fluorinated scaffolds with unique chemical properties,
diazaperfluoro-heteroaromatics such as perfluoropyrazine (1), perfluoropyrimidine (2),
and perfluoropyridazine (3) are immediately attractive targets for chemical modeling
(Figure 1) [18–21]. These molecules have been of increasing significance in the literature
over the last several decades [22].
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Figure 1. Perfluoropyrazine (1), perfluoropyrimidine (2), and perfluoropyridazine (3).

Given the significant fluorine content of these systems, they also appear to be excellent
models for further testing the perfluorination effect and its outcome on chemical reaction
processes. Examination of the reactions of molecules 1–3 with a phenoxide ion was estab-
lished with regio-selectivity in the first step. The reaction of each of those products with
another phenoxide was then determined with region-selectivity in the second step. Our
goal was to examine reactants and possible products, intermediates, and transition states
to determine which products were most likely to form. We assumed, as we did in our
perfluoropyridine work [23], the reactions proceed without formation of a Meisenheimer in-
termediate. Some reports debate whether these reactions should be considered as two-step
processes with a Meisenheimer intermediate, or as a concerted reaction with a short-lived
transition state [24,25]. Recent work suggests that the answer to this question depends on
the quality of the leaving group. Poor leaving groups, such as fluoride ion in the cases being
discussed here, are more likely to cause a concerted reaction with a single transition state
rather than a Meisenheimer intermediate [26]. This work demonstrates an in-depth study
of simulated regio-selective additions of phenoxide additions to perfluoroaromatics 1–3
and their relative activation energies as potentially attractive scaffolds for the preparation
of molecules of complex architectures.

2. Results
2.1. First Phenoxide Substitution

For the cases of perfluoropyrimidine (2) and perfluoropyridazine (3), the carbon
at site number four, para to one of the nitrogen atoms, was the most likely to undergo
nucleophilic aromatic substitution with a phenoxide group. This outcome is based on
electronic as well as kinetic factors, particularly the energy level of the transition state,
rather than thermodynamic factors, in that the products have nearly the same energy in
both cases (Figure 2). Perfluoropyrazine’s symmetry only allows for one unique reaction
site whichwas modelled only for the sake of comparing reactivity via activation energy.
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Figure 2. Reaction coordinate diagram for the first phenoxide addition to perfluoropyrimidine (2),
perfluoropyridazine (3), and perfluoropyrazine (1).

The activation energies for the phenoxide substitutions are compared in Table 1,
the exception of which is associated with perfluoropyrazine, whose activation energy is
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6.167 kcal/mol (Figure 1). This is significantly larger than that of the reactions at carbon
four for perfluoropyrimidine (1.699 kcal/mol) and perfluoropyridazine (2.572 kcal/mol).
For the sake of comparison, the previously reported computed activation energy associated
with a substitution at carbon four on perfluoropyridine is 4.16 kcal/mol [23]. It is thus
expected that both perfluoropyrimidine and perfluoropyridazine will react faster with
phenoxide ion than perfluoropyridine, while perfluoropyrazine will react more slowly.

The question is, why is there such a stark difference between the transition state
energies, and thus the activation energies (Table 1) for these reactions when they hap-
pen at different carbon atoms? Previous experimental work by Sandford et.al. [27,28]
and Banks et.al. [29] suggests that mesomeric effects are very important to this discus-
sion. However, in the cases in this study, where the substitution species is a phenoxide
ion, these effects appear to be enhanced by an optimization of the angles between the
planes defined by the aromatic rings (Figure 3). The transition state in Figure 3a defines
an angle γ (the angle between the least-squares aromatic ring planes of the two reactants),
an angle α (CPh–O- –C4diazineF), and an angle β (N1diazine–C4diazineF–O).

Table 1. Angles formed in transition state of the reactant at specified carbon with phenoxide along
with the calculated activation energy for formation.

Transition State Angle α Angle β Angle γ Ea (kcal/mol)

2-phenoxyperfluoropyrimidine 116.385 111.131 47.516 3.437
4-phenoxyperfluoropyrimidine 114.961 112.551 47.512 1.699
5-phenoxyperfluoropyrimidine 115.486 126.353 61.839 12.017
3-phenoxyperfluoropyridazine 116.108 118.859 54.967 8.137
4-phenoxyperfluoropyridazine 115.628 115.345 50.973 2.572
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Figure 3. (a) Depiction of approach angles formed during reaction of phenoxide and perfluoropyrim-
idine. The bond angles are labeled corresponding to the data in Table 1. (b) HOMO diagram showing
π orbital interactions in reaction of phenoxide and perfluoropyrimidine at carbon 4. (c) Electrostatic
potential map of perfluoropyrimidine showing the electron deficient “π-hole” at the center of the
perfluoropyrimidine ring.

The more acute the angle γ, the closer the two planes are to parallel, and the more
efficient the π-complexation between them (Figure 3a,b). A scan of the energy surface of
the transition state for phenoxide ion approaching at carbon four on perfluoropyrimidine
(the example shown in Figure 3c) showed that opening this angle by fourteen degrees (the
difference between the angle γ for the substitution transition state at carbon 4 and carbon 5)
increased the energy of the system by 1 kcal/mol. The activation energy difference between
those two is about 10.3 kcal/mol, about 1 kcal of which appears to be π-complexation energy.
A scan of the energy surface of the transition state for phenoxide ion to be substituted
at carbon four on perfluoropyridazine showed that opening this angle by four degrees
(the difference between the angle γ for the substitution transition state at carbon 4 and
carbon 3) increased the energy of the system by 0.1 kcal/mol. The activation energy
difference between those two is about 5.6 kcal/mol, about 0.1 kcal of which appears to be
π-complexation energy.
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Based on electrostatic density maps of the starting fluorodiazines, the observed face-
to-face π-complexation is at least partially driven by the attraction of the electron-rich
phenoxide ring to the electron deficient ring of the diazene, demonstrating the importance
of the perfluorination effect in the formation of the transition state (Figure 3). It is worth
noting that the geometries of the products do not retain the convex geometry of the
two planes, indicating that the fluorine leaving group is conjugated with the ring and is
necessary to maintain the stability of the π-complexation. Examination of the electrostatic
density map of the substitution product shows that the newly formed aryl ether contributes
significant electron density to the diazine ring, making face-to-face π-complexation less
favorable. This coupled with the relatively extreme bond angles that would be required
to maintain the convex geometry (or face-to-face orientation) in the transition structure
help explain the geometric outcome of the product. Another contributor to the observed
difference between the transition state energies could be the calculated low LUMO electron
densities. In both perfluoropyrimidine (2) and perfluoropyridazine (3), a low degree of
LUMO density is observed around carbons 5 and 3, respectively, the positions that are
involved in the highest energy transition states for these systems. This is not surprising
given that a low LUMO density should make the nucleophilic substitution more difficult,
contributing to the sharp increase in the transition state energy (Figure 4).
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2.2. Second Phenoxide Substitution

A second phenoxide substitution was modeled for each perfluorodiazine and the
most likely products are shown in Figure 5, starting with the lowest activation energy
product for each. The activation energies are summarized in Table 2. Perfluoropyrimidine,
when already substituted with a phenoxide group at carbon four, is most likely to undergo
a second substitution at carbon six, the site meta to the original substitution, yielding
symmetric product 4 with the dihedral angles between the pyrimidine ring and each of the
phenoxide rings nearly perpendicular (Figure 5).

Perfluoropyridazine, when already substituted with a phenoxide group at carbon
four, is most likely to undergo a second substitution at carbon five, ortho to the first
substitution 5. The two phenoxide planes are out of plane with one another, but not
to the point of being orthogonal. Perfluoropyrazine, when already substituted with a
phenoxide group at carbon four, is most likely to undergo a second substitution at carbon
five, para to the first substitution with the two phenoxide planes parallel to each other
and perpendicular to pyrazine ring 6 (Figure 5). We performed an angle analysis on the
transition states for the second substitution with the trend relating angle γ to activation
energy for the transition state that we noted for the first substitution holding for the second
substitution as well, with the exception of perfluoropyrazine (Table 2). We have performed
a thorough investigation of the potential energy surface for that particular transition state
and have not been able to find a more stable structure than the one shown in Figure 6 for
the addition of a phenoxide group to carbon five of 2-phenoxyperfluoropyrazine. This
geometry appears to stem from the favorable T-shaped interaction between the electron-
rich aromatic ring and the slightly electron-deficient hydrogen of the attacking phenoxide,
making the perpendicular orientation of the nucleophile more favorable. While surprising,
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the T-shaped interaction between aromatic rings is well known and has been examined
theoretically as well as observed experimentally [30–32].
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Table 2. Angles formed in transition involving the specified carbon atom of the substrate reacting
with phenoxide ion and activation energy Ea.

Transition State Angle α Angle β Angle γ Ea (kcal/mol)

2,4-phenoxyperfluoropyrimidine 117.838 113.505 51.343 5.945
4,5-phenoxyperfluoropyrimidine 115.658 126.230 61.888 15.945
4,6-phenoxyperfluoropyrimidine 115.536 115.234 50.770 3.937
3,4-phenoxyperfluoropyridazine 116.588 117.413 54.002 8.260
4,5-phenoxyperfluoropyridazine 115.849 114.699 50.549 2.600
4,6-phenoxyperfluoropyridazine 117.044 120.732 57.776 8.241
2,3-phenoxyperfluoropyrazine 116.616 116.291 52.907 6.270
2,5-phenoxyperfluoropyrazine 117.493 116.755 54.248 6.189
2,6-phenoxyperfluoropyrazine 115.942 119.439 55.381 8.310
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Figure 6. Transition state for second phenoxide substitution on perfluoropyrazine.

3. Computational Methods

All models for this work were computed using the Gaussian 09 suite of programs,
including use of Gaussview 5 to generate three-dimensional figures [33,34]. Each molecule
to be modeled was constructed in the Arguslab [35] environment and had its geome-
try optimized first with molecular mechanics and then with the PM3 semi-empirical
method. These structures were then used as starting structures for density functional
theory (B3LYP/6-311G(D)). Geometries optimized with DFT were verified with frequency
analysis at the same level of theory calculation as the optimization to assure no imaginary
vibrational frequencies. Solvent effects of N,N-dimethylformamide were accounted for by
the polarizable continuum model (PCM) [36–38], as implemented in Gaussian 09.

Reactants and products for each reaction (A and E in the energy level figures) were
modeled by assuming separate molecules in solution. Reaction intermediates (B and D
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in the energy level figures) were first approximately modeled by the same method as the
reactants and products, with starting geometries built from assuming the displacement of
the fluoride ion in each case by the phenoxide ion. The intermediates on the reactants side
were assumed to have the approximate geometries of having been brought near to each
other in the solvent PCM. The intermediates on the products’ side were assumed to have
the approximate geometries of the products with the fluoride ion still in close proximity to
the carbon it was leaving and in the solvent PCM.

Transition states (C in the energy level figures) were modeled using the synchronous
transit-guided quasi-Newton (STQN) method [39] to find the transition state between each
pair of approximate intermediates. Each transition state model was then treated with
frequency analysis to assure there was exactly one imaginary frequency and that imaginary
frequency corresponded to movement between the two intermediates. After this, each
transition state structure was analyzed by performing an intrinsic reaction coordinate
(IRC) [40] analysis on the transition state model structures at the same level of theory at
which the other models were performed. Once the most likely product was determined,
models were constructed to determine at which site a second phenoxide substitution would
take place. Note, the symmetry of 1 makes the first step in this process unnecessary.

To ensure that a global minimum rather than a local minimum is found for each
species modeled, the potential energy surface for each optimized structure was scanned
about each rotatable dihedral angle using the “modredundant” functionality in Gaussian
09. Lower energy geometry candidates were then optimized by the procedure above and
the lowest overall energy geometry was chosen for each molecule. The “modredundat”
feature in Gaussian 09 was also used to scan the potential energy surface as a means of
determining the effect of opening the γ angle for the transition state structures. The reaction
coordinate diagrams of second phenoxide substitutions and cartesian coordinates of all
computed structures can be found in the Supplemental Materials.

4. Conclusions

We have shown, through the use of density functional theory, the likely products of a
first and second phenoxide substitution on perfluoropyrimidine, perfluoropyridazine, and
perfluoropyrazine. The transition states for each substitution seem to be at least partially
stabilized by π-complexation between the substituting phenoxide ring and the electron
deficient diazide ring, as seen in the observed approach angle trends. The activation
energies for these reactions are in line with those reported for perfluoropyridine [23]
and suggest that these platforms may also be worth investigation in the lab as possible
monomers for high performance polymers. This section is not mandatory, but can be added
to the manuscript if the discussion is unusually long or complex.

Supplementary Materials: The following are available online, Figures S1–S3: Reaction Coordi-
nate Diagrams of Second Phenoxide Substitutions; Table S1: Cartesian Coordinates for Optimized
Structures.
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