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Abstract: The encapsulation mode of dexamethasone (Dex) into the cavity of β-cyclodextrin (β-CD),
as well as its potential as an inhibitor of the COVID-19 main protease, were investigated using density
functional theory with the recent dispersion corrections D4 and molecular docking calculations. Inde-
pendent gradient model and natural bond orbital approaches allowed for the characterization of the
host–guest interactions in the studied systems. Structural and energetic computation results revealed
that hydrogen bonds and van der Waals interactions played significant roles in the stabilization of the
formed Dex@β-CD complex. The complexation energy significantly decreased from −179.50 kJ/mol
in the gas phase to −74.14 kJ/mol in the aqueous phase. A molecular docking study was performed
to investigate the inhibitory activity of dexamethasone against the COVID-19 target protein (PDB ID:
6LU7). The dexamethasone showed potential therapeutic activity as a SARS CoV-2 main protease
inhibitor due to its strong binding to the active sites of the protein target, with predicted free energy
of binding values of −29.97 and −32.19 kJ/mol as calculated from AutoDock4 and AutoDock Vina,
respectively. This study was intended to explore the potential use of the Dex@β-CD complex in drug
delivery to enhance dexamethasone dissolution, thus improving its bioavailability and reducing its
side effects.

Keywords: β-cyclodextrin; dexamethasone; DFT-D4; molecular docking; non-covalent interactions;
COVID-19

1. Introduction

Dexamethasone is a synthetic glucocorticoid—a cheap and well-known drug approved
by the FDA in 1958 [1] for which pharmacokinetics studies are well-established—that
presents anti-inflammatory and immunosuppressive properties [2,3]. In the medical field,
it has a wide variety of uses and has been approved as a therapy of acute exacerbation
of inflammatory and respiratory diseases including acute respiratory distress syndrome
(ARDS) [4], bacterial meningitis [5], tuberculous meningitis [6], and multiple myeloma [7].
Thanks to its potential to reduce lung inflammation and thus decrease ARDS severity [8],
dexamethasone was the first medication to show efficiency in saving lives of coronavirus
disease patients [9].

Several randomized clinical trials (RCTs) have been carried out in the United King-
dom [10], Brazil [11], Argentina [12], and other countries using dexamethasone to assess
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its effectiveness in reducing the mortality risk of patients. A large-scale randomized study
comparing 2104 patients receiving the oral or intravenous injection of dexamethasone (6 mg
once per day for 10 days with 4321 patients receiving standard care [13,14]) was conducted
in the United Kingdom (the RECOVERY trial) for hospitalized patients. The results from
the RECOVERY trial indicated that dexamethasone treatment helped to reduce mortality
in patients that were mechanically ventilated by one-third and by one-fifth in patients
only getting oxygen without invasive mechanical ventilation. Moreover, the efficacy of
dexamethasone was only proven for patients requiring respiratory support—not for milder
cases where it was not significant [15,16].

In addition to their side effects, corticosteroids and, more specifically dexamethasone,
are hydrophobic drugs that represent a real limitation in the achievement of therapeutic
concentrations when orally administrated, leading to reduction of the bioavailability of
these drugs. Thus, to enhance the aqueous solubility and bioavailability of dexamethasone
and to reduce its side effects, the alternative strategy that could be more effective comprises
its inclusion in macrocyclic host molecules such as cyclodextrins (CDs) to induce changes
in the physicochemical properties of the drugs (guest molecules) [17,18].

CD hosts are a class of natural cyclic oligosaccharides made up of 6–12 glucopy-
ranose units linked by α-(1,4) linkages; the three main common forms called α, β, and
γ-cyclodextrins are composed, respectively, of six, seven, and eight D-glucopyranose
units [19]. CDs are truncated cone-like structures with a hydrophilic outer surface and
hydrophobic inside cavity, allowing them to be soluble in water and able to occlude hy-
drophobic guest molecules [19,20]. Due to their advantageous properties of non-toxicity,
facile modification, good water-solubility, and high biological availability, CDs have gained
tremendous attention and found versatile applications, mainly in the food, pharmaceutical,
and cosmetic industries [21,22]. Particularly, CDs and β-CD have been extensively studied
as useful functional pharmaceutical excipients, especially as drug-delivery systems [23].
Due to the hydrophobicity of CD cavities, they can effectively interact with many poorly
soluble drugs to form inclusion complexes, resulting in the enhancement of the aqueous
solubility, bioavailability, and physicochemical stability of drugs [24,25].

In this context, in the context of dental pulp therapy, Daghrery et al. [26] experimentally
developed a drug-delivery system based on the formation of an inclusion complex between
dexamethasone and β-CD to assess the mineralization capacity of stem cells from human-
extracted deciduous teeth (SHEDs). The authors evidenced a significant enhancement of
DEX solubility, a higher release, a decrease in SHED toxicity, and a significant increase in
mineralization. Vianna et al. [17] experimentally studied the inclusion of dexamethasone
acetate (DMA) in β-, γ-, and hydroxypropyl-β-CD (HP-β-CD), and they showed that
the formation of CD inclusion complexes with DMA may be an interesting approach for
drug-delivery applications. Additionally, the authors performed basic molecular modeling
using force field calculations and proposed some molecular models of the DMA@βCD
inclusion complex; however, the geometry and driving forces involved in the inclusion
process were not well-elucidated.

Computational chemistry simulations are an efficient tool that can provide valuable
insight into the inclusion process and the nature of non-covalent interactions occurring in
host–guest complexes [27–32]. In particular, density functional theory (DFT) is well-suited for
investigating these systems and predicting their energetic and structural properties [33–35].

The current theoretical study, exclusively based on the DFT approach, aimed to
provide a more profound understanding of the inclusion complex formation between
dexamethasone (Dex) and β-CD. The most recent development of DFT-based methods
consisting of the use of the new D4 empirical dispersion correction was applied for the
evaluation of the energetic and structural properties of the Dex@β-CD complex. Further-
more, docking studies were carried out to explore and analyze the binding affinity and
interactions between dexamethasone and the SARS-CoV-2 target protein (6LU7).
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2. Results and Discussion
2.1. DFT-D4 Calculations of Complexation Energies

The values of the computed complexation energy in gas and aqueous phases as a
function of the position coordinate of each configuration on the Z-axis for the A and B
modes are reported in Table 1. All optimized configurations were found to be associated
with negative complexation energy, indicating that a thermodynamically favorable process
occurred. Among the studied configurations, the lowest energy structure corresponding to
the most stable configuration was found to be located at Z = 6 Å for A mode, and it had the
largest complexation energy (−179.50 kJ/mol).

Table 1. Complexation energies (in kJ/mol) of β-CD with dexamethasone calculated in the gas phase
at BLYP-D4/def2-TZVP level.

Inclusion Configurations Mode A Mode B

−10 −101.30 −100.70
−8 −104.96 −91.19
−6 −94.04 −134.17
−4 −115.24 −115.77
−2 −162.29 −142.11
0 −161.26 −174.67
2 −137.76 −147.21
4 −153.71 −107.88
6 −179.50 −164.56
8 −175.09 −137.95
10 −175.42 −116.61

The structural re-optimization of the most stable complex in aqueous solution using
an SMD solvation model decreased the complexation energy to −74.14 kJ/mol, suggesting
that the complexation process was more stable in the gas phase.

The structural analysis of the most stable Dex@β-CD complex in the gas phase and an
aqueous solution indicated the partial inclusion of the dexamethasone in the β-CD cavity
from the wider rim (mode A) through its cyclohexadienone moiety, as shown in Figure 1.
A graphical animation of the inclusion process is provided as Supplementary Materials
(animated GIF file).

Figure 1. Side (a) and top (b) views of the partial inclusion of dexamethasone in the β-CD cavity as
calculated at the BLYP-D4/def2-TZVP level of theory in the gas phase.

2.2. Analysis of the Non-Covalent Intermolecular Interactions

The study of the role and the nature of non-covalent intermolecular interactions pro-
vided an effective tool for the identification of the mechanisms involved in the stabilization
of the Dex@β-CD complex. The intermolecular interactions are denoted in the IGM plots by
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blue and green colored areas that, respectively, correspond to hydrogen-bond interactions
and weak dispersive forces.

As shown in Figure 2, the IGM isosurface plot (0.006 a.u.) of the Dex@β-CD complex
was mainly dominated by three blue discs associated with intermolecular hydrogen bonds
and green areas that characterize weak attractive interactions that indicate the role of weak
Van der Waals interactions and hydrogen bonding in the formation and stabilization of the
Dex@β-CD complex.

Figure 2. The IGM isosurface (isovalue = 0.006 a.u.) of the Dex@β-CD complex.

2.3. Contribution of Intermolecular Hydrogen Bonds

To estimate the contribution of hydrogen bonds to the stabilization of the Dex@β-CD
complex, a natural bond orbital calculation (NBO) [36] was conducted with Gaussian 09
code [37] on the optimized water-phase structure using the M06-2X functional [38] and
def2-TZVPP basis set [39,40]. The significant occurring intermolecular hydrogen bonds
(>10 kJ/mol) computed using donor–acceptor interaction energies (E(2)) through NBO
analysis are reported in Table 2.

Table 2. NBO analysis of hydrogen-bonding interactions and stabilization energies E(2) (kJ/mol) for
the Dex@β-CD complex.

Complex Donor Acceptor H-bond (Å) E(2) (kJ/mol)

Dex@β-CD β-CD (Donor) Dex (Acceptor)
LP(2) O132 BD*(1) O164–H176 1.80 63.39

Dex (Donor) β-CD (Acceptor)
LP(3) F148 BD*(1) O45–H59 2.03 10.67
LP(1) O187 BD*(1) O87–H101 1.79 19.87
LP(2) O187 BD*(1) O87–H101 1.79 37.66
LP(1) O194 BD*(1) O20–H27 1.90 19.41
LP(2) O194 BD*(1) O20–H27 1.90 12.30

BD* denotes σ* antibonding orbital, and LP denotes lone valence pair.
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As can be seen in Table 2, the intermolecular hydrogen bonds mainly occurred be-
tween oxygen lone-pair electron-donating orbitals (LP) and σ* (BD*) O–H antibonding
orbitals. The strongest H-bonds with higher stabilization energies (63.39, 19.87, 37.66, and
19.41 kJ/mol) were found to correspond to the shortest H-bonds (1.80, 1.79, 1.79, and
1.90 Å), and these interactions were found to be associated with the blue discs of the IGM
isosurface that indicate the presence of the intermolecular hydrogen bonds, therefore con-
firming the role of hydrogen-bonding interaction [33,41] in the formation and stabilization
of the Dex@β-CD complex. It is worth noting the presence of a weak hydrogen bond
(10.67 kJ/mol) corresponding to the interaction between the lone-pair electron-donating
orbitals LP(3) of fluorine (F148) and the anti-bonding orbital of the O45–H59 bond of β-CD.

Figure 3 illustrates a graphical representation of the most important intermolecular
hydrogen bonding in the structure of the Dex@β-CD complex.

Figure 3. The significant H-bonds (in angstrom) between dexamethasone and β-CD in the Dex@β-
CD complex.

2.4. AutoDock Docking Result Analysis

The analysis map results and calculated parameters of the most stable docked pose
for the interactions of Dex with the 6LU7 protein are shown in Figure 4 and Table 3,
respectively, and the interacting amino acid residues are summarized in Table 4.

Table 3. Calculated parameters (a–e) of docked Dex with 6LU7 protein.

BE a

KiC b TIE c FIE d EE e

AutoDock4 AutoDock Vina

−29.97 −32.19 5.59 −36.20 −3.55 −0.59

BE a: free energy of binding (kJ/mol). KiC b: estimated inhibition constant, Ki. (uM: micromolar). c TIE: total
intermolecular energy (kJ/mol). FIE d: final total internal energy (kJ/mol). EE e: electrostatic energy (kJ/mol).
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Figure 4. 3D visual representations of the interactions of Dex with the 6LU7 protein (a) best binding
mode in the protein pocket; (b,c) amino acid residues involved in the interaction.

Table 4. Amino acid contributions in the interactions of Dex with the 6LU7 protein.

Amino Acids Involved in the
Interactions (Interaction Site) Distances (Å)

6LU7@Dex
Gln189(A), Glu166(A), Cys145(A),
Ser144(A), Gly143(A), Met165(A),

His172(A), His163(A), and Leu141(A).

Lig−Glu166(A) (1.77, 3.08)
Lig−Gln189(A) (1.80)

Lig−Cys145(A) (2.91, 2.91)
Lig−Ser144(A) (2.33)
Lig−Gly143(A) (2.70)
Lig−Met165(A) (3.36)
Lig−His172(A) (5.38)
Lig−His163(A) (4.40)
Lig−Leu141(A) (2.55)

Based on the docking results (Table 3), it can be concluded that Dex bound strongly to
the active sites of the protein target, with predicted free energy of binding (BE) values of
−29.97 and −32.19 kJ/mol, respectively, obtained by employing AutoDock4 and AutoDock
Vina; the estimated inhibition constant (KiC) value was 5.59 uM.

As shown in Figure 4, the Dex formed one carbon–hydrogen bond with Met165(A)
via an aromatic ring (ring C); six conventional hydrogen bonds with the nearest amino
acid residues Gln189(A), Glu166(A), Cys145(A), Ser144(A), and Gly143(A), among which
twice with Cys145(A) through the hydroxyl group at ring D and the carbonyl group of the
ketone moiety. All the hydrogen bond distances were observed within the range from 1.77
to 3.36 Å.
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In addition to hydrogen bonding, the interaction of Dex at the active site of 6LU7 also
involved an unfavorable acceptor–acceptor interaction with Leu141(A) (2.55 Å) and two
hydrophobic interactions (Pi–alkyl) with amino acid residues His172(A) and His163(A),
with bond distances of 5.38 and 4.40 Å, respectively (Table 4).

Several studies have been conducted to investigate the inhibition ability of bioac-
tive compounds and natural products against the COVID-19 main protease (6LU7) using
molecular docking simulations [42–46]. Chhetri et al. [42] examined a series of six novel
imidazole anchored azo-imidazole derivatives to ascertain their inhibitory activity on the
main protease (6LU7) and concluded from the results of docking calculations that all stud-
ied compounds exhibited a significant inhibitory effects, with the binding energies ranging
from −33.89 to −28.03 kJ/mol. Rangsinth et al. [46] examined 36 bioactive compounds
for their potential as SARS-CoV-2 main protease inhibitors. According to the calculated
binding energies that varied between −44.14 and −17.82 kJ/mol, they established that 25
of the 36 candidate compounds could inhibit the main viral protease.

3. Computational Procedure
3.1. DFT Calculations

Density functional theory computations were carried out using the ORCA program
(version 4.2.1) [47,48]. The full geometry optimization of the structures was conducted
in the gas phase by employing the BLYP-D4 functional [49–51] coupled with the def2-
TZVP basis set [39]. Due to the size of the studied systems (204 atoms and 812 electrons
for each configuration of non-covalent complexes), the resolution of the identity method
was applied to speed up the calculations [40,52]. The use of the most recent dispersion-
corrected DFT approximation based on the new charge-dependent D4 dispersion model
is an adequate approach for describing the interactions of non-covalent systems [53,54].
The starting configurations used for molecular docking simulations between β-CD and
dexamethasone were generated according to the method of Liu and Guo [55], where the
center of dexamethasone and β-CD was defined as the center of the coordination system
(0 Å). The axis of the dexamethasone was directed along the Z-axis of β-CD, on which the
dexamethasone was translated from −10 to +10 Å with a step of 2 Å (Figure 5), resulting
in two possible modes of complex inclusion in which the dexamethasone approached
the wider rim of the β-CD cavity by its cyclohexadienone group (mode A) or through
the terminal oxo and hydroxy groups from the opposite side (mode B), as represented in
Figure 5 using the Jmol viewer applet [56].

Figure 5. The generated initial set of configurations for a dexamethasone docking prediction from
−10 Å to +10 Å for A and B modes. Color code: carbon, grey; fluorine, green; oxygen, red; hydro-
gen, white.
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The complexation energies for all created configurations were computed using
Equation (1):

∆Ecomplexation = EDex@β−CD − (EDex + Eβ−CD

)
(1)

where ∆Ecomplexation represents the complexation energy, and E Dex@β-CD, E Dex, and E β-CD
are, respectively, the optimized energies of the complex, the free dexamethasone, and the
free β-CD.

The obtained most stable configuration corresponding to the lowest energy structure
was re-optimized in a water solvent through the SMD solvation model [57] at the BLYP-
D4/def2-TZVP level of theory.

The re-optimized aqueous phase structure was then used to further analyze the inter-
molecular interactions, such as non-covalent interactions (NCIs), based on the independent
gradient model (IGM) analysis [58] with the help of the wave function analysis code
Multiwfn [59] and the VMD visualization program [60].

3.2. Molecular Docking Study Using AutoDock

The 3D crystal of the main protease of SARS-CoV-2 (PDB ID: 6LU7) in complex
with an N3 inhibitor was downloaded from the Protein Data Bank (PDB) (https://www.
rcsb.org accessed on 13 October 2021) [61], and we used the geometry of the previously
optimized structure for the dexamethasone ligand in this study. The docking studies
were performed using AutoDock4 and AutoDock Vina implemented in AutoDockTools
(ADT 1.5.6) software [62]. All water molecules, ligands, and ions were cleaned (removed)
from the PDB file of 6LU7 using UCSF Chimera software (ver. 1.10.2) [63]. The non-polar
hydrogens were merged, and then the Kollman partial charges [62] were assigned using
AutoDockTools. The docking box with an 80 × 80 × 80 Å grid was defined and employed
with a grid spacing of 0.375 Å. The most representative docked poses were visualized using
CHIMERA (UCSF) [63] and BIOVIA Discovery studio visualizer (version 1.10.2) [64], in
which the root mean square deviation (RMSD) was less than 2 Å.

4. Conclusions

The host-guest inclusion process of dexamethasone into β-CD was studied using
the DFT-D4 approach. Molecular docking simulations were also conducted to assess the
potential inhibitory activity of dexamethasone against SARS-CoV-2 by targeting its main
protease. The analysis of structural, energetic, and electronic properties using IGM and
NBO allowed us to characterize the nature of the host–guest interactions in the Dex@β-
CD complex. The results showed that dexamethasone partially penetrates the cavity of
β-CD from the wider rim through its cyclohexadienone moiety. The complexation energy
in the gas phase was found to be −179.50 kJ/mol and decreased to −74.14 kJ/mol in
the aqueous phase. Hydrogen bonds and Van der Waals interactions were found to be
mainly responsible for the formation of the Dex@β-CD complex. Molecular docking
simulations revealed that dexamethasone binds strongly to the active sites of the protein
target, and AutoDock and AutoDock Vina predicted free binding energies of −29.97 and
−32.19 kJ/mol, respectively. This study has shown that the inclusion complexation of
dexamethasone with β-CD could be an adequate pharmaceutical strategy to overcome its
lower solubility and improve its bioavailability, thus enhancing its therapeutic potential
against SARS-CoV-2 infection while reducing its side effects.

Supplementary Materials: The following are available online, A graphical animation (animated GIF
file) of the inclusion complexation of dexamethasone in β-CD calculated at the BLYP-D4/def2-TZVP
level in the gas phase is provided.
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